logo JEP
Table of contents for this volume | Previous article | Next article
Mathieu Lewin; Elliott H. Lieb; Robert Seiringer
Statistical mechanics of the uniform electron gas
(Mécanique statistique pour le gaz uniforme d’électrons)
Journal de l'École polytechnique — Mathématiques, 5 (2018), p. 79-116, doi: 10.5802/jep.64
Article PDF | TeX source
Class. Math.: 82B03, 81V70, 49K21
Keywords: Uniform electron gas, Density Functional Theory, thermodynamic limit, statistical mechanics, mean-field limit, optimal transport

Résumé - Abstract

In this paper we define and study the classical Uniform Electron Gas (UEG), a system of infinitely many electrons whose density is constant everywhere in space. The UEG is defined differently from Jellium, which has a positive constant background but no constraint on the density. We prove that the UEG arises in Density Functional Theory in the limit of a slowly varying density, minimizing the indirect Coulomb energy. We also construct the quantum UEG and compare it to the classical UEG at low density.


[1] M. Aizenman & P. A. Martin, “Structure of Gibbs states of one dimensional Coulomb systems”, Comm. Math. Phys. 78 (1980) no. 1, p. 99-116
[2] V. Bach, “Error bound for the Hartree-Fock energy of atoms and molecules”, Comm. Math. Phys. 147 (1992) no. 3, p. 527-548
[3] V. Bach, E. H. Lieb & J. P. Solovej, “Generalized Hartree-Fock theory and the Hubbard model”, J. Statist. Phys. 76 (1994) no. 1-2, p. 3-89
[4] A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange”, J. Chem. Phys. 98 (1993) no. 7, p. 5648-5652
[5] U. Bindini & L. De Pascale, “Optimal transport with Coulomb cost and the semiclassical limit of density functional theory”, J. Éc. polytech. Math. 4 (2017), p. 909-934
[6] R. F. Bishop & K. H. Lührmann, “Electron correlations. II. Ground-state results at low and metallic densities”, Phys. Rev. B 26 (1982), p. 5523-5557
[7] X. Blanc & M. Lewin, “Existence of the thermodynamic limit for disordered quantum Coulomb systems”, J. Math. Phys. 53 (2012), article no. 095209
[8] D. Borwein, J. M. Borwein & R. Shail, “Analysis of certain lattice sums”, J. Math. Anal. Appl. 143 (1989) no. 1, p. 126-137
[9] D. Borwein, J. M. Borwein, R. Shail & I. J. Zucker, “Energy of static electron lattices”, J. Phys. A 21 (1988) no. 7, p. 1519-1531
[10] D. Borwein, J. M. Borwein & A. Straub, “On lattice sums and Wigner limits”, J. Math. Anal. Appl. 414 (2014) no. 2, p. 489-513
[11] H. J. Brascamp & E. H. Lieb, Some inequalities for Gaussian measures and the long-range order of the one-dimensional plasma, in A.M. Arthurs, ed., Functional Integration and Its Applications, Clarendon Press, 1975
[12] D. C. Brydges & P. A. Martin, “Coulomb systems at low density: a review”, J. Statist. Phys. 96 (1999) no. 5-6, p. 1163-1330
[13] G. Buttazzo, T. Champion & L. De Pascale, “Continuity and estimates for multimarginal optimal transportation problems with singular costs”, Appl. Math. Optim. (2017), doi:10.1007/s00245-017-9403-7
[14] P. Choquard, P. Favre & C. Gruber, “On the equation of state of classical one-component systems with long-range forces”, J. Statist. Phys. 23 (1980), p. 405-442
[15] M. Colombo, L. De Pascale & S. Di Marino, “Multimarginal optimal transport maps for one-dimensional repulsive costs”, Canad. J. Math. 67 (2015), p. 350-368
