staple
Avec cedram.org
logo JEP
Table des matières de ce volume | Article précédent | Article suivant
Mathieu Lewin; Elliott H. Lieb; Robert Seiringer
Statistical mechanics of the uniform electron gas
(Mécanique statistique pour le gaz uniforme d’électrons)
Journal de l'École polytechnique — Mathématiques, 5 (2018), p. 79-116, doi: 10.5802/jep.64
Article PDF | TeX source
Class. Math.: 82B03, 81V70, 49K21
Mots clés: Gaz uniforme d’électrons, théorie de la fonctionnelle de la densité, limite thermodynamique, mécanique statistique, limites de champ moyen, transport optimal

Résumé - Abstract

Dans cet article nous définissons et étudions le gaz uniforme d’électrons, un système comprenant une infinité de particules arrangées de sorte que la densité moyenne soit constante dans tout l’espace. Ceci est en principe différent du Jellium, qui comprend une charge uniforme positive sans aucune contrainte sur la densité des électrons. Nous démontrons que le gaz uniforme d’électrons s’obtient en théorie de la fonctionnelle de la densité, dans la limite où la densité du système varie lentement. Nous construisons également le gaz uniforme quantique et montrons la convergence vers le gaz classique dans le régime de faible densité.

Bibliographie

[1] M. Aizenman & P. A. Martin, “Structure of Gibbs states of one dimensional Coulomb systems”, Comm. Math. Phys. 78 (1980) no. 1, p. 99-116 Article
[2] V. Bach, “Error bound for the Hartree-Fock energy of atoms and molecules”, Comm. Math. Phys. 147 (1992) no. 3, p. 527-548 Article
[3] V. Bach, E. H. Lieb & J. P. Solovej, “Generalized Hartree-Fock theory and the Hubbard model”, J. Statist. Phys. 76 (1994) no. 1-2, p. 3-89 Article
[4] A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange”, J. Chem. Phys. 98 (1993) no. 7, p. 5648-5652 Article
[5] U. Bindini & L. De Pascale, “Optimal transport with Coulomb cost and the semiclassical limit of density functional theory”, J. Éc. polytech. Math. 4 (2017), p. 909-934 Article
[6] R. F. Bishop & K. H. Lührmann, “Electron correlations. II. Ground-state results at low and metallic densities”, Phys. Rev. B 26 (1982), p. 5523-5557 Article
[7] X. Blanc & M. Lewin, “Existence of the thermodynamic limit for disordered quantum Coulomb systems”, J. Math. Phys. 53 (2012), article no. 095209 Article
[8] D. Borwein, J. M. Borwein & R. Shail, “Analysis of certain lattice sums”, J. Math. Anal. Appl. 143 (1989) no. 1, p. 126-137 Article
[9] D. Borwein, J. M. Borwein, R. Shail & I. J. Zucker, “Energy of static electron lattices”, J. Phys. A 21 (1988) no. 7, p. 1519-1531 Article
[10] D. Borwein, J. M. Borwein & A. Straub, “On lattice sums and Wigner limits”, J. Math. Anal. Appl. 414 (2014) no. 2, p. 489-513 Article
[11] H. J. Brascamp & E. H. Lieb, Some inequalities for Gaussian measures and the long-range order of the one-dimensional plasma, in A.M. Arthurs, éd., Functional Integration and Its Applications, Clarendon Press, 1975
[12] D. C. Brydges & P. A. Martin, “Coulomb systems at low density: a review”, J. Statist. Phys. 96 (1999) no. 5-6, p. 1163-1330 Article
[13] G. Buttazzo, T. Champion & L. De Pascale, “Continuity and estimates for multimarginal optimal transportation problems with singular costs”, Appl. Math. Optim. (2017), doi:10.1007/s00245-017-9403-7 Article
[14] P. Choquard, P. Favre & C. Gruber, “On the equation of state of classical one-component systems with long-range forces”, J. Statist. Phys. 23 (1980), p. 405-442 Article
