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AN EQUIVALENCE BETWEEN TRUNCATIONS OF
CATEGORIFIED QUANTUM GROUPS AND
HEISENBERG CATEGORIES

BY HorL QUEFFELEC, ALISTATR SAVAGE & ODED YACOBT

ABsTrAcT. — We introduce a simple diagrammatic 2-category ./ that categorifies the image of
the Fock space representation of the Heisenberg algebra and the basic representation of sloo.
We show that &/ is equivalent to a truncation of the Khovanov—Lauda categorified quantum
group % of type A, and also to a truncation of Khovanov’s Heisenberg 2-category .. This
equivalence is a categorification of the principal realization of the basic representation of sl .
As a result of the categorical equivalences described above, certain actions of % induce actions
of %, and vice versa. In particular, we obtain an explicit action of % on representations of
symmetric groups. We also explicitly compute the Grothendieck group of the truncation of .77.
The 2-category &/ can be viewed as a graphical calculus describing the functors of i-induction
and i-restriction for symmetric groups, together with the natural transformations between their
compositions. The resulting computational tool is used to give simple diagrammatic proofs of
(apparently new) representation theoretic identities.

Résumic (Une équivalence entre des troncations de groupes quantiques catégorifiés et des caté-
gories de Heisenberg)

Nous introduisons une 2-catégorie élémentaire &/ qui catégorifie I'image de I’espace de Fock
comme représentation de ’algebre de Heisenberg, ainsi que la représentation basique de slso.
Nous montrons que &/ est équivalente & une troncation du groupe quantique catégorifié de
Khovanov—Lauda % en type A, ainsi qu’a une troncation de la 2-catégorie de Heisenberg .77
introduite par Khovanov. Cette équivalence se comprend comme une catégorification de la réa-
lisation principale de la représentation basique de sl . Il résulte des équivalences catégoriques
précédentes que certaines actions de ## induisent des actions de %, et vice versa. En particu-
lier, nous obtenons une action explicite de % sur les représentations des groupes symétriques.
Nous calculons également explicitement le groupe de Grothendieck de la troncation de 7.
La 2-catégorie &7 s’interpréte comme un calcul graphique décrivant les foncteurs de i-induction
et i-restriction pour les groupes symétriques, ainsi que les transformations naturelles entre leurs
composées. Nous utilisons ’outil de calcul qui en découle pour donner des preuves diagramma-
tiques simples d’identités (apparemment nouvelles) en théorie des représentations.
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1. INnTRODUCTION

Affine Lie algebras play a key role in many areas of representation theory and
mathematical physics. One of their prominent features is that their highest-weight
irreducible representations have explicit realizations. In particular, constructions of
the so-called basic representation involve deep mathematics from areas as diverse as
algebraic combinatorics (symmetric functions), number theory (modular forms), and
geometry (Hilbert schemes).

Two of the most well-studied realizations of the basic representation are the homo-
geneous and principal realizations (see, for example [Kac90, Ch.14]). The homoge-
neous realization in affine types ADE has been categorified in [CL11]. In the current
paper we focus our attention on the principal realization in type A... The infinite-
dimensional Lie algebra sl,, behaves in many ways like an affine Lie algebra, and in
particular, it has a basic representation with a principal realization coming from a
close connection to the infinite-rank Heisenberg algebra H.

The Heisenberg algebra H has a natural representation on the space Sym of sym-
metric functions (with rational coefficients), called the Fock space representation.
The universal enveloping algebra U = U(sly,) also acts naturally on Sym, yielding
the basic representation. So we have algebra homomorphisms

(L.1) H -5 Endg Sym 2 U.
Consider the vector space decomposition

Sym = @ Qsa,

AEP
where the sum is over all partitions P and s denotes the Schur function corresponding
to A\. Let 15: Sym — Qs, denote the natural projection. While the images of the
representations ry and ry are not equal, we have an equality of their idempotent
modifications:

(1.2) @D Lou(H)ly= @ 1rvU)lx
A UEP A UEP
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This observation is an sl,, analogue of the fact that the basic representation of ;[n
remains irreducible when restricted to the principal Heisenberg subalgebra—a fact
which is the crucial ingredient in the principal realization of the basic representation.
We view (1.2) as an additive Q-linear category .4 whose set of objects is the free
monoid N[P] on P and with

Mor4(A\, 1) = 1, ra(H)1x = 1,7y (U)1x = Homg(Qsx, Qs,).

In [Kho14], Khovanov introduced a monoidal category, defined in terms of planar
diagrams, whose Grothendieck group contains (and is conjecturally isomorphic to) the
Heisenberg algebra H. Khovanov’s category has a natural 2-category analogue 7.
On the other hand, in [KL10], Khovanov and Lauda introduced a 2-category, which
we denote 7%, that categorifies quantum sl, and can naturally be generalized to
the sl case (see [CL15]). A related construction was also described by Rouquier in
[Rou08]. These categorifications have led to an explosion of research activity, including
generalizations, and applications to representation theory, geometry, and topology.
It is thus natural to seek a connection between the 2-categories ¢ and % that
categorifies the principal embedding relationship between H and U discussed above.
This is the goal of the current paper.

We define a 2-category &/ whose 2-morphism spaces are given by planar diagrams
modulo isotopy and local relations. The local relations of o7 are exceedingly simple
and we show that o categorifies A. We then describe precise relationships between o7
and the 2-categories s and %/. Our first main result is that & is equivalent to a
degree zero piece of a truncation of the categorified quantum group % . More precisely,
recalling that the objects of % are elements of the weight lattice of sl , we consider the
truncation %% of % where we kill weights not appearing in the basic representation.
Specifically, we quotient the 2-morphism spaces by the identity 2-morphisms of the
identity l-morphisms of such weights. (This type of truncation has appeared before
in the categorification literature, for example, in [MSV13, QR16].) The resulting 2-
morphism spaces of % % are nonnegatively graded, and we show that the degree zero
part %, of %' is equivalent to the 2-category <7 (Theorem 4.4).

Our next main result is that & is also equivalent to a summand of an idempotent
completion of a truncation of the Heisenberg 2-category .#°. More precisely, recalling
that the objects of 7 are integers, we consider the truncation 2 ' of # obtained by
killing objects corresponding to negative integers. We then take an idempotent com-
pletion ' of %' show that we have a natural decomposition S = 7 @ 5,
and that  is equivalent to the summand % (Theorem 6.7). This summand can be
obtained from ##*" by imposing one extra local relation (namely, declaring a clockwise
circle in a region labeled n to be equal to n). We note that the idempotent comple-
tion we consider in the above construction is larger than the one often appearing
in the categorification literature since we complete with respect to both idempotent
1-morphisms and 2-morphisms (see Definition 5.1 and Remark 5.2). As a result, the
idempotent completion has more objects, with the object n splitting into a direct sum
of objects labeled by the partitions of n.

JE.P.— M., 2018, tome 5



200 H. QuerreLec, A. Savace & O. Yacost

We thus have 2-functors

o truncate ot summand = o =Y, summand ot truncate .

that can be thought of as a categorification of (1.1). The equivalence %, = % is a cat-
egorification of the isomorphism (1.2) and yields a categorical analog of the principal
realization of the basic representation of sl,,. In particular, any action of J# factoring
through J#*" (which is true of any action categorifying the Fock space representation)
induces an explicit action of %/. Conversely, any action of % factoring through % *
(which is true of any action categorifying the basic representation) induces an explicit
action of 7. See Section 7.1.

In [Khol4], Khovanov described an action of his Heisenberg category on modules
for symmetric groups. This naturally induces an action of the 2-category ¢ factoring
through s#%. Applying the categorical principal realization to this action we obtain
an explicit action of the Khovanov—Lauda categorified quantum group % on modules
for symmetric groups, relating our work to [BK09a, BK09b]. See Section 7.4.

By computations originally due to Chuang and Rouquier in [CR08, §7.1], one can
easily deduce that there is a categorical action of sl,, on modules for symmetric
groups. This action is constructed using i-induction and i-restriction functors, and
thus is closely related to Khovanov’s categorical Heisenberg action. The equivalence
I = Uy gives the precise diagrammatic connection between these actions on the level
of 2-categories. In particular, the 2-category o7 yields a graphical calculus for describ-
ing i-induction and i-restriction functors, together with the natural transformations
between them (see Proposition 7.3). This provides a computational tool for proving
identities about the representation theory of the symmetric groups. See Section 8.1
for some examples of identities that, to the best of our knowledge, are new.

One of the most important open questions about Khovanov’s Heisenberg category
is the conjecture that it categorifies the Heisenberg algebra (see [Khol4, Conj. 1]). In
the framework of 2-categories, this conjecture is the statement that the Grothendieck
group of 7 is isomorphic to ,, ., H. (The presence of the infinite sum here arises
from the fact that, in a certain sense, the 2-category J# contains countably many
copies of the monoidal Heisenberg category defined in [Kho14].) We prove the analog of
Khovanov’s conjecture for the truncated category 5%, namely that the Grothendieck
group of Y is isomorphic to D,,.en A- See Corollary 6.8.

We now give an overview of the contents of the paper. In Section 2 we recall some
basic facts about the basic representation and define the category A. We also set
some category theoretic notation and conventions. In Section 3 we recall some facts
about modules for symmetric groups, discuss eigenspace decompositions with respect
to Jucys—Murphy elements, and prove some combinatorial identities that will be used
elsewhere in the paper. Then, in Section 4, we introduce the 2-category &/ and show
that it is equivalent to %4. We also prove some results about the structure of .o/
and prove that it categorifies A. We turn our attention to the Heisenberg 2-category
in Section 5. In particular, we introduce the truncated Heisenberg 2-category 5#°F,

JE.P — M., 2018, tome5
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describe the decomposition S = 7 & 5, and prove that J is equivalent to 7.
In Section 7 we discuss how our results yield categorical Heisenberg actions from cat-
egorified quantum group actions and vice versa. In particular, we describe an explicit
action of the Khovanov—Lauda 2-category on modules for symmetric groups. Finally,
in Section 8 we give an application of our results to diagrammatic computation and
discuss some possible directions for further research.

Note on the arXiv version. — For the interested reader, the tex file of the arXiv ver-
sion of this paper includes hidden details of some straightforward computations and
arguments that are omitted in the present article. These details can be displayed by
switching the details toggle to true in the tex file and recompiling.

Acknowledgements. The authors would like to thank C. Bonnafé, M. Khovanov,
A. Lauda, A. Licata, A. Molev, E. Wagner, and M. Zabrocki for helpful conversations.