[16] J. G. Conlon, E. H. Lieb & H.-T. Yau, “The $N^{7/5}$ law for charged bosons”, Comm. Math. Phys. 116 (1988) no. 3, p. 417-448
[17] C. Cotar, G. Friesecke & C. Klüppelberg, “Density functional theory and optimal transportation with Coulomb cost”, Comm. Pure Appl. Math. 66 (2013) no. 4, p. 548-599
[18] C. Cotar, G. Friesecke & B. Pass, “Infinite-body optimal transport with Coulomb cost”, Calc. Var. Partial Differential Equations 54 (2015) no. 1, p. 717-742
[19] S. Di Marino 2017, in preparation
[20] S. Di Marino, A. Gerolin & L. Nenna, Optimal transportation theory with repulsive costs, in F. Santambrogio, T. Champion, G. Carlier, M. Rumpf, É Oudet, M. Bergounioux, ed., Topological optimization and optimal transport in the applied sciences, Radon series on computational and applied mathematics 17, De Gruyter, 2017, p. 204–256
[21] N. D. Drummond, Z. Radnai, J. R. Trail, M. D. Towler & R. J. Needs, “Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals”, Phys. Rev. B (2004), article no. 085116
[22] M. E. Fisher, “The free energy of a macroscopic system”, Arch. Rational Mech. Anal. 17 (1964), p. 377-410
[23] S. Fournais, M. Lewin & J. P. Solovej, “The semi-classical limit of large fermionic systems”, arXiv:1510.01124, 2015
[24] J. Fröhlich & Y. M. Park, “Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems”, Comm. Math. Phys. 59 (1978) no. 3, p. 235-266
[25] P. Gori-Giorgi & M. Seidl, “Density functional theory for strongly-interacting electrons: perspectives for physics and chemistry”, Phys. Chem. Chem. Phys. 12 (2010), p. 14405-14419
[26] G. M. Graf & D. Schenker, “On the molecular limit of Coulomb gases”, Comm. Math. Phys. 174 (1995) no. 1, p. 215-227
[27] G. M. Graf & J. P. Solovej, “A correlation estimate with applications to quantum systems with Coulomb interactions”, Rev. Math. Phys. 06 (1994) no. 05a, p. 977-997
[28] C. Gruber, J. L. Lebowitz & P. A. Martin, “Sum rules for inhomogeneous Coulomb systems”, J. Chem. Phys. 75 (1981) no. 2, p. 944-954
[29] C. Gruber, C. Lugrin & P. A. Martin, “Equilibrium equations for classical systems with long range forces and application to the one dimensional Coulomb gas”, Helv. Phys. Acta 51 (1978) no. 5-6, p. 829-866
[30] C. Gruber, C. Lugrin & P. A. Martin, “Equilibrium properties of classical systems with long-range forces. BBGKY equation, neutrality, screening, and sum rules”, J. Statist. Phys. 22 (1980), p. 193-236
[31] C. Gruber & P. A. Martin, “Translation invariance in statistical mechanics of classical continuous systems”, Ann. Physics 131 (1981) no. 1, p. 56 -72
[32] C. Hainzl, M. Lewin & J. P. Solovej, “The thermodynamic limit of quantum Coulomb systems. Part I. General theory”, Advances in Math. 221 (2009), p. 454-487
[33] C. Hainzl, M. Lewin & J. P. Solovej, “The thermodynamic limit of quantum Coulomb systems. Part II. Applications”, Advances in Math. 221 (2009), p. 488-546
[34] J. E. Harriman, “Orthonormal orbitals for the representation of an arbitrary density”, Phys. Rev. A (3) 24 (1981) no. 2, p. 680-682
[35] M. Hoffmann-Ostenhof & T. Hoffmann-Ostenhof, “Schrödinger inequalities and asymptotic behavior of the electron density of atoms and molecules”, Phys. Rev. A (3) 16 (1977) no. 5, p. 1782-1785
