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TOWARD THE STRUCTURE OF FIBERED

FUNDAMENTAL GROUPS OF PROJECTIVE VARIETIES

by Donu Arapura

Abstract. — The fundamental group of a smooth projective variety is fibered if it maps onto the
fundamental group of a smooth curve of genus 2 or more. The goal of this paper is to establish
some strong restrictions on these groups, and in particular on the fundamental groups of Kodaira
surfaces. In the specific case of a Kodaira surface, these results are in the form of restrictions
on the monodromy representation into the mapping class group. When the monodromy is
composed with certain standard representations, the images are Zariski dense in a semisimple
group of Hermitian type.

Résumé (Vers la structure des groupes fondamentaux fibrés des variétés projectives)
Le groupe fondamental d’une variété projective lisse est dit fibré s’il s’envoie surjectivement

sur celui d’une courbe de genre 2 ou plus. Le but de cet article est d’établir des restrictions fortes
sur ces groupes, et en particulier sur ceux des surfaces de Kodaira. Dans le cas spécifique d’une
surface de Kodaira, ces résultats se présentent sous la forme de restrictions sur la représentation
de monodromie dans le ‘mapping class group’. Lorsque la représentation de monodromie se
compose de certaines représentations standard, les images sont Zariski denses dans un groupe
semi-simple de type hermitien.
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A useful dichotomy for groups is to subdivide them into large groups and small,
where a group is large for our purposes if it surjects onto a nonabelian free group.
We want to study the large groups in the class P of fundamental groups of complex
smooth projective varieties. Standard tricks of the trade, going back to Beauville,

Mathematical subject classification (2010). — 14H30.
Keywords. — Kähler group, Mumford-Tate group.

Partially supported by the NSF.

e-ISSN: 2270-518X http://jep.cedram.org/

http://jep.cedram.org/


596 D. Arapura

Catanese and Siu [ABC+96, Chap. 2] and [Cat08, §5.1], show that such a group is
fibered in the sense that it is given as an extension of an orbifold group

Γg;→m =
〈
α1, . . . , α2g, β1, . . . , βn |

[α1, α2] · · · [α2g−1, α2g]β1 · · ·βn = βm1
1 = · · · = βmnn = 1

〉
by a finitely generated group K. So we now come to the main question that motivated
this paper: given an action Γg;→m → Aut(K), or perhaps only an outer action, with K
finitely generated, when can we expect the semidirect product or some other associated
extension to lie in P? The group Γg;→m will act on the finite dimensional vector space
V = K/[K,K]⊗Q. Let G be the identity component of the Zariski closure of the image
of Γg;→m in GL(V ). We establish the following necessary conditions for an extension of
Γg;→m by K to lie in P:

– The dimension of the space of invariants V Γ
g;

→
m must be even.

– The Q-algebraic group G is semisimple, and the associated real group lies in the
small list of the groups arising from Hermitian symmetric domains of classical type
[Hel78, p. 518].

– The last result applies more generally to V = H/[H,H]⊗Q for any finite index
subgroup H ⊂ K. (A finite index subgroup Γ′ ⊂ Γg,→m will act on V , and G can be
defined as above using the Γ′-action.)

In the positive direction, we show that many semisimple groups of classical Her-
mitian type G actually arise in this way from groups in P.

Here is a more detailed summary of the contents of the paper. In the first sec-
tion, we construct a homomorphism ρ : π1(Y, y)→ O+(Xy), that we call nonabelian
monodromy, where f : X → Y is an oriented C∞ fibre bundle and O+(Xy) =

Out+(π1(Xy)) is the group of orientation preserving outer automorphisms of the
fundamental group of a fibre. When Z = Xy is a curve, O+(Xy) is just the map-
ping class group. This has a well known representation given by its action on the
first homology of Z. More generally, a number of authors have studied the action
of subgroups of O+(Z) on the first homology of finite (unramified) coverings of Z
[GLLM15, Kob12, Loo97]. All of these extend to the more general situation, and we
refer to these as generalized Prym representations. In the second section, we study
the nonabelian monodromy of a family of smooth projective varieties. Our main re-
sult here is that the Zariski closure of the image of the composite of a generalized
Prym with monodromy is semisimple of classical Hermitian type. In a nutshell, this
is deduced from the fact that this is the monodromy representation of a polarized
variation of Hodge structure of a specific type. (And this is the main reason we work
with projective manifolds rather than compact Kähler manifolds.) In the third sec-
tion, we deduce the results stated in the first paragraph by extending the monodromy
theorem to families with singular fibres. In the penultimate section, we go in a dif-
ferent direction. By combing the above techniques with some work of Grunewald,
Larsen, Lubotzky, and Malestein [GLLM15], we compute Mumford-Tate groups of
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Fibered fundamental groups 597

some unramified covers of generic curves. The conclusion is that the Hodge structure
of an unramified cover looks very different from the Hodge structure of the underlying
curve. The final section contains examples, involving pencils of abelian varieties and
Kodaira surfaces, with interesting monodromy groups.