2. ALGEBRAIC PRELIMINARIES

2.1. Bosonic Fock spack AND THE cATEGORY A. — Let P denote the set of partitions
and write A F n to denote that A = (A1, Aa,...), Ay = Ao > -+, is a partition of n € N.
Let Sym be the algebra of symmetric functions with rational coefficients. Then we

have
Sym = @ Qsa,
AEP

where s, denotes the Schur function corresponding to the partition A. For A € P, we
let 15: Sym — Qs) denote the corresponding projection.

Let N[P] be the free monoid on the set of partitions. Define A to be the additive
Q-linear category whose set of objects is N[P], where we denote the zero object by 0.
The morphisms between generating objects are

Mor 4(A, 1) = 1,(Endg Sym)1 = Homg(Qsx,Qs,), A peP.

If V denotes the category of finite-dimensional Q-vector spaces, then we have an
equivalence of categories

(2.1) rrA—YV, A+—Qs,.

Let {-,-) be the inner product on Sym under which the Schur functions are or-
thonormal. For f € Sym, let f* denote the operator on Sym adjoint to multiplication
by f:

(f*(g),h) ={g, fh) forall f,g,h € Sym.
The Heisenberg algebra H is the subalgebra of Endgp Sym generated by the operators f
and f*, f € Sym. The tautological action of H on Sym is called the (bosonic) Fock
space representation.

For A\, u € P, we have

1HH1>\ = HOIHQ(QSA,QSH) = MOI‘A()‘7/’L)7

where the first equality follows from the fact that s,s}1, is the map s, — dx5,.
Thus, A may be viewed as an idempotent modification of H.

JE.P.— M., 2018, tome 5
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2.2. THE BASIC REPRESENTATION. Let sl denote the Lie algebra of all trace zero in-
finite matrices a = (a;;);,jez With rational entries such that the number of nonzero a;;
is finite, with the usual commutator bracket. Set

€ = Ei,iJrl; fi = Ei+1,i7 h; = [ei,fi] = Ezz - Ei+1,i+17

where E; ; is the matrix whose (¢, j)-entry is equal to one and all other entries are
zero. Let U = U(sls) denote the universal enveloping algebra of sl...

To a partition A = (A1,...,\,), we associate the Young diagram with rows num-
bered from top to bottom, columns numbered left to right, and which has \; boxes
in the first row, Ay boxes in the second row, etc. A box in row k£ and column ¢ has
content £ — k € Z. A Young diagram will be said to have an addable i-box if one can
add to it a box of content 7 and get a Young diagram. Similarly, a Young diagram has
a removable i-box if there is a box of content ¢ that can be removed yielding another
Young diagram. If A - n has an addable i-box we let A H ¢ be the partition of n + 1
obtained from A\ by adding the box of content ¢, and similarly define A H .

Examere 2.1, — Let A = (3,2) F 5. Then we have
A=, ams=t, aBo=0.

For X € P, define
BT ()\) = {i | A has an addable i-box} and B~ (\) = {i | A has a removable i-box}.

Note that, for all A € P, we have BT(A\) N B~ (\) = @. If i ¢ BT ()\) (respectively
i ¢ B~ ()\)), then we consider ABHi = 0 (respectively AHi = 0) when viewing partitions
as objects in A.

Consider the action of U on Sym given by

(2.2) €S\ = Sx8i, [i' S\ = Sxd@i

where, by convention, sg = 0. This defines an irreducible representation of U on Sym
known as the basic representation. In fact, one can write explicit expressions for the
action of the generators e; and f; in terms of the action of the Heisenberg algebra H
on Sym. This construction is known as the principal realization. We refer the reader
to [Kac90, §§14.9-14.10] for details. The element sy spans the weight space of weight

(2.3) wyi=Ag— > i,

i€C(N)

where the sum is over the multiset C'(\) of contents of the boxes of A, Ag is the zeroth
fundamental weight, and «; is the i-th simple root. In particular, the map

(24) A —> W

is a bijection between P and the set of weights of the basic representation.

JEP — M., 2018, tome5
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2.3. A Kac Moopy PRESENTATION OF A. Let U denote the image of U in Endg Sym
under the basic representation described in Section 2.2. Then, for A, u € P, we have

luﬁb\ = Homg(Qsx, Qs,,) = Mor 4(A, w).
This observation allows us to deduce a Kac-Moody-type presentation of A. Define
morphisms
eily € Mora (A, AB1i), sy +— sxgis
filx € Mor (A, AH 1), sy — sxmi,

for i € Z, A € P. Since Young’s lattice is connected, these morphisms clearly generate
all morphisms in A.

Prorosition 2.2. — The morphisms in A are generated by e;1x, filx, for i € Z,
A € P, subject only to the relations

) eiejly = eje;ly, if [i—j| > 1,
6) fifilx = fifils, ifli—jl > 1,
7) eifilx = fjeily, ifi# g,
8) eifi1A:1X7 ZfZEB+(>\)7
9) fieilx =1y, ifie B~(M).
Proof. Let C be the category with objects N[P] and morphisms given by the pre-
sentation in the statement of the proposition. Since the relations (2.5)—(2.9) are im-
mediate in A, we have a full and essentially surjective functor C — A. Therefore it
suffices to show that dim More (A, ) < 1 for all A\, u € P.

In fact, we will prove that, for A, u € P, Morc (A, ) is spanned by a single morphism

of the form
(2.10) firfiz - firejiess -+ €515,

where {il,...,ik}ﬂ{jl,...,jg} =gand pu=ABj,---Hj B Bi,B---HBis By
This follows from the following three statements:

(a) Morphisms of the form (2.10) span Morc (A, p).

(b) Suppose A € P and j1,...,je,01,...,i¢ € Z such that

(2.11) AHi B -BisHBiy = B j,B---BjBj
are nonzero. Then
fisfio o+ fisIn = i fin o fio I
(¢) Suppose A € P and j1,...,Je, 01, .,i¢ € Z such that
AHB8---8iB8i,=A848---Bj.85

are nonzero. Then

€irCiy - Cip Ly = gy, e 1y

JE.P.— M., 2018, tome
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Proof of (a). Given a morphism in C that is a composition of e;15 and f;1, it
follows from (2.7) and (2.8) that this composition is isomorphic to a 1-morphism of
the form (2.10), possibly not satisfying the condition {i1,...,ix} N {j1,...,J¢} = @.
To see that we can also satisfy this condition, choose a € {1,...,k} and b€ {1,...,¢}
such that i, = j, and such that we cannot find o’ € {a,...,k} and b’ € {1,...,b} such
that i,, = jir and either ' > a or b < b. (Intuitively speaking, we pick an “innermost”
fi, e; pair.) We claim that none of the indices a + 1,a +2,...,kor 1,2,...,b— 1 is
equal to i, — 1 or i, + 1. It will then follow from (2.5) and (2.6) that our morphism
is equal to one in which f;_ is immediately to the left of e;,, allowing us to use (2.9)
to cancel this pair. Then statement (a) follows by induction.

To prove the claim, consider the morphism 1,e;,¢;,,, -+ - e;,1x. We then have p =
ABj¢8---Bjp. In particular, p has an addable j, box. If we now remove a j, + 1 box
or a j, — 1 box, the resulting Young diagram will no longer have an addable j; box.
Therefore, by our assumption that we have picked the innermost f;, e; pair, none of
the indices 1,2,...,b— 1 is equal to jp + 1 or 5, — 1. So puH j,—1 B---H j; has an
addable j, box. But then it does not have an addable j, + 1 box or an addable j, — 1
box. Therefore, none of the indices i441, ..., is equal to i, + 1 or i, — 1. This proves
the claim.

Proofof (b). Fix A € P. We prove the statement by induction on £. It is clear for
¢ =0 and ¢ = 1. Suppose ¢ > 2. The partition A has a ji-addable box and an i,-
addable box. If j, = iy, then the result follows by the inductive hypothesis applied to
AHj¢. So we assume jy # ip. By assumption, there must exist some a € {1,...,£—1}
such that j, = iy. Choose the maximal a with this property. By (2.11), A has an
addable iy-box. Thus, by an argument as in the proof of statement (a), none of the
integers jg, je—1,- .-, Jjat+1 can be equal to j, = 1. Then, by (2.6), we have

Findie - Fi N = FinSe -+ fiaoi Fiair - Fio fiaIn-
Then statement (b) follows by the inductive hypothesis applied to AH j, = A H ip.

Proofof (c). — The proof of statement (c) is analogous to that of statement (b). O

2.4. NOTATION AND CONVENTIONS FOR 2-CATEGORIES. — We will use calligraphic font
for 1-categories (A, C, M, V, etc.) and script font for 2-categories (&, €, %, H,
etc.). We use bold lowercase for functors (a, r, etc.) and bold uppercase for 2-functors
(F, S, etc.). The notation 0 will denote a zero object in a l-category or 2-category.
Other objects will be denoted with italics characters (z, y, e, etc.). We use sans serif
font for 1-morphisms (e, x, Q, etc.) and Greek letters for 2-morphisms.

If € is a 2-category and x,y are objects of €, we let € (z,y) denote the category
of morphisms from = to y. We denote the class of objects of ¥ (x,y), which are 1-
morphisms in ¢ by 1Morg(z,y). For P,Q objects in € (z,y), we denote the class
of morphisms from P to Q, which are 2-morphisms in €, by 2Mor« (P, Q). For an
object x of C, we let 1, denote the identity 1-morphism on x and let id, denote the
identity 2-morphism on 1,. We denote vertical composition of 2-morphisms by o and
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horizontal composition by juxtaposition. Whenever we speak of a linear category or
2-category, or a linear functor or 2-functor, we mean Q-linear.

If ¢ is an additive linear 2-category, we define its Grothendieck group K(%) to
be the category with the same objects as ¥ and whose space of morphisms between
objects  and y is K(€(z,y)), the usual split Grothendieck group, over Q, of the
category € (z,y).

3. MODULES FOR SYMMETRIC GROUPS

In this section we recall some well-known facts about modules for symmetric groups
and prove some combinatorial identities that we will need later on in our constructions.

3.1. MobuLEe catecories. — For an associative algebra A, we let A-mod denote the
category of finite-dimensional left A-modules. For n € N, we let A, = QS,, denote
the group algebra of the symmetric group. By convention, we set Ag = A; = Q. We
index the representations of A,, by partitions of n in the usual way, and for A F n, we
let V) be the corresponding irreducible representation of A,,.

