logo JEP
Table of contents for this volume | Previous article | Next article
Raf Cluckers; Immanuel Halupczok
Integration of functions of motivic exponential class, uniform in all non-archimedean local fields of characteristic zero
(Intégration de fonctions de classe motivique exponentielle, uniforme dans tous les corps locaux de caractéristique nulle)
Journal de l'École polytechnique — Mathématiques, 5 (2018), p. 45-78, doi: 10.5802/jep.63
Article PDF | TeX source
Class. Math.: 14E18, 03C10, 11S80, 11Q25, 40J99
Keywords: Motivic integration, motivic Fourier transforms, motivic exponential functions, $p$-adic integration, non-archimedean geometry, Denef-Pas cell decomposition, quantifier elimination, uniformity in all local fields

Résumé - Abstract

Through a cascade of generalizations, we develop a theory of motivic integration which works uniformly in all non-archimedean local fields of characteristic zero, overcoming some of the difficulties related to ramification and small residue field characteristics. We define a class of functions, called functions of motivic exponential class, which we show to be stable under integration and under Fourier transformation, extending results and definitions from [10], [11] and [5]. We prove uniform results related to rationality and to various kinds of loci. A key ingredient is a refined form of Denef-Pas quantifier elimination which allows us to understand definable sets in the value group and in the valued field.


[1] A. Aizenbud & V. Drinfeld, “The wave front set of the Fourier transform of algebraic measures”, Israel J. Math. 207 (2015) no. 2, p. 527-580
[2] Ş. Basarab, “Relative elimination of quantifiers for Henselian valued fields”, Ann. Pure Appl. Logic 53 (1991) no. 1, p. 51-74
[3] R. Cluckers, “Presburger sets and $p$-minimal fields”, J. Symbolic Logic 68 (2003), p. 153-162
[4] R. Cluckers & J. Denef, “Orbital integrals for linear groups”, J. Inst. Math. Jussieu 7 (2008) no. 2, p. 269-289
[5] R. Cluckers, J. Gordon & I. Halupczok, “Integrability of oscillatory functions on local fields: transfer principles”, Duke Math. J. 163 (2014) no. 8, p. 1549-1600
[6] R. Cluckers, J. Gordon & I. Halupczok, “Uniform analysis on local fields and applications to orbital integrals”, arXiv:1703.03381, 2017
[7] R. Cluckers & L. Lipshitz, “Fields with analytic structure”, J. Eur. Math. Soc. (JEMS) 13 (2011), p. 1147-1223
[8] R. Cluckers & F. Loeser, “$b$-minimality”, J. Math. Logic 7 (2007) no. 2, p. 195-227
[9] R. Cluckers & F. Loeser, “Constructible motivic functions and motivic integration”, Invent. Math. 173 (2008) no. 1, p. 23-121
[10] R. Cluckers & F. Loeser, “Constructible exponential functions, motivic Fourier transform and transfer principle”, Ann. of Math. (2) 171 (2010), p. 1011-1065
[11] R. Cluckers & F. Loeser, “Motivic integration in all residue field characteristics for Henselian discretely valued fields of characteristic zero”, J. reine angew. Math. 701 (2015), p. 1-31
[12] P. J. Cohen, “Decision procedures for real and $p$-adic fields”, Comm. Pure Appl. Math. 22 (1969), p. 131-151
[13] J. Denef, “The rationality of the Poincaré series associated to the $p$-adic points on a variety”, Invent. Math. 77 (1984), p. 1-23
[14] J. Denef, “$p$-adic semialgebraic sets and cell decomposition”, J. reine angew. Math. 369 (1986), p. 154-166
[15] J. Denef, “On the Degree of Igusa’s local zeta function”, Amer. J. Math. 109 (1987), p. 991-1008
[16] J. Denef, Report on Igusa’s local zeta function, Séminaire Bourbaki, Astérisque 201-203, Société Mathématique de France, 1991, p. 359-386
[17] J. Denef, Arithmetic and geometric applications of quantifier elimination for valued fields, in D. Haskell, A. Pillay, C. Steinhorn, ed., Model theory, algebra, and geometry, MSRI Publications 39, Cambridge University Press, 2000, p. 173–198
[18] J. Denef & F. Loeser, “Definable sets, motives and $p$-adic integrals”, J. Amer. Math. Soc. 14 (2001) no. 2, p. 429-469
[19] J. Flenner, “Relative decidability and definability in henselian valued fields”, J. Symbolic Logic 76 (2011) no. 4, p. 1240-1260
[20] H. Hironaka, “Resolution of singularities of an algebraic variety over a field of characteristic zero. I”, Ann. of Math. (2) 79 (1964) no. 1, p. 109-203
[21] E. Hrushovski & D. Kazhdan, Integration in valued fields, Algebraic geometry and number theory, Progress in Math. 253, Birkhäuser Boston, 2006, p. 261–405
[22] J. Igusa, An introduction to the theory of local zeta functions, Studies in advanced mathematics, American Mathematical Society, Providence, RI, 2000
[23] F. Loeser & J. Sebag, “Motivic integration on smooth rigid varieties and invariants of degenerations”, Duke Math. J. 119 (2003) no. 2, p. 315-344
[24] A. Macintyre, “On definable subsets of $p$-adic fields”, J. Symbolic Logic 41 (1976), p. 605-610
[25] J. Nicaise & J. Sebag, “Invariant de Serre et fibre de Milnor analytique”, Comptes Rendus Mathématique 341 (2005) no. 1, p. 21-24
[26] J. Nicaise & J. Sebag, “Motivic Serre invariants, ramification, and the analytic Milnor fiber”, Invent. Math. 168 (2007) no. 1, p. 133-173
[27] J. Pas, “Uniform $p$-adic cell decomposition and local zeta functions”, J. reine angew. Math. 399 (1989), p. 137-172
[28] J. Pas, “Cell decomposition and local zeta functions in a tower of unramified extensions of a $p$-adic field”, Proc. London Math. Soc. (3) 60 (1990) no. 1, p. 37-67
[29] S. Rideau, “Some properties of analytic difference valued fields”, J. Inst. Math. Jussieu 16 (2017) no. 3, p. 447-499
[30] J. Sebag, “Intégration motivique sur les schémas formels”, Bull. Soc. math. France 132 (2004) no. 1, p. 1-54