Acknowledgements. — The main ideas for this paper were worked out during a visit
to the IHÉS in the spring of 2015. My thanks to them for a pleasant and productive
stay. I would also like to thank one of the referees for bringing the very useful reference
[Cat08] to my attention.

1. Nonabelian monodromy

Suppose that F is a connected manifold. Let δ be a path connecting x0 ∈ F to
x1 ∈ F . A self diffeomorphism φ : F → F , with φ(x0) = x1, induces an automorphism
π1(F, x0)→ π1(F, x0) defined by g 7→ δ−1φ∗(g)δ, where multiplication is taken in the
fundamental groupoid. The corresponding outer automorphism is independent of δ.
Now suppose that f : X → Y is a locally trivial C∞ fibre bundle with fibre F
and connected base Y . Then, after choosing a Riemannian metric on X, we have a
holonomy representation of the fundamental group

ρ̃ : π1(Y, y) −→ Isom(F ) ⊂ Diffeo(F )

to the group of isometries and therefore diffeomorphisms of F . Thus ρ induces a
homomorphism

ρ : π1(Y, y) −→ Out(π1(F, x0)) = Aut(π1(F, x0))/ InnerAut(π1(F, x0)).

We will refer to this as nonabelian monodromy.
This can be described more topologically. Given γ ∈ π1(Y ), represent it by a C∞

map S1 → Y . Then we have an exact sequence

1 −→ π1(F, x0) −→ π1(X ×Y S1, x0) −→ π1(S1, 0) = Z −→ 1

which necessarily splits (noncanonically). Let γ̃ ∈ π1(X ×Y S1) denote a lift of 1 ∈ Z.

Lemma 1.1. — The outer automorphism of π1(F ) determined by g 7→ γ̃gγ̃−1 coincides
with ρ(γ).

Proof. — We may replace Y by S1 and X by X ×Y S1. Let γ ∈ π1(Y ) denote a
generator. Let us say that a C∞ path in X is horizontal if its tangent vectors lie
in ker df⊥x . Through any x ∈ F , there is a unique horizontal lift εx of γ with initial
point εx(0) = x. This is generally not closed. The holonomy φ : F → F sends x to
the end point εx(1). Let δ be a path in F connecting x0 to x1 = φ(x0). The element
ε−1
x0
δ ∈ π1(X,x0) maps to γ−1. So it must be conjugate to γ̃−1. One easily checks

that
ρ(g) = δ−1φ∗(g)δ = (ε−1

x0
δ)−1g(ε−1

x0
δ). �
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598 D. Arapura

Corollary 1.2. — The outer action of π1(Y ) on imπ1(F ), by conjugation via a set-
theoretic section of f∗ in the sequence below

1 −→ imπ1(F ) −→ π1(X)
f∗−−−→ π1(Y ) −→ 1,

is compatible with ρ.

We set O(F ) = Out(π1(F )). If F is oriented, then there is an induced orientation
on H1(F,R) = Hom(π1(F ),R). Let O+(F ) ⊂ O(F ) denote the subgroup preserving
the orientation on Hom(π1(F ),R). If f is a fibre bundle of oriented manifolds, then
the image of holonomy lies in the group of orientation preserving diffeomorphisms
Diffeo+(F ). It follows that ρ(π1(Y )) ⊆ O+(F ). Let O+(F, ω) = O(F, ω) ∩ O+(F ).
When F is a compact oriented 2-manifold, then O+(F ) is just the mapping class
group [FM12]. Note that O+(F ) = O(F, ω), where ω ∈ H2(F ) is the fundamental
class.

Many of the familiar representations of the mapping class group generalize to O(F ).
The group Aut(π1(F )) has an obvious representation τZ on

H1(F,Z) = π1(F )ab := π1(F )/[π1(F ), π1(F )].