Let M denote the full subcategory of A,-mod whose objects are isomorphic to
direct sums of V) (including the empty sum, which is the zero representation). We
then have a decomposition
(3.1) M, == Ap-mod = @ M.

AFn

We consider A, to be a subalgebra of A, i in the natural way, where S, is the
subgroup of S, 11 fixing n + 1. We use the notation (n) to denote A,, considered as
an (A, Ap)-bimodule in the usual way. We use subscripts to denote restriction of the
left and right actions. Thus, (n+ 1), is A,41 considered as an (A, 1, 4, )-bimodule,
n(n+1)is A,41 considered as an (A4, A,+1)-bimodule, etc. Then

(n+1),®a4, —: Ap-mod = A, y1-mod and ,(n+1)®4, ., —: Apy1-mod — A,-mod

are the usual induction and restriction functors. Tensor products of such bimodules
correspond in the same way to composition of induction and restriction functors, and
bimodule homomorphisms correspond to natural transformations of the corresponding
functors.

We define a 2-category .# as follows. The objects of .# are finite direct sums of
M, X € P, and a zero object 0. We adopt the conventions that M,, = 0 when n < 0,
M m; = 0 when i € BT()\), and Mg; = 0 when i € B~ ()\). The 1-morphisms are
generated, under composition and direct sum, by additive Q-linear direct summands
of the functors

(n + 1)n ®a, —: My — My, n—l(n) ®a, —: My — My 1.
The 2-morphisms of .# are natural transformations of functors.

Remark 3.1. In the above definition, it is important that we allow direct summands
of the given functors. In Section 3.4 we will discuss the direct summands

(n+ 1); ®a, —: My — Mg, n_li(n) ®a, —: My — Mg, where n =|\|.
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arising from decomposing induction and restriction according to eigenspaces for the
action of Jucys—Murphy elements.

For A\ - n, consider the functors
(3.2) iy :=Homy, (Vi,—): Mx —V and jr:=VA®qg—:V — M,.

We have iy ojy = 1y and jy oiy = 1, and hence an equivalence of categories

My =Y.

3.2. DECATEGORIFICATION. Suppose A, u € P and consider an additive linear func-
tor a: My — M,. Then the functor i, o a o jy is naturally isomorphic to a direct
sum of some finite number of copies of the identity functor. In other words, under the
equivalences (3.2), every object in .# (M, M,,) is isomorphic to 1" for some n > 0,
where 1y: V — V is the identity functor.

It follows that K (.#) is the category given by

ObK(A#)=0b.#A and Morg(z(Mx,M,)=Q, \,upcP.

Composition of morphisms is given by multiplication of the corresponding elements

of Q.
We have a natural functor K (.#) — V given by

(3.3) My — Qsy, 2+ (52 25,),

for A\, € P and z € Q = Morg(_z) (M, M,). This functor is clearly an equivalence
of categories.

3.3. BIADJUNCTION AND THE FUNDAMENTAL BIMODULE DECOMPOSITION
Prorosition 3.2. — The maps
er: (n+1)p(n+1) — (n+1), er(a®b)=ab, ac(n+1),, be (n+1),
nr: (n) — n(n+ 1)y, nr(a) =a, aé€(n),

g ifg€ Sy,

eL:nn+1), — (n), ¢ =
bl ) (), eulg) {0 if 9 € Snt1 N Sn,

nL:(n+1) — (n+1,n+1), nuia)=a Zsi~-~sn®sn--~si, a€(n+1),
i€{l,...,n+1}

(where we interpret the expression s; -+ Sy Q@ Sp-++8; as 1 @ 1 when i = n+1) are
bimodule homomorphisms and satisfy the relations

(3.4) (er ®1id) o (id ®@nRr) = id, (3.5) (id ®eR) o (nr ®id) = id,
(3.6) (ep, ®id) o (id @nr) = id, (3.7) (id ®eL) o (. ®id) =id .
In particular, (n+ 1), is both left and right adjoint to ,(n + 1) in the 2-category of

bimodules over rings.
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Proof. The verification of these relations, which are a formulation of the well-
known Frobenius reciprocity between induction and restriction for finite groups, is a
straightforward computation. O

Tt is well known (see, for example, [Kle05, Lem. 7.6.1]) that we have a decomposition
(3.8) Api1 = A, ® (Ansndy),
and an isomorphism of (4,, A,)-bimodules
(3.9) (n)p-1(n) =, AnsnAn C ,(n+1),, a®b— asyb.
This yields an isomorphism of (A, A;,)-bimodules

(3.10) (n)p—1(n)® (n) — ,(n+1),, (@®b,c)— aspb+c.
More precisely, the maps
P IR
(3.11) (n)pn—1(n) *HT n(n+1), T (n)
L
where
(3.12) pla®b) = asyb, fora,be A,
(3.13) 7(a) =0, 7(aspb) =a®b, fora,be A, C Any1,
satisfy
(3.14) eponr =1id, Top=id, eLop=0, Tong =0,
(3.15) poT+nroer =id.
Note that
AnsnAyn = Spanc(Sp+1 N\ Sn) C Apta.
3.4. Tue Jucys MURPHY ELEMENTS AND THEIR EIGENSPACES. Recall that the Jucys—
Murphy elements of A,, are given by
i—1
(3.16) J=0, Ji=> (ki), i=2,...,n,
k=1

where (k,i) € S,, denotes the transposition of k and . The element J; commutes with
A;_1. Thus, left multiplication by J,1 is an endomorphism of the bimodule ,,(n+1).
In fact, this action is semisimple and the set of eigenvalues is {—n, —n+1,...,n—1,n}.
We let ,{(n + 1), i € Z, denote the i-eigenspace of ,,(n + 1) under left multiplication
by Jni1. Similarly, we let (n + 1), i € Z, denote the i-eigenspace of (n + 1),, under
right multiplication by J,41. Since these two actions (right and left multiplication
by Jn41) commute, we can also consider the simultaneous eigenspaces ,i(n + 1)J,
i,j € Z. So we have
(317) (n+ 1) =@ m+1)i, (n+1) =P i(n+1), ,(n+1),= @ in+1).
i€ = i,jEZ
Similarly, for 4,5 € Z, we let (n + 1);{ , denote the simultaneous eigenspace of
(n+ 1)p—1 under right multiplication by J, 41 and J,, with respective eigenvalues i
and j. Similarly, we let . 7¥(n + 1) denote the simultaneous eigenspace of ,,_;(n + 1)
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under left multiplication by J,4+1 and J,, with respective eigenvalues ¢ and j. We
have

(3.18) (n+1), @4, V2 Vim; and (n+1)®a,,, V. = V,a

for A\ n and pFn+ 1, where we define Vg to be the zero module.
The primitive central idempotents in QS,, are

dim V>\ _
(3.19) = Z tr(wy Hw, Ak n,

weS,
where w;l denotes the action of w™! on the representation Vy. (See, for example,
[FH91, (2.13), p.23].) Multiplication by e) is projection onto the Vj-isotypic compo-
nent. It follows that

(3.20) (n+1): =P eumi(n + L)ney,
pEn
(3.21) an+1)= @ eyn(n+1)e,m.
pEn
3.5. CoMBINATORIAL FORMULAS. — In this subsection we prove some combinatorial
identities, used elsewhere in the paper, involving the dimensions dy := dim(V)) of

irreducible representations of symmetric groups. By convention, d,g; = 0 if A has no
addable i-box, and d,g; = 0 if A\ has no removable i-box.
It follows from (3.17) and (3.18) that

(3.22) b= 3 day

jeB=(A)
(3.23) Y dwi = (A + D
i€B+()N)
Recall the hook-length formula
Al
(3.24) dy = ‘7| AeP.

Hi,j h,\(l,j) ’
Here h) (i, j) counts the number of boxes in the Young diagram of A in the hook whose

upper left corner is in position (7, ) and the product is over the positions (4, j) of all
the boxes in the Young diagram of .

Lemma 3.3. — For a partition \, we have

(3.25) (1- 6 _1j)2) :i i; Zi;ij‘;ﬁ; =1 VijeB*(\), li—j|> 1,
d @i Al +1)d3 ) _

(3.26) ie;m ; jﬁj.)Q _ (IAIME)j A vjieB~(\),

() s

Proof. — Relation (3.25) follows from a direct computation using (3.24). We omit
the details.
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To prove (3.26), assume j € B~ (). Then, for |i — j| > 1, (3.25) for A B j implies
1 Mdmidxg; _ Mdamidrg;

(=2 (N +Ddy  (N+Ddy

When i — j| = 1, we have dym;g; = 0, and so (3.28) in fact holds for all i # j.

Therefore,

1 |)‘|d)\EE|id)\E|] |)\|d)\5j
- drmi dxmi
2 G (NaDdy M end 2 bes 2 des

(3.28)

i€eBtT(\) i€B+(\) i€BF (V)
Ald =Y 3.23
) ||A+A Y daim Y damtd 2 D~ N +dy = da,

A ieBt () i€ B+(A8j)

where the second equality follows from the fact that AB 7 H j = 0 whenever i ¢
BT (A8 ). Relation (3.26) follows.
To prove relation (3.27), suppose i € BT (). Then

MNdymidrgi 3. AN damidrg;
Z ‘ | /\EEl’z N=Fi (3:28) Z | | ABidAB; Z (|)\|+1)d)\EEIiBj

_ 2
JEB=(N) (i = )% JE€EB~(N) @ JeB=(N)
(3.22)
|Aldami — (I/\+1)( > d)\EEliEj_d)\>
jeB— (\Bi)
(3.22)

INdami — (Al + 1) (drmi — da) = (JA| +1)dx — dxis

where, in the second equality, we have used the fact that AH ¢ H j = 0 whenever
j & B~ (AB1). Relation (3.27) follows. O

Lemma 3.4
(a) For A+ n, we have

(3.29) eL(er) = > o “eABi-

(b) For A n and i € Z, we have
(3.30)
(¢) For \Fn and i € Z, we have

Jni1€x@mier = 1exmien-

d
(3.31) Z weyw T = Z d—AeAEEZ-.
weSnH ieBt(n) A
Proof. — (a) Fix A F n. As QS,_1-modules, we have a decomposition V) =

®iEB_(A) VAEH. Then

) d d
er(ex) (3.19) e, (n’} Z tr (wy ') w) = n’? Z tr (wy') w

" wesS, " weS,_1
1 (3.19) d
= 3 Y w(eg)e = Y T 8
n! R naxg;
1€EB™(A\) WESK—1 i€B~(X)

JE.P.— M., 2018, tome



210 H. QuerreLec, A. Savace & O. Yacost

(b) Recall that if A F n and V is an A,-module, then ey(V) is the A-isotypic
component of V. Now, to show that two elements of A,,;1 are equal it suffices to show
that they act identically on every irreducible representation of A, 1. For pt (n+1)
and A F n, let V), \ be the M-isotypic component of V}, (this is either zero or isomorphic
to V) as an A,-module). Then

exmiex (Vi) = 0, @i Vamix

The result then follows from the fact that Vym; » is the i-eigenspace of Vym; under
multiplication by J,41.