[15] M. Colombo, L. De Pascale & S. Di Marino, “Multimarginal optimal transport maps for one-dimensional repulsive costs”, Canad. J. Math. 67 (2015), p. 350-368 Article
[16] J. G. Conlon, E. H. Lieb & H.-T. Yau, “The $N^{7/5}$ law for charged bosons”, Comm. Math. Phys. 116 (1988) no. 3, p. 417-448 Article
[17] C. Cotar, G. Friesecke & C. Klüppelberg, “Density functional theory and optimal transportation with Coulomb cost”, Comm. Pure Appl. Math. 66 (2013) no. 4, p. 548-599 Article
[18] C. Cotar, G. Friesecke & B. Pass, “Infinite-body optimal transport with Coulomb cost”, Calc. Var. Partial Differential Equations 54 (2015) no. 1, p. 717-742 Article
[19] S. Di Marino 2017, in preparation
[20] S. Di Marino, A. Gerolin & L. Nenna, Optimal transportation theory with repulsive costs, in F. Santambrogio, T. Champion, G. Carlier, M. Rumpf, É Oudet, M. Bergounioux, éd., Topological optimization and optimal transport in the applied sciences, Radon series on computational and applied mathematics 17, De Gruyter, 2017, p. 204–256
[21] N. D. Drummond, Z. Radnai, J. R. Trail, M. D. Towler & R. J. Needs, “Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals”, Phys. Rev. B (2004), article no. 085116 Article
[22] M. E. Fisher, “The free energy of a macroscopic system”, Arch. Rational Mech. Anal. 17 (1964), p. 377-410 Article
[23] S. Fournais, M. Lewin & J. P. Solovej, “The semi-classical limit of large fermionic systems”, arXiv:1510.01124, 2015
[24] J. Fröhlich & Y. M. Park, “Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems”, Comm. Math. Phys. 59 (1978) no. 3, p. 235-266 Article
[25] P. Gori-Giorgi & M. Seidl, “Density functional theory for strongly-interacting electrons: perspectives for physics and chemistry”, Phys. Chem. Chem. Phys. 12 (2010), p. 14405-14419 Article
[26] G. M. Graf & D. Schenker, “On the molecular limit of Coulomb gases”, Comm. Math. Phys. 174 (1995) no. 1, p. 215-227 Article
[27] G. M. Graf & J. P. Solovej, “A correlation estimate with applications to quantum systems with Coulomb interactions”, Rev. Math. Phys. 06 (1994) no. 05a, p. 977-997 Article
[28] C. Gruber, J. L. Lebowitz & P. A. Martin, “Sum rules for inhomogeneous Coulomb systems”, J. Chem. Phys. 75 (1981) no. 2, p. 944-954 Article
[29] C. Gruber, C. Lugrin & P. A. Martin, “Equilibrium equations for classical systems with long range forces and application to the one dimensional Coulomb gas”, Helv. Phys. Acta 51 (1978) no. 5-6, p. 829-866
[30] C. Gruber, C. Lugrin & P. A. Martin, “Equilibrium properties of classical systems with long-range forces. BBGKY equation, neutrality, screening, and sum rules”, J. Statist. Phys. 22 (1980), p. 193-236 Article
[31] C. Gruber & P. A. Martin, “Translation invariance in statistical mechanics of classical continuous systems”, Ann. Physics 131 (1981) no. 1, p. 56 -72 Article
[32] C. Hainzl, M. Lewin & J. P. Solovej, “The thermodynamic limit of quantum Coulomb systems. Part I. General theory”, Advances in Math. 221 (2009), p. 454-487 Article
[33] C. Hainzl, M. Lewin & J. P. Solovej, “The thermodynamic limit of quantum Coulomb systems. Part II. Applications”, Advances in Math. 221 (2009), p. 488-546 Article
[34] J. E. Harriman, “Orthonormal orbitals for the representation of an arbitrary density”, Phys. Rev. A (3) 24 (1981) no. 2, p. 680-682 Article
[35] M. Hoffmann-Ostenhof & T. Hoffmann-Ostenhof, “Schrödinger inequalities and asymptotic behavior of the electron density of atoms and molecules”, Phys. Rev. A (3) 16 (1977) no. 5, p. 1782-1785 Article