Since inner automorphisms act trivially on π1(F )ab, τZ factors through O(F ). Let τ
denote the corresponding rational representation τZ ⊗Q. In the case of the mapping
class group, the kernel of τ , called the Torelli group, is rather large and somewhat
mysterious. Thus we want to consider some additional representations in order to de-
tect elements of the Torelli group. It is convenient to adopt the viewpoint of [GLLM15]
that, given a group Γ, a representation σ : Γ1 → GL(V ) of a finite index subgroup
should be treated on the same footing as a representation of Γ. We will refer to σ as a
partial representation of Γ, and call Γ1 the domain and denote it by Dom(σ). Let us
say that two partial representations are commensurable if they agree after restriction
to a finite index subgroup of the intersection of their domains. We can always induce
a partial representation to an honest representation, but it is better for our purposes
not to do so. We will mainly be concerned with properties of partial representations
which depend only on the commensurability class, so we will occasionally shrink the
domains when it is convenient. Given H ⊂ π1(F ) a subgroup of finite index, the stabi-
lizer Stab(H) = {σ ∈ Aut(π1(F )) | σ(H) = H}, which has finite index in Aut(π1(F )),
acts on Hab ⊗ Q = Hab

Q . Thus this is a partial representation of the automorphism
group which we denote by τH . If H is characteristic, then Stab(H) = Aut(π1(F )),
so τH is an honest representation. When H is normal, then G = π1(X)/H acts
on Hab. We can break the vector space Hab

Q = Hab ⊗ Q up into a sum
⊕

χ(Hab
Q )χ

of isotypic components parameterized by the irreducible Q[G]-modules χ. In more
explicit terms, (Hab

Q )χ is the sum of all Q[G]-submodules isomorphic to χ. This is a
representation of the subgroup Stab(r) = {α ∈ Aut(π1(F )) | α ◦ r = r} ⊆ Stab(H)

where r : π1(X) → G denotes the projection. The family of partial representations
obtained this way will be referred to as generalized Prym representations, and denoted
by τH,χ. In the case of the mapping class group, the study of these representations
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Fibered fundamental groups 599

(for nontrivial H) seems to have been initiated by Looijenga [Loo97], and continued
by Koberda [Kob12], and Grunewald, Larsen, Lubotzky, and Malestein [GLLM15].
Koberbda [Kob12] has shown that

⊕
τH , as H runs over characteristic subgroups,

is a faithful representation of the based mapping class group. So in particular, the
nontriviality of elements of the based Torelli group can be detected using these rep-
resentations.

Lemma 1.3. — The representations τH and τH,χ descend to partial representations
of Out(F ) after possibly shrinking their domains.

Proof. — We focus on τH , the argument for the second case is the same. Let V = Hab
Q

and let S = Dom(τH). We have an exact sequence

π1(F ) −→ Aut(π1(F )) −→ O(F ) −→ 1.

Since inner automorphism by elements ofH act trivially on V , the image τH(π1(F )∩S)

is finite. Since the image τH(S) is finitely generated linear, and therefore residually
finite, we can choose a finite index subgroup of Γ1⊂S such that τH(Γ1 ∩ π1(F ))={1}.

�

2. Smooth projective families

Now suppose that f : X → Y is a smooth projective morphism of smooth varieties.
We assume furthermore that the fibres of f are connected. By assumption, we have
a relatively ample line bundle L on X with first Chern class ω. By Ehresmann’s
theorem, f is a C∞ fibre bundle. Thus we get a homomorphism ρ : π1(Y, y) →
O(Xy, ω), where Xy is the fibre over y. It is worth observing that im ρ ⊆ O+(Xy, ω).
From now on, the representation τH will denote the restriction of the previous τH to
O+(Xy, ω). Let n denote the dimension of Xy. If π : X̃y → Xy is the finite unramified
covering corresponding to a finite index subgroup H ⊂ π1(Xy), then Xy is projective
with an ample class ω̃ = π∗ω. By the hard Lefschetz theorem, we have a symplectic
form

( , ) : H1(X̃y,Q)×H1(X̃y,Q) −→ H2(X̃y,Q)
∪ ω̃n−2

−−−−−−−→ H2n(X̃y,Q) ∼= Q.

This induces a dual pairing denoted by the same symbol on H1(X̃y,Q) ∼= Hab
Q . The

action of Stab(H) preserves this, so τH is a representation into the corresponding
symplectic group.

In order to analyze the Zariski closures of these representations, we need to re-
call some basic facts about Mumford-Tate groups; we refer to [Mil94, §1] or [Moo]
for a more detailed treatment. Recall that a rational Hodge structure H consists
of a finite dimensional Q-vector space and a decomposition HC = H ⊗ C = ⊕Hpq

with Hqp = H
pq. The bigrading determines and is determined by the homomor-

phism of h : C∗ → GL(HR), given by h(λ)v =
∑
λqλ

p
vpq. The Mumford-Tate group

MT(H) ⊆ GL(H) is the smallest Q-algebraic subgroup whose real points contain the
image of C∗. For our purposes, it is more convenient to work with a slightly smaller
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600 D. Arapura

group called the Hodge group or the special Mumford-Tate group SMT(H) given as
the identity component of MT(H)∩SL(H). This is the smallest Q-algebraic subgroup
SMT(H) ⊂ GL(H), whose real points contain the image of the unit circle h(U(1)).