(¢) Fix A+ n. Then m D weSnn wexw ™! belongs to the center of QS 1, and
so is a linear combination of the central idempotents e,, v = n 4+ 1. Thus we have

E we w - = E cvey
! wWESp4+1 vhEn+1
for some ¢, € Q. Therefore, for - n 4+ 1, we have
—1
e, =€ E cpe, = E we w = E we, e\w
nCu iz vCy n+ 1 (n+ 1 w
vkn41 WESn 41 WESn 11

Then, considering the action of Q5,41 on V,,, we have

1 dy if p = AH for some i € Z,
Cuche = (€)= (n+1)! Z tr(euer) = {0 otherwise.

WESp+1
The result follows. O

4. THE 2-CATEGORY &7

In this section we define an additive linear 2-category &7 and investigate some of
its key properties. We will show in Section 4.2 that 7 is equivalent to the degree zero
part of a truncation of a categorified quantum group. Later, in Section 6, we will also
show that &7 is equivalent to a summand of a truncation of a Heisenberg 2-category.
We will also see, in Proposition 7.3, that o7 is equivalent to the category ./ .

4.1. DeriNtTION. The set of objects of .7 is the free monoid on the set of partitions:
Ob o/ = N[P].
We denote the zero object by 0. The 1-morphisms of & are generated by (i.e. direct
sums of compositions of)
Filx = 1amiFi = LymiFily,  and
E;1x = 1xgiEi = LimEily, 1 €Z, N e P.

We adopt the convention that if A does not have an addable (resp. removable) i-box,
then 1ym; = 0 (resp. 1yg; = 0) and hence AHi = 0 (resp. A\Bi = 0) in &. In
particular,

(4.1) EZ1y=0 and F?1, =0 forall A€ P,
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and similarly
(42) E;E;+1E;1, =0 and F;F,41F;1, =0 forall A e P.

The space of 2-morphisms between two 1-morphisms is the Q-algebra generated
by suitable planar diagrams modulo local relations. The diagrams consist of oriented
compact one-manifolds immersed into the plane strip R x [0, 1] modulo local relations,
with strands labeled by integers and regions of the strip labeled/colored by elements
of P U {0}. In particular, the identity 2-morphism of F;1, will be denoted by an
upward strand labeled ¢, where the region to the right of the arrow is labeled A, while
the identity 2-morphism of E;1, is denoted by a downward strand labeled i, where
the region to the right of the strand is labeled A:

[ |
3 3

Strands of distinct color may intersect transversely, but no triple intersections are
allowed. The space of 2-morphisms is the space of such planar diagrams up to isotopy
and modulo local relations. The domain and codomain are given by the orientations
of the strands at the bottom and top of the diagram respectively.

The local relations are as follows, where ¢, j, and k range over all integers satisfying

o =gl [e — k[, |7 — k[ > 1.

For relations when the regions are not labeled, we impose the relation for all labelings
of the regions.

o KK w -

(4.5)

(4.7)

-
I
—
e~
oo
=
-—
I

(4.9) iQA —idy forie B=(\), (4.10) iOA —idy fori € BT(\).

Remark 4.1. Note that the crossings

s

iJ
are always zero for |i — j| < 1. In other words, nonzero diagrams can only have
strands crossing if their colors differ by at least two. This is because ABHiHj =0
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when |i —j| < 1. Therefore, relations (4.4)—(4.6) allow us to resolve all nonzero double
crossings.

4.2. TRUNCATED CATEGORIFIED QUANTUM GROUPS. In [CL15, §2], Cautis and Lauda
associated a graded additive linear 2-category to a Cartan datum and choice of scalars,
generalizing the definition of [KL10]. We let % be the 2-category defined in [CL15, §2]
for the Cartan datum of type A,, and the choice of scalars

(4.11) tij =1, sil =0, r; =1, forall i, j,p,q,

except that we enlarge the 2-category by allowing finite formal direct sums of objects.
By [CL15, Rem. (3), p. 210], we in fact lose no generality in making the choices (4.11).
The set of objects of % is the free monoid generated by the weight lattice of sl.
We define % to be the quotient of % by the identity 2-morphisms of the identity
1-morphisms of all objects corresponding to weights that do not appear in the basic
representation. Since the weights of the basic representation are in natural bijection
with partitions (see Section 2.2), the objects of " can be identified with elements
of the free monoid N[P] on the set of partitions.

Prorosition 4.2. All the 2-morphism spaces of U are nonnegatively graded. The
positive degree 2-morphism spaces are spanned by diagrams with dots.

Proof. The degrees of the 2-morphisms in % are given by the degrees of the cross-
ings, cups, caps, and dots in [CL15, Def. 1.1]. The crossing has degree

=2, ifi=y,
deg<><5>= Loifli-gl=1,
i
0, otherwise.

However, the leftmost region above is labeled AHjB¢i, which is always isomorphic to 0

(i.e. is not a weight of the basic representation) when |i—j| < 1. (Note that the upward

oriented strands in % correspond to subtracting boxes under the bijection (2.4), as

opposed to adding boxes, as in «7.) Therefore, the only crossings which are nonzero

in % have degree zero. The situation for downwards oriented crossings is analogous.
Similarly, the right cup

i

)

A

has degree 1+ (), ;). However, this cup is zero in %/*F unless A has a removable i-box,
in which case (\,a;) = —1. Thus, the only right cups that are nonzero in Z*" have
degree zero. The situation for the other cups and caps is analogous.

The result now follows from the fact that a dot on an i-colored strand has degree
(Oéi, Oéi) = 2. U

Let %, be the additive linear 2-category defined as follows. The objects of % are
the same as the objects of %/%. The 1-morphisms in % are formal direct sums of
compositions of the generating 1-morphisms given in [CL15, Def. 1.1] without degree
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shifts. The 2-morphism spaces of % are the degree zero part of the corresponding 2-
morphism spaces of " (equivalently, the quotient of the corresponding 2-morphism
spaces of " by the ideal consisting of 2-morphisms of strictly positive degree).

Remark 4.3. It will follow from Theorem 4.4 and Corollary 4.10 that %4 is idem-
potent complete; hence there is no need to pass to the idempotent completion, as is
done in [CL15] with the larger category % .

Tarorem 4.4. — The 2-categories & and %y are equivalent via a 2-functor that acts
on 2-morphisms by reversing the orientation of strands.

Proof. — The sets of objects and 1-morphisms of & and % are clearly the same.
Furthermore, the spaces of 2-morphisms both consist of string diagrams with strands
labeled by integers. Therefore, it suffices to check that the local relations are the same.
The relations of [CL15, §2.2] correspond in 7 to the fact that we consider diagrams up
to isotopy. Relations [CL15, (2.8)] and [CL15, (2.9)] become trivial since they involve
strands of the same color crossing or parallel strands of the same color, which yield the
zero 2-morphism in the truncation. Relation [CL15, (2.10)] corresponds to (4.4). Note
that the (o, o) # 0 case of [CL15, (2.10)] is trivial in the truncation since strands of
color ¢ and i+ 1 cannot cross. Relation [CL15, (2.12)] is not relevant since it involves
dots. Relation [CL15, (2.13)] becomes (4.3). Note that [CL15, (2.14)] becomes trivial
in the truncation since (a;, ;) < 0 implies |¢ — j| = 1, in which case we have two
strands of the same color crossing.
The relations [CL15, (2.16)] correspond to (4.5) and (4.6). For A € X and ¢ € Z,
we have
1 ifie Bt(\),
(i, A) = (i, \) = ¢ =1 ifi € B~(\),
0 otherwise.

Therefore, relations [CL15, (2.17)] become trivial for us since the conditions on m
are never satisfied. On the other hand, the relations at the top of page 211 of [CL15]
correspond to (4.9) and (4.10).

Now consider the extended sly relations of [CL15, §2.6]. Here one considers rela-
tions involving strands of some fixed color i. In the truncation, the region labels in
[CL15, §2.6] of nonzero diagrams are 0 (corresponding to a region label A\ with no
i-addable or i-removable boxes), 1 (corresponding to a A with an é-removable box
but no i-addable box), or —1 (corresponding to a A with an i-addable box, but no
i-removable box). The relations [CL15, (2.21)] become trivial in the truncation since
a strand crossing itself is zero. It follows from [CL15, (2.19)] with n = 1 and j = 0,
together with (4.9) (which tells us that a clockwise circle in outer region 1 is equal
to one) that a counterclockwise fake bubble with dot label —2 and outer region 1
is equal to 1. Thus, the first relation of [CL15, (2.22)] becomes (4.7). The second
relation in [CL15, (2.22)] becomes zero in the truncation, since n > 0 implies that n
has no i-addable box. The relations [CL15, (2.23)] are trivial in the truncation since
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they involve a strand crossing itself. The first relation in [CL15, (2.24)] is trivial in
the truncation, while the second relation in [CL15, (2.24)] becomes (4.8). Finally,
relations [CL15, (2.25), (2.26)] are trivial in the truncation. O

4.3. 1-MORPHISM SPACES

Lemva 4.5. — For A€ P and i,j € Z, we have

( ) EzEjl)\gEjEzl)\, Zf|Z—]|>1,

(4.14) EF,1\ = FEly, ifi#J,

(4.15) EiFily =1y, ifie BY()),

( ) F,E;1x = 1,, ZfZGB_()\)

Proof. — The isomorphisms (4.12) and (4.13) follow immediately from (4.4), isomor-

phism (4.14) follows immediately from (4.5) and (4.6), isomorphism (4.15) follows
from (4.7) and (4.10), and (4.16) follows from (4.8) and (4.9). O

Proposition 4.6. — We have
dim Morg () (A, ) =1 for all A\, € P.

In particular, for \,p € P, Morg ) (A, ) is spanned by the class of a single 1-
morphism in &/ of the form

(4.17) Fi,Fi, ---Fi Ej Ej, -+ - Ej 14,
where {i1,... ik} OV {j1,.. -, e} =D and pu=ABj,---Bjo B Bi B -Bis Biy.