[36] P. Hohenberg & W. Kohn, “Inhomogeneous electron gas”, Phys. Rev. 136 (1964) no. 3B, p. B864-B871 Article
[37] J. Z. Imbrie, “Debye screening for jellium and other Coulomb systems”, Comm. Math. Phys. 87 (1982) no. 4, p. 515-565 Article
[38] G. Kin-Lic Chan & N. C. Handy, “Optimized Lieb-Oxford bound for the exchange-correlation energy”, Phys. Rev. A (3) 59 (1999) no. 4, p. 3075-3077 Article
[39] W. Kohn & L. J. Sham, “Self-consistent equations including exchange and correlation effects”, Phys. Rev. (2) 140 (1965), p. A1133-A1138 Article
[40] H. Kunz, “The one-dimensional classical electron gas”, Ann. Physics 85 (1974) no. 2, p. 303 -335 Article
[41] O. Lazarev & E. H. Lieb, “A smooth, complex generalization of the Hobby-Rice theorem”, Indiana Univ. Math. J. 62 (2013) no. 4, p. 1133-1141 Article
[42] T. Leblé & S. Serfaty, “Large deviation principle for empirical fields of Log and Riesz gases”, Invent. Math. (2017), doi:10.1007/s00222-017-0738-0 Article
[43] M. Lewin, “Geometric methods for nonlinear many-body quantum systems”, J. Funct. Anal. 260 (2011), p. 3535-3595 Article
[44] M. Lewin & E. H. Lieb, “Improved Lieb-Oxford exchange-correlation inequality with gradient correction”, Phys. Rev. A (3) 91 (2015) no. 2, article no. 022507 Article
[45] M. Lewin, P. T. Nam, S. Serfaty & J. P. Solovej, “Bogoliubov spectrum of interacting Bose gases”, Comm. Pure Appl. Math. 68 (2015) no. 3, p. 413-471 Article
[46] E. H. Lieb, “A lower bound for Coulomb energies”, Phys. Lett. A 70 (1979), p. 444-446 Article
[47] E. H. Lieb, “Density functionals for Coulomb systems”, Int. J. Quantum Chem. 24 (1983), p. 243-277 Article
[48] E. H. Lieb & M. Loss, Analysis, Graduate Studies in Math. 14, American Mathematical Society, Providence, RI, 2001
[49] E. H. Lieb & H. Narnhofer, “The thermodynamic limit for jellium”, J. Statist. Phys. 12 (1975) no. 4, p. 291-310 Article
[50] E. H. Lieb & S. Oxford, “Improved lower bound on the indirect Coulomb energy”, Int. J. Quantum Chem. 19 (1980) no. 3, p. 427-439 Article
[51] E. H. Lieb & R. Schrader, “Current densities in density-functional theory”, Phys. Rev. A (3) 88 (2013) no. 3, article no. 032516 Article
[52] E. H. Lieb & R. Seiringer, The stability of matter in quantum mechanics, Cambridge Univ. Press, 2010
[53] E. H. Lieb, J. P. Solovej & J. Yngvason, “Ground states of large quantum dots in magnetic fields”, Phys. Rev. B 51 (1995), p. 10646-10665 Article
[54] D. Lundholm, P. T. Nam & F. Portmann, “Fractional Hardy-Lieb-Thirring and related inequalities for interacting systems”, Arch. Rational Mech. Anal. 219 (2016) no. 3, p. 1343-1382 Article
[55] P. A. Martin & T. Yalcin, “The charge fluctuations in classical Coulomb systems”, J. Statist. Phys. 22 (1980), p. 435-463 Article
[56] S. A. Mikhailov & K. Ziegler, “Floating Wigner molecules and possible phase transitions in quantum dots”, European Phys. J. B 28 (2002) no. 1, p. 117-120 Article
[57] M. Navet, E. Jamin & M. R. Feix, “«Virial» pressure of the classical one-component plasma”, J. Physique Lett. 41 (1980) no. 3, p. 69-73 Article
[58] M. M. Odashima & K. Capelle, “How tight is the Lieb-Oxford bound?”, J. Chem. Phys. 127 (2007) no. 5 Article
[59] J. P. Perdew, Unified theory of exchange and correlation beyond the local density approximation, in P. Ziesche, H. Eschrig, éd., Electronic Structure of Solids ’91, Akademie Verlag, 1991, p. 11–20