Let us say that a real algebraic group G is of Hermitian type if it is connected,
reductive and the quotient of it by a maximal compact subgroup K is a Hermitian
symmetric space. Say that G is of symplectic Hermitian type if in addition G/K

has a totally geodesic holomorphic embedding into a Siegel upper half-plane. By
Cartan’s classification, a noncompact simple group of Hermitian type is isogenous
to SU(p, q),SO(2, p)o,SO∗(2p),Sp(2g,R) or certain real forms of E6 or E7 [Hel78,
p. 518]. By Satake [Sat65], only the first four are symplectic. A Q-algebraic group G
will be called (symplectic) Hermitian if G(R) has these properties.

Theorem 2.1 (Mumford). — Suppose that H is polarizable of type {(−1, 0), (0,−1)};
in other words, suppose that H is the first homology of an abelian variety. Then
M = SMT(H) is of symplectic Hermitian type.

Proof. — This is stated in Mumford [Mum66, pp. 348-350] without proof, so we give
a brief explanation here. The connectedness of M is clear from the definition. The
polarizability of H shows that M leaves a positive definite form invariant, and this
implies reductivity. The Hermitianness of M can be deduced from [Mil05, Th. 1.21]
(the homomorphism h satisfies conditions (a), (b), (c) of that theorem). Furthermore,
since H has a polarization ψ, we have a homomorphism U(1) → Sp(H,ψ), whence
an inclusion M ⊂ Sp(H,ψ) satisfying the (H2) condition of [Sat65]. Therefore, we
have an embedding of the symmetric space associated to M into the symmetric space
associated to Sp(H,ψ). �

As noted above, the result puts very strong restrictions on the possible values forM .
Note that SMT(H) = SMT(H∗). So we switch to the dual when it is convenient.

Here is the first main result.

Theorem 2.2. — Suppose that X → Y is a smooth projective family with ample class ω
over a smooth quasiprojective base. Let ρ : π1(Y, y)→ O(Xy, ω) denote the nonabelian
monodromy. Then for any finite index normal subgroup H ⊂ π1(Xy) and character χ
of the quotient, the identity component of the Zariski closure of the image of τH,χ ◦ ρ
is semisimple of symplectic Hermitian type.

The proof will rely on the following lemmas.

Lemma 2.3. — Suppose that we are given a homomorphism of groups r : Γ→ G and
an action of another group Π on Γ preserving r, i.e., Stab(r) = Π. Then r extends to
a homomorphism r̃ : Γ o Π→ G.

The proof is immediate from the standard formulas for the semidirect product.

Lemma 2.4. — With the same notation as in Theorem 2.2, there exist a surjective
generically finite morphism of smooth varieties p : Ỹ →Y such that p∗(π1(Ỹ ))⊂π1(Y )
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Fibered fundamental groups 601

has a finite index and is contained in the domain of τH,χ. Furthermore τH,χ ◦ ρ ◦ p∗
is the monodromy representation of a polarizable variation of Hodge structures on Ỹ
of type {(−1, 0), (0,−1)}.

Proof. — Let Γ = π1(Xy) and let r : Γ→ G = Γ/H denote projection. Let e ∈ Q[G]

be the central idempotent whose image is Aχ. After passing to an étale cover p :Y1→Y ,
we can assume ρ(p∗π1(Y1)) ⊆ Dom(τH,χ). The generic fibre of X×Y Y1 → Y1 admits a
rational point defined over some finite extension K of the function field C(Y1). Let Ỹ
be a desingularization of the normalization of Y1 in K. Let X̃ = X ×Y Ỹ . Then the
map X̃ → Ỹ possesses a section. Therefore π1(X̃) is the semidirect product Γoπ1(Ỹ ).
Let C ⊂ Y be a curve given as a complete intersection of ample divisors in general
position. Let C̃ ⊂ Ỹ denote an irreducible component of the preimage of C. Let U
be the complement of the set of branch points of C̃ → C, and let Ũ ⊂ C̃ denote the
preimage. Consider the diagram

π1(Ũ) //

α
��

π1(Ỹ )

p∗
��

π1(U)
β
// π1(Y )

By a suitable Lefschetz hyperplane theorem [GM88, p. 153], we obtain a surjection
π1(C)→ π1(Y ). We have a surjection π1(U)→ π1(C). Combining these two assertions
shows that β is surjective. Covering space theory shows the image of α has finite index
in π1(U). After chasing the diagram the other way, we can conclude p∗π1(Ỹ ) has finite
index in π1(Y ).