[36] P. Hohenberg & W. Kohn, “Inhomogeneous electron gas”, Phys. Rev. 136 (1964) no. 3B, p. B864-B871
[37] J. Z. Imbrie, “Debye screening for jellium and other Coulomb systems”, Comm. Math. Phys. 87 (1982) no. 4, p. 515-565
[38] G. Kin-Lic Chan & N. C. Handy, “Optimized Lieb-Oxford bound for the exchange-correlation energy”, Phys. Rev. A (3) 59 (1999) no. 4, p. 3075-3077
[39] W. Kohn & L. J. Sham, “Self-consistent equations including exchange and correlation effects”, Phys. Rev. (2) 140 (1965), p. A1133-A1138
[40] H. Kunz, “The one-dimensional classical electron gas”, Ann. Physics 85 (1974) no. 2, p. 303 -335
[41] O. Lazarev & E. H. Lieb, “A smooth, complex generalization of the Hobby-Rice theorem”, Indiana Univ. Math. J. 62 (2013) no. 4, p. 1133-1141
[42] T. Leblé & S. Serfaty, “Large deviation principle for empirical fields of Log and Riesz gases”, Invent. Math. (2017), doi:10.1007/s00222-017-0738-0
[43] M. Lewin, “Geometric methods for nonlinear many-body quantum systems”, J. Funct. Anal. 260 (2011), p. 3535-3595
[44] M. Lewin & E. H. Lieb, “Improved Lieb-Oxford exchange-correlation inequality with gradient correction”, Phys. Rev. A (3) 91 (2015) no. 2, article no. 022507
[45] M. Lewin, P. T. Nam, S. Serfaty & J. P. Solovej, “Bogoliubov spectrum of interacting Bose gases”, Comm. Pure Appl. Math. 68 (2015) no. 3, p. 413-471
[46] E. H. Lieb, “A lower bound for Coulomb energies”, Phys. Lett. A 70 (1979), p. 444-446
[47] E. H. Lieb, “Density functionals for Coulomb systems”, Int. J. Quantum Chem. 24 (1983), p. 243-277
[48] E. H. Lieb & M. Loss, Analysis, Graduate Studies in Math. 14, American Mathematical Society, Providence, RI, 2001
[49] E. H. Lieb & H. Narnhofer, “The thermodynamic limit for jellium”, J. Statist. Phys. 12 (1975) no. 4, p. 291-310
[50] E. H. Lieb & S. Oxford, “Improved lower bound on the indirect Coulomb energy”, Int. J. Quantum Chem. 19 (1980) no. 3, p. 427-439
[51] E. H. Lieb & R. Schrader, “Current densities in density-functional theory”, Phys. Rev. A (3) 88 (2013) no. 3, article no. 032516
[52] E. H. Lieb & R. Seiringer, The stability of matter in quantum mechanics, Cambridge Univ. Press, 2010
[53] E. H. Lieb, J. P. Solovej & J. Yngvason, “Ground states of large quantum dots in magnetic fields”, Phys. Rev. B 51 (1995), p. 10646-10665
[54] D. Lundholm, P. T. Nam & F. Portmann, “Fractional Hardy-Lieb-Thirring and related inequalities for interacting systems”, Arch. Rational Mech. Anal. 219 (2016) no. 3, p. 1343-1382
[55] P. A. Martin & T. Yalcin, “The charge fluctuations in classical Coulomb systems”, J. Statist. Phys. 22 (1980), p. 435-463
[56] S. A. Mikhailov & K. Ziegler, “Floating Wigner molecules and possible phase transitions in quantum dots”, European Phys. J. B 28 (2002) no. 1, p. 117-120
[57] M. Navet, E. Jamin & M. R. Feix, “«Virial» pressure of the classical one-component plasma”, J. Physique Lett. 41 (1980) no. 3, p. 69-73
[58] M. M. Odashima & K. Capelle, “How tight is the Lieb-Oxford bound?”, J. Chem. Phys. 127 (2007) no. 5
[59] J. P. Perdew, Unified theory of exchange and correlation beyond the local density approximation, in P. Ziesche, H. Eschrig, ed., Electronic Structure of Solids ’91, Akademie Verlag, 1991, p. 11–20
[60] J. P. Perdew, K. Burke & M. Ernzerhof, “Generalized gradient approximation made simple”, Phys. Rev. Lett. 77 (1996), p. 3865-3868