Proof. The proof of this statement is analogous to the proof of Proposition 2.2. [

4.4. 2-MORPHISM SPACES

Lemma 4.7 (Triple point moves). Suppose i, j, k € Z. The relation
i j ok i j ok

holds for all possible orientations of the strands.

Proof. — The case where all strands are pointed up is (4.3), and then the case where
all strands are pointed down follows by isotopy invariance. We compute

K Eg e e )
i j ok i 5k ik ik

We omit proofs of the other cases, which are analogous. O
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Lemya 4.8. For all X € P, we have 2Mor(1x,1,) = Qidy. In other words, all
closed diagrams in a region labeled A are isomorphic to some multiple of the empty
diagram.

Proof. — Using the local relations, closed diagrams can be written as linear combina-
tions of nested circles. By (4.9) and (4.10), these are equal to multiples of the empty
diagram. 0

By definition, the 1-morphisms of & are sequences of E;’s and F;’s, followed by 1
for some A € P. If we think of such a sequence as a row of colored arrows, a down
i-colored arrow for each E; and an up i-colored arrow for each F;, then the 2-morphisms
between two 1-morphisms are strands connecting the arrows in such a way that the
color and orientation of each strand agrees with its two endpoints. (We use Lemma 4.8
here to ignore closed diagrams.) By (4.4), (4.5), and (4.6), we may simplify such a
diagram so that it contains no double crossings. Then, by isotopy invariance and
Lemma 4.7, we see that the 2-morphism is uniquely determined by the matching of
arrows induced by the strands. Furthermore, since strands of the same color cannot
cross, the 2-morphism is determined by a crossingless matching of i-colored arrows for
each i € Z. We call such a collection of crossingless matchings a colored matching. An
example of such a colored matching is the following, where ¢, j, k, and £ are pairwise

LS

Note that, since strands of colors ¢ and j intersect, we must have |¢ — j| > 1 in order

distinct.

for the 2-morphism to be nonzero, by Remark 4.1. Similarly, we have |i — k| > 1 and
|7 — k| > 1. However, it is possible that |k — ¢| = 1.

Prorosition 4.9. Suppose \, u € P, and that P,Q € 1Mor (A, 1) are two nonzero
1-morphisms that are sequences of E;’s and F;’s (followed by 1 ). Then every nonzero
2-morphism from P to Q is an isomorphism. In particular, 1Morg(P,Q) is one-
dimensional.

Proof. — Tt is easy to see that there is always at least one colored matching. Repeated
use of relations (4.7) and (4.8) allows us to see that any two crossingless matchings
of i-colored arrows as described above are equal, up to scalar multiple.

Now let @ be a nonzero 2-morphism from P to Q. By the above argument, « is a
multiple of a colored matching from P to Q. Let 8 be a multiple of a colored matching
from Q to P and consider the composition « o 5. We can resolve double crossings by
(4.4), (4.5), and (4.6). Any circles may be slid into open regions (so that they do not
intersect any other strands) using (4.4), (4.5), and (4.6) and then removed using (4.9)
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and (4.10). Thus, ao § is a nonzero multiple of a colored matching. As above, it must
be a multiple of the identity matching. Similarly o « is a multiple of the identity
matching. O

Cororrary 4.10. — The 2-category <7 is Krull-Schmidt. More precisely, for any two
objects of </, the morphism category between these two objects in Krull-Schmidt.

Proof. It follows from Proposition 4.6 that every l-morphism in o/ is a multiple
of a 1I-morphism of the form (4.17). Then the result follows from Proposition 4.9. O

4.5. DECATEGORIFICATION. We now state one of our main results.

Tueorem 4.11. — The functor A — K (&) that is the identity on objects and, on
1-morphisms, is uniquely determined by

ely— [EiLa], filx— [Fi1a],
is an isomorphism. In other words, o categorifies A.

Proof. — The fact that the functor is well-defined follows from Lemma 4.5. It is sur-
jective since the images in the Grothendieck group of all the generating 1-morphisms
E;1) and F;1, are in the image of the functor. Injectivity will be proven in Corol-
lary 7.5. ]

5. Tue 2-caTEGORY SZY

5.1. DeriNtTION, We introduce here a 2-category based on the diagrammatic
monoidal category introduced by Khovanov in [Khol4]. We begin by defining an
additive linear 2-category ¢ ' The set of objects of 7 ' is the free monoid N N]
on N, where 0 is a zero object. The set of 1-morphisms of A s generated by

Qily =14 11Qy = 111 Qy 1y and Q_lpyr = 1,Q- = 1,Q_1p41, keEN

In other words, if we let Q; := Q¢, ® -+ ® Q,, for a finite sequence ¢ = ¢; ---¢¢ of
+ and — signs, then the 1-morphisms of %" from n to m are finite direct sums of
Q.1, for ¢ = ¢1 - - - ¢¢ satisfying
m—-n=#{i|c=4}—#{i|c=-}.
If, for some 1 < k < ¢, we have
n+#{1<i<k|e=+}—#{1<i<k|e=-} <0,

then Q.1, is the zero morphism. In other words, we view negative integers as the zero
object 0.

The space of morphisms between two objects is the Q-algebra generated by suitable
planar diagrams. The diagrams consist of oriented compact one-manifolds immersed
into the plane strip R x [0, 1] modulo certain local relations, with regions of the strip
labeled by nonnegative integers. The 2-morphism that is the identity on Q4 1) will be

denoted by an upward strand, where the region to the right of the arrow is labeled k
(and the region to the left has label k+ 1), while the identity on Q_1j will be denoted
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by a downward strand, where the region to the right of the strand is labeled & (and
the region to the left has label k — 1):

o

The endpoints of the strings are located at {1,...,m}x{0} and {1,...,k} x{1}, where
m and k are the lengths of the sequences ¢ and ¢’ respectively. The local relations are
as follows (for any compatible labeling of the regions).

o KX Xl
o KR e Xl

(5.5) Q = (5.6) Q{ =0.

By convention, any string diagram containing a region labeled by a negative integer is
the zero 2-morphism. This is compatible with our convention above for 1-morphisms.

Derinirion 5.1 (Idempotent completion of a 2-category). — For a 2-category %, we
define an idempotent completion Kar(%) as follows.

— The objects of Kar(%) are triples (z,e,¢), where x € Ob %, e is an idempotent
1-morphism of z in %, and € is an idempotent 2-morphism (under vertical composi-
tion) of e in ¥.

— The 1-morphisms of Kar(%) between objects (z,e,€) and (z/,€,€') are pairs
(g,8), where g: x — 2’ is a 1l-morphism in ¥ such that e¢'/ge = g and 8: g — g is an
idempotent 2-morphism in % such that € 8e = §.

— The 2-morphisms between parallel 1-morphisms

(ga 5)7 (hv’y) (Z’,e76) — (mlve/ué/)
are 2-morphisms a: g — h in € such that yoao = a.

Composition of 1-morphisms is pairwise composition of l-morphisms as in C and
composition of 2-morphisms is as in €.

If € is a 2-category, we have a natural inclusion of % into Kar(%’) sending the object
x to (z,1,,id,) and the 1-morphism x to (x,idy). The idempotent completion of a 2-
category ¢ is universal in the sense that any 2-functor ¥ — 2 to a 2-category Z in
which all idempotent 1-morphisms and idempotent 2-morphisms split factors through
a 2-functor Kar(¢) — 2.

We then define

A = Kar(A#").
Remark 5.2
(a) In the 2-category 2", the only idempotent 1-morphisms are the identity 1-
morphisms. However, we state Definition 5.1 in full generality.
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(b) Note that Definition 5.1 differs from the definition of the idempotent com-
pletion for 2-categories often considered in the categorification literature (e.g. in
[KL10, Def. 3.21]), where one takes only the usual Karoubi envelope (in the sense of
1-categories) of the morphism categories. Even in the case where the only idempotent
1-morphisms are the identity 1-morphisms (as for "), the idempotent completion
Kar(%) of Definition 5.1 often has more objects than %, since ¥ may have idempo-
tent 2-morphisms of the identity 1-morphisms. We will see in Section 5.2 that this is
indeed the case for s#'". Note that when the only idempotent 2-morphisms of identity
1-morphisms are the identity 2-morphisms, as is the case in [KL10, Khol4], the two
notions of idempotent completions of 2-categories agree. To the best of our knowledge,
the more general definition of idempotent completions of 2-categories given above has
not previously appeared in the categorification literature.

Remark 5.3. — If we repeat the construction of this subsection, but begin with the set
NJ[Z] of objects instead of N[N] and do not set diagrams with negative region labels
to be zero, we obtain a 2-category S that is a 2-category version of Khovanov’s
monoidal category. (See [L.S13, Def. 4.8], setting ¢ = 1.) Thus, S can be viewed as
a truncation of ¢, where we force negative objects to be zero. (More precisely, we
quotient by 2-morphisms that are diagrams with negative region labels.) So we have
a natural truncation 2-functor

(5.7) H — A

sending negative elements of Z to zero. We will see in Section 5.2 that the truncation
leads to the presence of many more idempotent 2-morphisms in 2% than in J#. See
Remark 5.6.

5.2. A pecomrosition J = . @ 5. — In order to simplify diagrams, we will use
a dashed strand to represent one or more solid strands. The number of solid strands
is uniquely determined by the region labels on either side of the dashed strand. For

A
I

nt+k 1+ Kk = nJrk[["']‘k,
I
I

where there are n strands in the right-hand diagram.
As a result of the local relations (5.1) and (5.2), for k,n € N, we have a natural

example

algebra homomorphism
QSn — 2 End%m (Qi 1k);

obtained by labeling the strands 1,2, ..., n from right to left and associating a braid-
like diagram to a permutation in the natural way. Rotating diagrams through an
angle m, we obtain a natural homomorphism

(an)Op — 2 End{;fcr (Qr_l 1k),
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where A°P denotes the opposite algebra of an algebra A. For z € QS,,, we will denote
the corresponding elements of 2 End s (Q7 1x) and 2 End e (Q™ 1) by

A

| |
| |
. Y

respectively, where there the dashed strand represents n strands (determined by z).
It follows that

for all z € QS,.
Lemma 5.4. — For all n > 0, we have
(5.8) o= 27!
PO ! v
Proof. — This follows from repeated use of (5.3). O
Recall the definition of the central idempotent ey in (3.19).

Lemma 5.5. Forn € N, in 2End s (1,,) we have the following orthogonal idem-
potent decomposition of id,, :

(59) ldn = Z Ex T §n>

AFn
where, for n >0, we define
1 ///—\\\ 1 ///—\\\
| |
(10 a==[ oo, d=l-a a=Ya=—[1s o,

N / AEn

where 1g, denotes the identity element of S,,. By convention, we define €y = €z = idg
and §y = 0.