Applying Lemma 2.3 yields normal subgroup T ⊂ π1(X̃) with π1(X̃)/T = G.
Let p : Z → X̃ be the corresponding Galois étale cover. Then τH ◦ ρ is the mon-
odromy representation of the local system

⋃
yH1(Zy,Q) which can be identified with

R1(f ◦ p)∗Q∨. The latter clearly underlies a polarized variation of Hodge structure of
type {(−1, 0), (0,−1)}. Note that G acts on this by automorphisms. The representa-
tion τH,χ ◦η corresponds to the sub variation of Hodge structure e(R1(f ◦p)∗Q∨). �

Proof of Theorem 2.2. — Let Z be the identity component of the Zariski closure of
the image of τH,χ ◦ ρ, and let H be the corresponding variation of Hodge structure.
By the theorem of André [And92, §5,Th. 1], Z is a normal subgroup of the derived
group DMT(Hx) of the Mumford-Tate group of a very general fibre Hx. Observe
that DMT(Hx) = DSMT(Hx) and this is isogenous to SMT(Hx) because the last
group is semisimple. Hence DSMT(HX) is semisimple of symplectic Hermitian type
by Theorem 2.1. Therefore Z also has the same property. �

In the previous set up, given γ ∈ π1(Y ) some positive power γn will lie Dom(τH).
By the same technique, we get further constraints.
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602 D. Arapura

Proposition 2.5. — With the same notation as in Theorem 2.2, suppose that
γ ∈ π1(Y ) is a loop around a smooth boundary divisor of some smooth compactifica-
tion. Then τH,χ ◦ ρ(γn) is quasi-unipotent for all n as above.

Proof. — After replacing n by a multiple, we can assume that γn ∈ p∗π1(Ỹ ), where
p : Ỹ → Y is as in Lemma 2.4. The result now follows from [Sch73, Lem. 4.5]. �

3. Fibered fundamental groups

Let f : X → Y be a projective map of smooth quasiprojective varieties such that f
has connected fibres. Then we have a surjection π1(f) : π1(X) → π1(Y ). The kernel
of this map may be quite large, however. We first want to factor this through a
map with better properties. Given a divisor D ⊂ Y with simple normal crossings,
the restriction π1(Y −D) → π1(Y ) is surjective. The kernel is the normal subgroup
generated by loops γi about the components Di. If mi > 1 are integers, define the
orbifold fundamental group πorb

1 (Y,
∑
miDi) as the quotient of π1(Y − D) be the

normal subgroup generated by γmii . This can be interpreted as the fundamental group
of Y with a suitable orbifold structure, but we won’t need this. After removing a closed
subset Z ⊂ Y of codimension at least 2, we can suppose that the discriminant of f is
a smooth divisor D =

∑
Di, and that f−1D is a divisor with normal crossings such

that the restriction of f to the intersections of components are submersions over D.
Let mi denote the greatest common divisor of the multiplicities of the components of
f−1Di. The following is proved in [Ara11, Lem. 3.5].

Proposition 3.1. — Let y0 ∈ Y − D − Z. Then π1(f) factors through a surjection
φ : π1(X)→ πorb

1 (Y,
∑
miDi) such that

π1(f−1(y0))

r1

��

// π1(X − f−1(D ∪ Z))

r2

��

ψ
// π1(Y −D − Z)

r3
��

// 1

ker(φ) // π1(X − f−1Z)
φ

// πorb
1 (Y,

∑
miDi) // 1

commutes and has exact rows. The map r1 : π1(f−1(y0)) → kerφ is surjective. In
particular, kerφ is finitely generated.

If f is flat then f−1Z has codimension > 2. Consequently π1(X − f−1Z) ∼= π1(X)

et cetera.

Corollary 3.2. — Assuming flatness of f , Z can be omitted in the statement of the
proposition.

Therefore if f is flat, we have an exact sequence

1 −→ ker(φ) −→ π1(X) −→ πorb
1 (Y ) −→ 1

with finitely generated kernel, where we write πorb
1 (Y ) = πorb

1 (Y,
∑
miDi) for sim-

plicity. This gives an outer action of ρ : πorb
1 (Y ) → Out(kerφ). Given a finite index

J.É.P. — M., 2017, tome 4



Fibered fundamental groups 603

subgroup H ⊂ ker(φ). Let σH denote the partial representation of Out(kerφ) on Hab
Q

with domain Stab(H). We write σ = σH when H = ker(φ) is the full group.