[61] J. P. Perdew & S. Kurth, Density functionals for non-relativistic Coulomb systems in the new century, in C. Fiolhais, F. Nogueira, M. A. L. Marques, ed., A primer in density functional theory, Springer, 2003, p. 1–55
[62] J. P. Perdew & Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy”, Phys. Rev. B 45 (1992), p. 13244-13249
[63] M. Petrache & S. Serfaty, “Next order asymptotics and renormalized energy for Riesz interactions”, J. Inst. Math. Jussieu 16 (2015) no. 3, p. 1-69
[64] E. Räsänen, S. Pittalis, K. Capelle & C. R. Proetto, “Lower bounds on the exchange-correlation energy in reduced dimensions”, Phys. Rev. Lett. 102 (2009) no. 20, article no. 206406
[65] E. Räsänen, M. Seidl & P. Gori-Giorgi, “Strictly correlated uniform electron droplets”, Phys. Rev. B 83 (2011) no. 19, article no. 195111
[66] S. Rota Nodari & S. Serfaty, “Renormalized energy equidistribution and local charge balance in 2d Coulomb system”, Internat. Math. Res. Notices (2015) no. 11, p. 3035-3093
[67] N. Rougerie & S. Serfaty, “Higher dimensional Coulomb gases and renormalized energy functionals”, Comm. Pure Appl. Math. 69 (2016) no. 3, p. 519-605
[68] D. Ruelle, Statistical mechanics. Rigorous results, World Scientific & Imperial College Press, Singapore & London, 1999
[69] V. Rutherfoord, “On the Lazarev-Lieb extension of the Hobby-Rice theorem”, Adv. in Math. 244 (2013), p. 16-22
[70] E. Sandier & S. Serfaty, “1D log gases and the renormalized energy: crystallization at vanishing temperature”, Probab. Theory Relat. Fields (2014), p. 1-52
[71] E. Sandier & S. Serfaty, “2D Coulomb gases and the renormalized energy”, Ann. Probability 43 (2015) no. 4, p. 2026-2083
[72] M. Seidl, “Strong-interaction limit of density-functional theory”, Phys. Rev. A (3) 60 (1999) no. 6, p. 4387-4395
[73] M. Seidl, S. Di Marino, A. Gerolin, L. Nenna, K. J. H. Giesbertz & P. Gori-Giorgi, “The strictly-correlated electron functional for spherically symmetric systems revisited”, arXiv:1702.05022, 2017
[74] M. Seidl, P. Gori-Giorgi & A. Savin, “Strictly correlated electrons in density-functional theory: a general formulation with applications to spherical densities”, Phys. Rev. A (3) 75 (2007), article no. 042511
[75] M. Seidl, J. P. Perdew & M. Levy, “Strictly correlated electrons in density-functional theory”, Phys. Rev. A (3) 59 (1999) no. 1, p. 51-54
[76] M. Seidl, S. Vuckovic & P. Gori-Giorgi, “Challenging the Lieb-Oxford bound in a systematic way”, Molecular Phys. 114 (2016) no. 7-8, p. 1076-1085
[77] S. Serfaty, “Ginzburg-Landau vortices, Coulomb gases, and renormalized energies”, J. Statist. Phys. 154 (2014) no. 3, p. 660-680
[78] J. Sun, J. P. Perdew & A. Ruzsinszky, “Semilocal density functional obeying a strongly tightened bound for exchange”, Proc. Nat. Acad. Sci. U.S.A. 112 (2015), p. 685-689
[79] J. Sun, R. C. Remsing, Y. Zhang, Z. Sun, A. Ruzsinszky, H. Peng, Z. Yang, A. Paul, U. Waghmare, X. Wu, M. L. Klein & J. P. Perdew, “Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional”, Nature Chemistry 8 (2016)
[80] J. Sun, A. Ruzsinszky & J. P. Perdew, “Strongly Constrained and Appropriately Normed Semilocal Density Functional”, Phys. Rev. Lett. 115 (2015), article no. 036402