Proof. — Tt is clear that (5.9) is satisfied. The fact that d,, €x, A - n, are orthogonal
idempotents follows from Lemma 5.4 and the fact that the ey are central. O

Remark 5.6. The fact that the €, are idempotents relies on the fact that diagrams
with negative regions are equal to zero. The analogous diagrams in the 2-category
version ¢ of Khovanov’s category, where we allow regions labeled by any integer
(see Remark 5.3), are not idempotents. In fact, it follows from [Khol4, Prop. 3] that
the only idempotent 2-morphism of any 1,,, n € Z, is the trivial diagram. So we

JE.P.— M., 2018, tome 5



220 H. QuerreLec, A. Savace & O. Yacost

see that passing to the truncation, where we kill negative regions, introduces a large
number of idempotents.

Lemma 5.7. For alln € N, we have
6nJrlQJr = Q+6n7 ean = Q76n+17 5n+1Q+ = Q+5n7 5an = Q75n+1a
in 2End sp0 (Q11,).

Proof. — This follows from successive applications of (5.3), followed by (5.2). O

Recall Definition 5.1 of the idempotent completion of a 2-category. We define 2,
to be the full sub-2-category of " whose objects are direct sums of triples (n, 1,, €)
where n € N, and € is an idempotent 2-morphism of 1,, such that ee, = €. Similarly,
we define % to be the full sub-2-category of 7% whose objects are direct sums of
triples (n,1,,€) where n € N, and ¢ is an idempotent 2-morphism of 1,, such that
€, = €.

Recall that a 2-functor is an equivalence of 2-categories if and only if it is es-
sentially surjective on objects, essentially full on 1-morphisms, and fully faithful on
2-morphisms.

Prorosition 5.8. — We have an equivalence of 2-categories
A2 A D A

Proof. — Tt follows from Lemma 5.5 that, for all objects (n,1,,€) of S, we have
the decomposition

(n,1,,€) 2 (n,1,,€6,) @ (n, 1, €6p)-

By Lemma 5.7, together with the fact that €,6, = 0 for all n € N, we see that
any l-morphism between an object of the form (n,1,,€€,) and an object of the form
(n',1,,€8,/) is isomorphic to zero. O

Prorosition 5.9. — The 2-category F, is isomorphic to the 2-category whose objects
and 1-morphisms are the same as those of Y, and whose 2-morphisms spaces are
quotients of the 2-morphism spaces of £ by the local relation that a clockwise circle
in a region labeled n is equal to n:

(5.11) O =n, neNl.

Proof. — This follows from the fact that, in any quotient of the 2-morphism spaces,
0n=0VneN < ¢,=1VneN <= (5.11) holds.

Indeed, the reverse implication in the final < is clear. For the forward implication,
note that e; = 1 gives (5.11) for n = 1. Then, supposing (5.11) holds for n < k, the
equation €11 = 1 gives (5.11) for n = k + 1. O
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Prorosrrion 5.10. The objects
(n,1n,€x), neN, Ak mn,

form a complete list of pairwise-nonisomorphic indecomposable objects of ;. Fur-
thermore, any object of . can be written uniquely (up to permutation) as a direct
sum of indecomposable objects.

Proof. — Fixn € N. By [LRS, Prop. 4.12], the 2-endomorphism space of 1,, is spanned
by

(5.12) . 2€QS, keN.

Now, if £ > n, then the innermost region of the above diagram is negative, and so the
diagram is zero. On the other hand, if £k < n, then by Proposition 5.9, we can insert
additional clockwise circles in the center region, up to a scalar multiple. Therefore,
the 2-endomorphism space of 1,, is spanned by the diagrams (5.12) for z € QS,,. Now

b
weSy, ‘A

ST ST
\ o]
\ \
1 [w] ‘
ERlEES>
I n! A I
P \ N P

where 2/ = % > wes, w™tzw € Z(QS,,). Therefore, the 2-endomorphism space of 1,,
is spanned by the diagrams (5.12) for z in the center Z(QS,,) of QS,,. But then this
2-endomorphism space is spanned by the diagrams (5.12) as z ranges over the central
idempotents ey, A F n. In other words, this space is spanned by the €y, A - n. It
follows from Lemma 7.1 below that these elements are also linearly independent. [J

5.3. Recion surrring. — We define a shift 2-functor
0: A — A
given by lowering region labels by one. More precisely, on objects we define
9(0)=0(0)=0, 9n)=n—-1, n>1.
On 1-morphisms, we define
8(Qc1n) = Qc]-nflv
for n € N and ¢ a (possibly empty) sequence of + and —. On 2-morphisms, 9 is given
by lowering the region labels of diagrams by one. The 2-functor 0 induces a 2-functor

0 A — A
on the idempotent completion " = Kar(#"").

Prorosition 5.11. — The 2-functor 0 sends 7. to zero. Furthermore, the restriction
of 0 to S induces an equivalence of 2-categories 5 = A,
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Proof. Since d maps €y to zero for all partitions A, the first statement follows.
Now let Os: 2% — % be the restriction of the 2-functor 0. We define a 2-functor
s't A" = 5. On objects, we define

S/(O) :05 S/(n) = (n+171n+155n+1)a n € N.

On 1-morphisms, we define

Sl(chn) = (chn,+17Qc5n,+1)-

On 2-morphisms, we define s’ by increasing the region labels in diagrams by one.
Note that the definition of s’ is compatible with our convention that diagrams with
negative region labels are zero since Lemma 5.7, together with the fact that do = 0,
ensures that s’ maps any diagram with a negative region label to zero. The 2-functor s’
induces a 2-functor s: J#" — 5.

It is clear that Js o s is isomorphic to the identity 2-functor since 9(d,41) = id,
for all n € N. Similarly, s o 05 is isomorphic to the identity 2-functor since the object
(0,19, d0) is already isomorphic to zero in 3. O

~ . . (o]
CoroLrary 5.12. We have an equivalence of 2-categories ™ = @,°_, ..

Proof. — Tt is clear that, for any 2-morphism 6 in ', we have 0™ (f) = 0 for
sufficiently large m. Thus, the result follows from Propositions 5.8 and 5.11. g

6. EQUIVALENCE OF J% AND &
6.1. A 2-runcror ¥roMm & 1O J.
Levma 6.1. — For put=n+1, we have the following equality of 2-morphisms in S :

(61) €u = E €u 0 :

Proof. — We have

" 1 |
€, - — e | = —
' (n+1)!0;

where the second equality follows from repeated use of (5.3) together with the fact
that diagrams with negative region labels are equal to zero, and the last equality
follows from the fact that the idempotent e, is central (so we can slide crossings
through the box labeled e,). O

CororLrary 6.2. — For AFn and ptn+ 1, we have

€,Qrexn =0 wunless A C p.
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Proof. — We have

[P RN

/ \
1 1 \
——[e — — [eyen]
n![:fﬂ n!@];»

where the second equality follows from repeated use of (5.3), the fact that diagrams
with negative region labels are equal to zero, and the fact that the idempotent e) is
central (as in the proof of Lemma 6.1). The result then follows from the fact that
epex = 0 unless A C p. O

Lemma 6.3. — For A+ n, we have

(63) Db 6

dues
icZ A ez

Proof. — Suppose A n. To prove (6.3), we compute

_ €xBi (6.2) _:: m‘
(- )-Z ()T aEma); nﬂzmm-

WESn 41

(3:31) \ )d,\
= Eﬂi'
To prove (6.4), we compute
1 SN 2 d
(6.1) ' (3.29) ' A
e R ilo, = O
@ (n - 1)' ’ : n'd)\El il I ndg; AT

We will use an open circle to denote a right curl in £

-

Lemva 6.4. — For a partition X and i € Z, we have

(66) 5/\831’% R =1 ( ExBi [ €x > .
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Proof. — For At n+ 1, we have

where the second equality follows from repeated use of (5.3) together with the fact
that diagrams with negative region labels are equal to zero. (|

Lemma 6.5. For a partition A and i,j € Z, i # j, we have

1
= - - EXHiH; | Exfi €X .
] —1

€Ex =  ExHiH; | €xHi N

(6.7)

Proof. — We have

(] — Z) EXHiH;

)

where the last equality follows from the relation in [Khol4, §2.1] concerning sliding
right curls through crossings. (|

We now define an additive linear 2-functor
S: o — I
as follows. On objects, we define
S(0)=0, S(A\)=(n,1,,ex) for AFn.
On 1-morphisms, S is determined by
S(E;1x) = (Q-1n,exmiQ_€x), S(Filx) = (Q41ln, e0miQser), for A mn,

where, by convention, we set g = 0. On 2-morphisms, S is determined as follows.
Suppose 0 is a diagram representing a 2-morphism in /. Then S(f) is the diagram
obtained from # by placing a €y in each region labeled A and then acting as follows
on crossings, cups, and caps:

Exmi ExBi
(6.8) S<><A> = &, exmi%x , (6.9) S(XA) = &, exeia><k ,
I ExH; ! ExBj

EXE;
i (Al + 1)drdrzim;
6.10 S =& amm N e
( ) < j >< A ) g%] |)\|d)\E|id)\EE|j ABil A
ExBi
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D\=F]
(6.11) s( Z_><)\> =& ekaa@><k ,
’ SN2
MV L e i _ A+ Ddx | e,
(6.12) s(i o @  (6.13) S{ (5 i uw

(6.14) S(QA> = m* . (6.15) S(&jx) = @k ,

where
i—J

6.16 i = -

( ) 5 5J i—7j— 1

Note that

1 1

6.17 =1-—.

(6.17) &35 (i —J)?

Prorosition 6.6. The map S described above is a well-defined 2-functor.

Proof. — We first verify that S respects isotopy invariance. It is straightforward to

verify that s(nd)=s(]) ana s(ln)=s())

with all possible orientations of the strands and all possible labelings of the regions
and strands. We also have

S N dx drg; ndyg; (n — 1)dgig;
“ndyg; (n—1)dxgjm;  da drgi

ZS(XA).

(]

Similarly, one easily verifies that

(LS00 oo () 51540

()£ 7) s

It follows that S respects isotopy invariance. It remains to check that S respects the
local relations (4.3)—(4.10).
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Relation (4.3). We have

1
——S
&85 kCik

( J
where the second and fourth equalities follow from (5.9) and Corollary 6.2.