Proposition 3.3. — With the assumptions and notation of the previous paragraph,
the identity component of the Zariski closure of the image of σH ◦ ρ is semisimple of
symplectic Hermitian type.

Proof. — From Proposition 3.1, we deduce a diagram

1 // imπ1(Xy0)

r1
��

// π1(X − f−1D)

r2

��

ψ
// π1(Y −D)

r3
��

// 1

1 // ker(φ) // π1(X)
φ

// πorb
1 (Y ) // 1

where r1 is surjective. Corollary 1.2 shows that nonabelian monodromy on imπ1(Xy0)

coincides with the conjugation action of π1(Y −D) coming from the first row above.
Let K ⊂ imπ1(Xy0) be the preimage of H under the map r1. Then Kab

Q surjects
onto Hab

Q , and this is compatible with the partial actions of π1(Y −D) and πorb
1 (Y )

given by conjugation.
Therefore the Zariski closure of the image of σH ◦ ρ is a quotient of the Zariski

closure of the image of Dom(τK) ⊆ π1(Y −D) in GL(Kab
Q ). A quotient of a semisimple

group of symplectic Hermitian type is again semisimple of symplectic Hermitian type.
As a consequence, the proposition follows from Theorem 2.2. �

For the remainder of this section, we focus on the case where Y is a smooth pro-
jective curve of genus g. Its fundamental group is given by

Γg =
〈
α1, . . . , α2g | [α1, α2] · · · [α2g−1, α2g] = 1

〉
.

Given integers m1, . . . ,mn > 1, let

Γg;m1,...,mn = Γg;→m =
〈
α1, . . . , α2g, β1, . . . , βn |

[α1, α2] · · · [α2g−1, α2g]β1 · · ·βn = βm1
1 = · · · = βmnn = 1

〉
.

This is πorb
1 (Y,

∑
mipi) for some pi ∈ Y . By [Fox52], there exists a torsion free

normal subgroup Γ′ ⊂ Γg;→m of finite index. In more geometric terms, Γ′ is the ordinary
fundamental group of a curve Y ′, where r : Y ′ → Y is a Galois cover with ramification
divisor r∗(

∑
mipi). Consequently Γ′ = Γh for some h, and 2h−2 is a positive integer

multiple of

2g − 2 +
∑ mi − 1

mi
.

Let us say that Γg;→m is hyperbolic if the above expression is greater than zero.

Lemma 3.4. — The following statements hold.
(a) dimH1(Γg;→m,Q) = 2g.
(b) H2(Γg;→m,Q) ∼= H2(Γ′,Q) is one dimensional.
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Proof. — The first statement follows immediately from the presentation. Let G =

Γ/Γ′. The Hochschild-Serre spectral sequence gives an isomorphism

H2(Γg;→m,Q) ∼= H2(Γ′,Q)G.

The generator of H2(Γ′,Q) = H2(Y ′,Q) is invariant under G. This proves (b). �

Suppose that f : X → Y is surjective holomorphic map from a smooth projec-
tive variety. Recall that a fibre is a multiple fibre if the greatest common divisor of
the multiplicities of the components is greater than 1. Suppose f has n multiple fi-
bres with multiplicity mi. Then from the previous discussion, we obtain a surjective
homomorphism φ : π1(X)→ Γg;→m with finitely generated kernel.

Theorem 3.5 (Catanese [Cat08, Th. 5.14]). — Conversely, any surjective homomor-
phism φ : π1(X)→ Γg;m1,...,mn with finitely generated kernel must arise in the above
manner from a holomorphic map X → Y to a genus g curve with exactly n multiple
fibres of multiplicity m1, . . . ,mn.

We can now prove the main results announced in the introduction. If X is a smooth
projective variety such that π1(X) surjects onto a nonabelian free group, then by
[Cat08, Cor. 5.4, prop 5.13] it surjects onto a hyperbolic Γg;→m with finitely generated
kernel. In fact, the hyperbolicity condition is not needed for the results below.

Theorem 3.6. — Let X be a smooth complex projective variety. Suppose that
φ : π1(X)→ Γg;→m is a surjective homomorphism such that kerφ is finitely gener-
ated. For any finite index subgroup H ⊂ ker(φ), the identity component of the
Zariski closure of the image of σH ◦ ρ is semisimple symplectic Hermitian, where
ρ : Γg;→m → Out(kerφ) is the representation associated to the extension.