[60] J. P. Perdew, K. Burke & M. Ernzerhof, “Generalized gradient approximation made simple”, Phys. Rev. Lett. 77 (1996), p. 3865-3868 Article
[61] J. P. Perdew & S. Kurth, Density functionals for non-relativistic Coulomb systems in the new century, in C. Fiolhais, F. Nogueira, M. A. L. Marques, éd., A primer in density functional theory, Springer, 2003, p. 1–55
[62] J. P. Perdew & Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy”, Phys. Rev. B 45 (1992), p. 13244-13249 Article
[63] M. Petrache & S. Serfaty, “Next order asymptotics and renormalized energy for Riesz interactions”, J. Inst. Math. Jussieu 16 (2015) no. 3, p. 1-69
[64] E. Räsänen, S. Pittalis, K. Capelle & C. R. Proetto, “Lower bounds on the exchange-correlation energy in reduced dimensions”, Phys. Rev. Lett. 102 (2009) no. 20, article no. 206406 Article
[65] E. Räsänen, M. Seidl & P. Gori-Giorgi, “Strictly correlated uniform electron droplets”, Phys. Rev. B 83 (2011) no. 19, article no. 195111 Article
[66] S. Rota Nodari & S. Serfaty, “Renormalized energy equidistribution and local charge balance in 2d Coulomb system”, Internat. Math. Res. Notices (2015) no. 11, p. 3035-3093
[67] N. Rougerie & S. Serfaty, “Higher dimensional Coulomb gases and renormalized energy functionals”, Comm. Pure Appl. Math. 69 (2016) no. 3, p. 519-605 Article
[68] D. Ruelle, Statistical mechanics. Rigorous results, World Scientific & Imperial College Press, Singapore & London, 1999
[69] V. Rutherfoord, “On the Lazarev-Lieb extension of the Hobby-Rice theorem”, Adv. in Math. 244 (2013), p. 16-22 Article
[70] E. Sandier & S. Serfaty, “1D log gases and the renormalized energy: crystallization at vanishing temperature”, Probab. Theory Relat. Fields (2014), p. 1-52
[71] E. Sandier & S. Serfaty, “2D Coulomb gases and the renormalized energy”, Ann. Probability 43 (2015) no. 4, p. 2026-2083 Article
[72] M. Seidl, “Strong-interaction limit of density-functional theory”, Phys. Rev. A (3) 60 (1999) no. 6, p. 4387-4395 Article
[73] M. Seidl, S. Di Marino, A. Gerolin, L. Nenna, K. J. H. Giesbertz & P. Gori-Giorgi, “The strictly-correlated electron functional for spherically symmetric systems revisited”, arXiv:1702.05022, 2017
[74] M. Seidl, P. Gori-Giorgi & A. Savin, “Strictly correlated electrons in density-functional theory: a general formulation with applications to spherical densities”, Phys. Rev. A (3) 75 (2007), article no. 042511 Article
[75] M. Seidl, J. P. Perdew & M. Levy, “Strictly correlated electrons in density-functional theory”, Phys. Rev. A (3) 59 (1999) no. 1, p. 51-54 Article
[76] M. Seidl, S. Vuckovic & P. Gori-Giorgi, “Challenging the Lieb-Oxford bound in a systematic way”, Molecular Phys. 114 (2016) no. 7-8, p. 1076-1085 Article
[77] S. Serfaty, “Ginzburg-Landau vortices, Coulomb gases, and renormalized energies”, J. Statist. Phys. 154 (2014) no. 3, p. 660-680 Article
[78] J. Sun, J. P. Perdew & A. Ruzsinszky, “Semilocal density functional obeying a strongly tightened bound for exchange”, Proc. Nat. Acad. Sci. U.S.A. 112 (2015), p. 685-689 Article
[79] J. Sun, R. C. Remsing, Y. Zhang, Z. Sun, A. Ruzsinszky, H. Peng, Z. Yang, A. Paul, U. Waghmare, X. Wu, M. L. Klein & J. P. Perdew, “Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional”, Nature Chemistry 8 (2016) Article
[80] J. Sun, A. Ruzsinszky & J. P. Perdew, “Strongly Constrained and Appropriately Normed Semilocal Density Functional”, Phys. Rev. Lett. 115 (2015), article no. 036402 Article