Relation (4.4). — For A+ n, we have

QL ExHj QL
1 A ExAiB; €x €EXH:B; €x EXH:@; €x
LAV
7 7 EXHj EXH; EXH;
(5.2)
6.7 1 6.17 1
(:) <1 — 2) EXHiE | EXH; | €x ( = ) S
(i—74) RIS

where the second equality follows from (5.9) and Corollary 6.2.

Relation (4.5). — Let A\Fnandi,j € Z, i # j. By (3.25) and (6.17), we have

1 nd gidm;
§ij&ii (n+ 1)drdrzim;

=1

Thus

Exj EXH;
A N=F=:7 €x ExBiB; €x
S - —
% J GNP €xm;
=)
(5.3)

= EXBiE | €l | Ex  —  €xBHiBj; €x = ExB:ilj| €AH; | €x :S
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where the second equality follows from (5.9) and Corollary 6.2, since the only partition
w of size n — 1 satisfying u CABiHjand p C Nis p = AH.

Relation (4.6). — Let A+ mn and i,j € Z, i # j. Again, using (3.25) and (6.17), we

have
j N=F]
) R =P
(5.4)
i EBiE;| €85 | ex = S A ,
, 4e) i

where the second equality follows from (5.9) and Corollary 6.2, since the only partition
w of size n + 1 satisfying \BiBjCpand A\C pis p=AHz.

Relation (4.7). For A n and i € Z, we have

Bi
S t[k = €x |€x@: | €x €x —|-
JEZ
i1 €XEi ON::H
ExHi EXHi

(6.7) (6.3) ’I’Ld)\EU
= x 1+ E ) 1 + E )
m < JEZ (i 7‘7 d* )
\::1

5/\831 z

(3.27) (n+1)dy 1)d>\ o S
dxmi '

E)\E‘EL

Relation (4.8). — For A+ n and i € Z, we have
0Lt L)

€xBi
€
(5.4 4)
S [ l = €X |€xBi| €x
Z Z
L se (E\

5/\E|1 €8 7
(336) U < N\ \ )
(N

=S

€ =
nd}\Bz
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Relation (4.9). Suppose A Fn. If i € B~ ()), then it clear that S maps the left-hand
side of (4.9) to zero since €xg; = €9 = 0. If i € B~ (\), we have

dy A (6.3)
i 2 = P = ey
S ( O ) nd)\Eh‘ @ A

Relation (4.10). Suppose A F n. If i ¢ BT()), then it clear that S maps the left-
hand side of (4.10) to zero since exm; = €o = 0. If i € B*(\), we have

(102) - () D

The following theorem is one of the main results of the current paper.

Taeorem 6.7. The 2-functor S: o — . is an equivalence of 2-categories.

Proof. — The 2-functor S is essentially surjective on objects by Proposition 5.10. By
Corollary 6.2, it is also essentially full on 1-morphisms by and full on 2-morphisms.
We will show in Corollary 7.4 that it is also faithful on 2-morphisms. O

CororrARry 6.8. We have an equivalence of categories K (") = @>°_ A.

m=0

Proof. This follows by combining Theorem 6.7 with Corollary 5.12 and Theorem
4.11. |

Remark 6.9. Corollary 6.8 can be viewed as an analogue of Khovanov’s Heisen-
berg categorification conjecture [Khol4, Conj. 1]. In the framework of 2-categories,
Khovanov’s conjecture is that Grothendieck group of ¢ is isomorphic to €p,, ., H.

6.2. A 2-runcror rroM SV 10 &/. — It follows from Theorem 6.7 that we have an

equivalence T: 7. — o/ of 2-categories, obtained by inverting S. The domain of

this 2-functor can be extended by zero to J#% = 7. @ s%. Since & is idempotent

complete, it follows from the universal property of the idempotent completion that

this 2-functor is uniquely determined by its restriction T: #%" — & (which we

continue to denote by T). For future reference, we describe this 2-functor explicitly.
The additive linear 2-functor T: "' — o is determined on objects by

0—0, n— PN neN,
AFn

and on 1-morphisms by

Qln — > D Fila=> Y Fly, Ql,— > Y ElLi=» > El.

Abn i€Z AFnie B+ () AFn i€Z AnieB-(\)
On 2-morphisms, T is given as follows:

(6.18) T(Xn)zZ( i T TA)

AFn J
1,jEZL
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(6.19) T(Xn):z<231?<>\+l_]£ p)

J

(6.20) T (>< n ) |

_ Z nd,\gid,\agj 1—73—1 i >< A4 ’I’Ld)\gjd,\agl 1 U
N_"Z (n+1Ddrdymjmi i—J J (n+ 1)d2 ] m

2,]€ J

(6.21) T(Xn)zz<’—/;1 e +l]><j )

(6.22) T( ) Z ndAElz ‘ » (6.23) T (U) => (n‘ﬁ?’% UA ;
7 A

e s
(6.24) T( ) ;m* (6.25) T(Un) :Zuk.
ZG% ? AFn

I€EL

Note that, in (6.18)—(6.21), anytime a denominator is zero, the diagram it multiplies
is also zero, and so we ignore such terms. Note that the non-crossing terms in (6.18)—
(6.21) are a result of Lemma 6.5. We compute the image of a diagram under T
by applying the above maps to each crossing, cup, and cap, where we interpret the
composition of local diagrams where the strand or region labels do not match to be
zero. In this way, the image under T of any diagram is a finite linear combination of
diagrams in 7.

ACTIONS ON MODULES FOR SYMMETRIC GROUPS

7.1. INDUCED ACTIONS AND THE PRINCIPAL REALIZATION., It follows from the results of
Sections 4 and 6 that categorified quantum group actions induce categorical Heisen-
berg actions and vice versa. We describe this procedure here. Recall the categorified
quantum group % (see Section 4.2) and the 2-category version . of Khovanov’s
monoidal category (see Remark 5.3).

Suppose we have an action of % in an additive linear 2-category %, i.e. we have an
additive linear 2-functor A: % — % . Recall that the set of objects of % is the weight
lattice of sl.,. Suppose that A categorifies the basic representation. It follows that A
maps to zero all objects of % that are weights not corresponding to weights of the
basic representation. Then A factors through the truncation %/%. By Theorem 4.4, o/
is equivalent to a sub-2-category of % **. Therefore, we have the following commutative
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diagram of 2-functors:

w
o e

5.7
B e T, 't ¢

Thus, we obtain a 2-functor J# — %. That is, we have an action of the 2-category
version of Khovanov’s monoidal category in €. This is a categorical restriction of the
basic representation to the principal Heisenberg subalgebra.

Conversely, suppose B: J# — % is an additive linear 2-functor for some additive
linear 2-category ¥ mapping all objects n € Z, n < 0, to zero. Then B factors through
% . Since & is equivalent to a quotient of %%, we have the following commutative
diagram of 2-functors:

H

(72) | R

w tr o — S pm @

where we identify the 2-functor S: &/ — 7 with its composition with the inclusion
H. — . Therefore we obtain a representation % — %, which can be viewed
as a categorical induced action. An example of this will be developed in detail in
Section 7.2.

Passing to Grothendieck groups, the 2-functor B induces a representation of the
Heisenberg algebra H on K(%). If this representation is irreducible then, by the
Stone—von Neumann Theorem, it is isomorphic to the Fock space representation.
Then the induced action of % on € categorifies the basic representation. It follows
from the results of Section 4.3 that the categories o7 (A, 1) are semisimple (with at
most one simple object) for all A, u € P. Therefore, equalities of 1-morphisms in the
Grothendieck group A imply isomorphisms in &/ of the corresponding 1-morphisms.
It thus follows from Theorems 4.4, 4.11, and 6.7 that we have isomorphisms of 1-
morphisms in &/ corresponding to the expressions of generators of sl,, in terms of
generators of H appearing in the principal realization (see Section 2.2). Therefore,
the results of the current paper yield a categorification of the principal realization.

We note that these techniques are very different from those used in the categorifi-
cation of the homogeneous realization of the basic representation in affine types ADE
described in [CL11]. The main tools of [CL11] are categorical vertex operators, which
are certain complexes in Heisenberg 2-representations. By contrast, our construction
does not involve complexes and thus does not require passing to the homotopy cate-

gory.

7.2. Acrion o 7', — We now describe an action of the 2-category #'" that arises

from the action of Khovanov’s Heisenberg category on modules for symmetric groups
described in [Khol4, §3.3].
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Recall the 2-category .# of Section 3.1. We define an additive linear 2-functor
Fp: # — 4 as follows. On objects,

(7.3) Fx(0)=0, Fupn) =M, neN

On 1-morphisms, for n € N, we define,

(7.4) Fr(Qiln)=n+1),®a, —: My — My,
(7.5) Fr(Q-l,41) = ,(n+1)®a,,, —: Mpy1 — M.

We now define F ,» on 2-morphisms. The 2-functor F 5 will map 2-morphisms of
""" to natural transformations of functors given by tensoring with bimodules. These
natural transformations are given by homomorphisms of the corresponding bimodules.
We define

(7.6)  For (D n-1) = Ra, (77 For (n-1X) = L,
o E () ()
(7.10) For (1) =2n, (7.11) For (\_Jn) =1,
(7.12) F e ((\n) —er, (7.13) For (\_J)nt1) =,

where
(7.14) R,:(n+1)p1 — (n+1)p_1, ar—asy,
(7.15) Ly:,_1(n+1) — ,_1(n+1), a+—> sua,

p and 7 are defined in (3.12) and (3.13), respectively, and er, nr, €L, and 7, are
the adjunction maps defined in Proposition 3.2. It follows from the results of [Khol4,
§3.3] that F ,» respects the local relations and topological invariance in the definition
of ™.

Since the only idempotent 1-morphisms in .# are the identity 1-morphisms and
all idempotent 2-morphisms in .# split, the 2-functor F 5 induces a 2-functor (which
we denote by the same symbol)

Fop: " — M.

Lemma 7.1, The 2-functor ¥ 5 maps the 2-morphism €y to the bimodule map
(n) — (n) given by multiplication by the central idempotent ey .

Proof. — We compute that F - (ey) is the bimodule map (n) — (n) given by

1 _
ar— a— g we w ! = ae). U
n

T weS,

CoroLrary 7.2. — The 2-functor F , maps the object (n,1,,€x) of % to My and
maps 5 to zero.
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7.3. AcrioN or . The composition
Fd = Ft%ﬂ oS

is an additive linear 2-functor that defines an action of & on modules for symmetric
groups. For future reference, we describe this 2-functor explicitly here.
On objects, we have

(7.16) FQ{(O)ZO, Fd(A):M)\, AeP.