Proof. — This follows from Proposition 3.3, and Theorem 3.5. �

Corollary 3.7. — The partial representation σH ◦ ρ is semisimple.

Proof. — The theorem implies that the Zariski closure has a compact real form. So
the corollary follows from Weyl’s unitary trick. �

Remark 3.8. — The groups Γg,→m which are not hyperbolic are either finite or abelian.
The theorem is vacuous in the finite case. In the abelian case, the theorem implies
that it acts through a finite quotient.

Proposition 3.9. — Let X be a smooth projective variety. Given an exact sequence

1 −→ K −→ π1(X) −→ Γg,→m −→ 1

with K finitely generated, dimV
Γ
g;

→
m is even, where V = K/[K,K]⊗Q.
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Proof. — Let Γ = Γg,→m. From the Hochschild-Serre spectral sequence, we deduce an
exact sequence

0 −→ H1(Γ,Q) −→ H1(π1(X),Q) −→ H0(Γ, H1(K,Q))

−→ H2(Γ,Q) −→ H2(π1(X),Q).

By Theorem 3.5, the map π1(X) → Γ is realized by a surjective holomorphic map
f : X → Y to a curve. We claim that H2(Γ,Q) → H2(π1(X),Q) is injective.
This together with Lemma 3.4, will imply that the Betti number b1(X) = 2g +

dimH0(Γ, H1(K,Q)). It would follow that the dimension of coinvariants dimVΓ =

dimH0(Γ, H1(K,Q)) is even. Since Γ acts semisimply, this is also the dimension of
the space of invariants.

To prove the claim, choose Γ′ ⊂ Γ as above. Then Γ′ is the (usual) fundamental
group of some finite Galois cover Y ′ → Y . Let X ′ be a desingularization of X ×Y Y ′.
Since by Lemma 3.4,

H2(Γ,Q) ∼= H2(Γ′,Q) ∼= H2(Y ′,Q),

it suffices to prove to prove that the composite of

H2(Γ′,Q) −→ H2(π1(X ′),Q) −→ H2(X ′,Q)

is injective. But this is clear because the image contains the fundamental class of the
fibre of X ′ → Y ′. �

Remark 3.10. — The same proof shows that dimVΓ
g;

→
m

is even, when X is compact
Kähler.

4. Étale covers of general curves

Let Γg be the fundamental group of a genus g curve. Fix a finite index normal
subgroup H ⊂ Γg with quotient G. This determines a Galois étale cover C̃ → C

of any curve of genus g. Our goal is to compute the special Mumford-Tate group of
H1(C̃) when C is a very general curve. This means that C occurs in the complement of
a countable union of proper subvarieties of the moduli space of curvesMg(C). Since G
acts on H1(C̃), we can decompose it as sum of isotypic components

⊕
χH

1(C̃)χ, as χ
runs over (isomorphism classes of) irreducible Q[G]-modules. It suffices to compute
SMT(H1(C̃)χ).

In order to state the main result, we need to recall some terminology from
[GLLM15]. The space V = H1(C̃,Q) carries a Q[G]-valued pairing given by

〈u, v〉 =
∑
g∈G

(u, gv)g,

where ( , ) is the usual intersection pairing on V . This is sesquilinear and skew-
Hermitian with respect to the involution g∗ = g−1, i.e., 〈gu, hv〉 = g〈u, v〉h∗ and
〈u, v〉 = −〈v, u〉∗ [GLLM15, Lem. 3.1]. We have

im τH ⊆ Aut(V, 〈 , 〉).
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We can break up the group on the right into simpler pieces. Let χ be the class of
an irreducible Q[G]-module in the Grothendieck group. The χ-isotypic submodule
of Q[G] is a subalgebra Aχ which is a matrix algebra over a division ring Dχ. The
algebra Aχ is stable under ∗ [GLLM15, Lem. 3.2]. Let Lχ denote the center of Aχ, and
let Kχ the fixed field for the involution. The isotypic component V χ = Hab,χ

Q becomes
a Aχ-submodule which is also stable under the action of Stab(r). The restriction of
the pairing 〈 , 〉 to Vχ is Aχ-valued [GLLM15, Lem. 3.3]. The group Aut(Vχ, 〈 , 〉) is
naturally an algebraic group over Kχ, but we wish to regard it as an algebraic groups
over Q. More formally, we apply Weil restriction GH,χ = ResKχ/Q Aut(Vχ, 〈 , 〉). We
will need to consider the subgroup G1

H,χ ⊂ GH,χ of elements with reduced norm equal
to 1. The associated complex group GH,χ(C) is symplectic, orthogonal or general
linear according to whether Aχ ⊗Kχ R becomes a matrix algebra over R,C or the
quaternions. Proofs of this and more can be found in [GLLM15]. Let τH,χ denote
the representation corresponding to V χ. The image of this is in GH,χ(Q). We can
decompose τH =

∑
χ τ

H,χ. We say that the quotient map r : Γg → G is redundant if
it factors as

Γg
r′−−→ Fg

r′′−−−→ G,

where Fg is a free group on g generators, r′ is a surjection and, r′′ contains a free
generator in its kernel. Clearly, there is a redundant homomorphism onto G if and
only if it is generated by fewer than g elements.