On 1-morphisms, for A € P with an addable i-box, it follows from (3.20) that

(717) F%(lek) = (’I”L—Fl)?n ®An —: M)\ —>M)\EE1¢, where n = |)\|
Similarly, for A € P with a removable i-box, it follows from (3.21) that
(7.18) Fo(Eily) = ,_{(n) ®a, — My — Myg;, where n = |A|.

We now describe F, on 2-morphisms. The 2-functor F, maps 2-morphisms of o/
to natural transformations of functors given by tensoring with bimodules. These nat-
ural transformations are given by homomorphisms of the corresponding bimodules.
For i,j € Z with i # j, and A F n, we have

(7.19)  Fy ( ><A> =Rl (7200  Fy ( XA> = Lol
i g v

i i—j (n+1)dadrgm; i,
7.21 F N .
(7.21) “ ( J >< ) i—j—1 [Mdzidrm; Pl

i i=J s
22 F - ¥
(7 ) d<j><)\> i_j_17|,7;1a

— d)‘

(7.23)  Fyu ( m A) — el (7.24) Fy < U A) -

ndyg;

(n+1)dx 4,
AT IO

d mi

i

(7.25) F., <f\ A > __ (7.26) F., (U X > = i,

K3

where, for i, j, k, ¢ € Z, we define the components

- R,
(7.27) Ropaliy s (n42)57 < (0 +2)n —5 (n 4 2)n —» (n+2)57,
i y L p—
(7.28) Ln71|f,7jé: n23(n) = n—2(n) R n—2(n) —» nlié(n)a
(7.29) PN ()] (n) > (n)noa(n) 2 a(n+ 1) —» E(n+ 1),
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(7.30) Tl i+ 1)) = (D = (n)a-1(n) — (n)5_1 (n),
(7.31) e (n+ 1) n+1) — (n+ D)n(n+1) =25 (n+ 1),
(7.32) mid s (n) 2B (4 1), —» i(n+ 1)1,

(7.33) el in+ 1)) < (n+1), —= (n),

(7.34) M4+ 1) 2B (4 D+ 1) —» (n+1)13(n+1).

Note that any time the denominator in a coefficient in (7.21)—(7.24) is zero, the
corresponding diagram is zero and so we can ignore such expressions. For instance, in
(7.21), when i = j+1, the crossing of strands colored ¢ and j is zero (see Remark 4.1).

It is possible to write the equations (7.19)—(7.22) in a manner that avoids one of
the eigenspace projections. For example, we have

(7.35)

=F, EXBif; Ex — CExH:ifj

i— 1
Z._j_l n+1 ( BB EXBj )x) Z._j_la
where "z denotes right multiplication by an element z, so that "(exm;mjerm;ex) is

projection onto (n + 2)47 C (n + 2),.

Prorosition 7.3. — The 2-functor Foy = Fup 0 S: of — A is an equivalence of
2-categories.

Proof. — By definition, F ., is essentially surjective on objects. Consider A, € P.
By Proposition 4.6 any 1-morphism in 1Mor (A, 1) is isomorphic to a multiple of one
of the form P = Fi1 Fig e Fik Ej1 Ej2 e Eﬂ 1)\.

Recall that we have canonical equivalences .# =V and .#,, =V (see Section 3.1).
Under these equivalences, 1Mor_z (M, M,,) = {1§" : n > 0}, and Fr (P) = 1. It
follows that F ., is essentially full on 1-morphisms.

Given P,Q € 1Mory (A, 1) two nonzero l-morphisms as above, by Proposi-
tion 4.9 we have that 2Mor (P, Q) is one-dimensional. Since 2Mor(1y,1y,) is also
one-dimensional and F ., preserves 2-isomorphisms, it follows that F . induces an
isomorphism

QMOI%(P, Q) = 2MOI‘J/{(FQ¢(P), FM(Q))
By linearity we conclude that F ., is fully faithful on 2-morphisms. Thus F, is an
equivalence. O

We can now complete the proofs of Theorems 6.7 and 4.11.
Cororrary 7.4. — The 2-functor S is faithful on 2-morphisms.

CoROLLARY 7.5. The functor A — K (&) of Theorem 4.11 is faithful.
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Proof. — We have commutative diagram

A—E 5y

(7.36) J o T

Thus, the corollary follows from the fact that the functor r of (2.1) is faithful. O

7.4. ACTION OF CATEGORIFIED QUANTUM GROUPS. — From the results of Sections 4.2
and 7.3, we immediately obtain an explicit action of the 2-category % of [CL15]
(the categorified quantum group of type A,,) on modules for symmetric groups. This
categorifies the fundamental representation L(Ag) of slu.

For ease of reference, we describe this action here, which is an additive linear
2-functor
Recall that the set of objects of % is the free monoid on the weight lattice of sl and
recall the definition of wy in (2.3). On objects, we have

{MA ifr=wy, \€P,

Foz/ xTr) =
(@) 0 if z is not of the form wy for any A € P.

On 1-morphisms, F4 acts just as F, does in (7.17) and (7.18). On 2-morphisms, F4,
maps any diagram with dots to zero. On diagrams without dots, F4 acts just as F
does in (7.19)—(7.26), but with orientations of strands reversed (see Theorem 4.4).

Remark 7.6. — In [BK09a], Brundan and Kleshchev constructed an explicit isomor-
phism between blocks of cyclotomic Hecke algebras and sign-modified cyclotomic
Khovanov—Lauda algebras in type A. They then used this isomorphism to describe
actions on categories of modules for cyclotomic Hecke algebras in [BK09b|. This is
related to the action described above, using (7.19)—(7.26), since level one cyclotomic
Hecke algebras are isomorphic to group algebras of symmetric groups.

8. APPLICATIONS AND FURTHER DIRECTIONS

8.1. Diacrammaric compuraTion. — As an application of the constructions of the
current paper, we give some examples of how one can prove combinatorial identities
related to the dimensions of modules for symmetric groups using the diagrammatics
of the categories introduced above.

Prorosition 8.1. If X is a partition, then
dxm; o
JEBT(X)
drg; d
(8.2) P 2|—;‘| Vie Bt(\).
je-n 'Y
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Proof. — For i € B~(\), we have

5.6 (6.7 1
0 (Z) €xg: = E €xBi —) E B - | ExHE ExBi
J—1

JEBtT(X) JEBtT(X)
€x e
(6.4) 1 Z drg;
= — — €x | ExBi .
(n+ 1)dx st T

Since the final diagram above is nonzero (it is sent to i-induction from M g; to M
under the 2-functor F ), relation (8.1) follows.
Now suppose i € BT(\). Then

. . (6.7) 1
(3 EXHi | EX : €xMq [SN::1 - Ex[i
i—j
e jeEB~ (A) e ]GB o

(6.3) Aldxg;
. -~ @B
Z dx(i—j) ’

JEB~(N)

Since the final diagram above is nonzero (as above), relation (8.2) follows. O

It is possible to prove the identities (8.1) and (8.2) algebraically, using a careful
analysis of the representation theory of the symmetric group. However, such a proof
is considerably longer than the above diagrammatic one. To the best of the authors’
knowledge, these identities have not appeared previously in the literature. It would
be interesting to find purely combinatorial proofs.

8.2. FURTHER DIRECTIONS. The results of the current paper suggest a number of
future research directions. We briefly describe of few of these here.

8.2.1. Symmetric groups in positive characteristic. — In light of Proposition 7.3, the
2-category «/ can be viewed as a graphical calculus describing the functors of
i-induction and i-restriction, together with the natural transformations between
them. Throughout this paper, we have worked over the field Q. It would be natural
to instead consider the representation theory of the symmetric group in characteristic
p > 0. We believe that most of the results presented here have positive characteristic
analogues that would yield a relationship between categorified quantum ;[p (instead
of sl ) and Heisenberg categories that categorifies the principal embedding. We refer
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the reader to the survey [Klel4] for an overview of the modular representation theory
of the symmetric group in the context of categorification.

8.2.2. Cyclotomic Hecke algebras. — Group algebras of symmetric groups are isomor-
phic to level one degenerate cyclotomic Hecke algebras. It is natural to expect that
the results of the current paper can be extended to higher level degenerate cyclotomic
Hecke algebras. On the Heisenberg side, this corresponds to the higher level Heisen-
berg categories defined in [MS17], which involve planar diagrams decorated by dots
corresponding to the polynomial generators of the degenerate cyclotomic Hecke alge-
bras. On the categorified quantum group side, this should correspond to modifying
the definition of % (see Section 4.2) so as not to kill all dots. This would be related
to the results of [BK09a, BK09b].

8.2.3. More general Heisenberg categories. The Heisenberg category considered
here is a special case of a much more general construction, described in [RS17], that
associates a Heisenberg category (or 2-category) to any graded Frobenius superalge-
bra. (The Heisenberg 2-category considered in the current paper corresponds to the
case where this Frobenius algebra is simply the base field.) It would be interesting
to generalize the results of the current paper to these more general Heisenberg
categories. Representation theoretically, this amounts to replacing the group algebra
of the symmetric group by wreath product algebras associated to the Frobenius
algebra in question. Of special interest would be the case where the Frobenius algebra
is the zigzag algebra associated to a finite-type Dynkin diagram, in which case the
corresponding Heisenberg categories are the ones considered in [CL12].

A g-deformation of Khovanov’s category was also defined in [L.S13]. This deforma-
tion corresponds to replacing group algebras of symmetric groups by Hecke algebras
of type A. One could form a truncated g-deformed Heisenberg 2-category and attempt
to relate such a truncation to g-deformations of categorified quantum groups.

8.2.4. Trace decategorification. — In contrast to passing to the Grothendieck group,
there is another natural method of decategorification: taking the trace or zeroth
Hochschild homology. The trace of Khovanov’s Heisenberg category has been related
to W-algebras in [CLLS16]. On the other hand, traces of categorified quantum groups
have been related to current algebras in [BHLW17, SVV17]. It would be interesting
to investigate the relationship between these two trace decategorifications implied by
the results of the current paper and their generalizations mentioned above.

8.2.5. Geometry. Heisenberg categories are closely related to the geometry of the
Hilbert scheme (see [CL12]). Similarly, the geometry of quiver varieties [Nak98] can
be used to build categorifications of quantum group representations (see for example
[VV11, Zheld, CKL13, Web12]). It is thus natural to expect that the results of the
current paper are related to geometric constructions relating these spaces, such as
[Sav06, Nag09, LS10, Lem16].
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