Theorem 4.1. — Let g > 3. Suppose that r : Γg → G is a redundant surjective homo-
morphism. Let C be a very general curve of genus g and let C̃ be the corresponding
étale G-cover. For each irreducible Q[G]-module χ, the special Mumford-Tate group
of the isotoypic component SMT(H1(C̃)χ) = G1

H,χ.

The main ingredient is the following theorem of Grunewald, Larsen, Lubotzky, and
Malestein [GLLM15, Th. 1.6].

Theorem 4.2. — Suppose that g > 3 and r is redundant. Then for any irreducible
Q[G]-module χ, im τH,χ is an arithmetic subgroup of G1

H,χ.

Lemma 4.3. — Let H,G, r, χ be as above, but with r not necessarily redundant.
Let C be a smooth projective curve of genus g and C̃ be the corresponding unram-
ified G-cover. The χ-isotypic component of H1(C̃,Q) = H1(C̃,Q)∨ is a sub Hodge
structure with special Mumford-Tate group contained in G1

H,χ.

Proof. — Since G acts holomorphically on C̃, it preserves the canonically polar-
ized Hodge structure H1(C̃). Therefore the χ-isotypic component M ⊂ H1(C̃,Q)

is a polarized sub Hodge structure. Let K = Kχ, A = Aχ, G = Aut(M, 〈 , 〉) and
G 1 ⊂ G subgroup of elements with reduced norm 1. Then G1

H,χ = ResK/Q G 1.
To prove the lemma, it suffices to show that the image of h : U(1) → GL(MR)

lies ResK/Q G 1(R) = G 1(K ⊗ R). Since as noted G acts by automorphisms of the
polarized Hodge structure, it follows that the image of h : U(1) → GL(MR) lies in
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AutG(MR, 〈, 〉) = AutA(MR, 〈 , 〉). This almost does it but it remains to check the
reduced norm condition. After extending scalars to C, we see that the reduced norm
of h(λ) equals ∏

λ(q−p) dimMpq

= 1. �

Proof of Theorem 4.1. — Let Y = Mg[n] be the moduli space of curves of genus g with
level n > 3 structure [MF82]. This is a fine moduli space, so it carries a universal curve
X → Y . We can identify π1(Y ) with congruence subgroup ker[Modg → Sp2g(Z/nZ)]

of the mapping class group Modg. Lemma 2.4 gives a surjective map p : Ỹ → Y such
that π1(Ỹ ) has finite index in π1(Y ) and such that τH,χ ◦p∗ comes from a polarizable
variation of Hodge structure H . Lemma 4.3 gives an inclusion SMT(Hy) ⊆ G1(Q)

for any y ∈ Ỹ . For very general y ∈ Ỹ , the identity component Z of the Zariski closure
of the monodromy group of H lies in SMT(Hy) [Mil05, Th. 6.19]. By Theorem 4.2,
we have Z = G1(Q). Thus we obtain the reverse inclusion G1(Q) ⊆ SMT(Hy) for
very general y. �

When G = Z/2Z, we recover the main result of [BP02] that the special Mumford-
Tate group of a very general Prym variety is the full symplectic group.

We record the following corollary of the proof for later use.

Corollary 4.4. — Assume g > 3 and that H ⊂ Γg is a finite index normal subgroup
such that Γg/H is generated by fewer than g elements. Then the identity component
of the Zariski closure of im τH is

∏
χG1

H,χ.

5. Examples

5.1. Families of abelian varieties. — Theorems 2.2 and 3.6 give strong restrictions
on the representations τ ◦ ρ and σ ◦ ρ associated to fundamental groups of varieties.
We now want to understand which representations can actually arise in this way.
To simplify the statement of the proposition below, let us say that a group Γ occurs
in Theorem 2.2 (respectively Theorem 3.6) if it is isomorphic to the image of τ ◦ ρ
(respectively σ ◦ ρ) for an example satisfying the conditions of the theorem.

Proposition 5.1. — Let Γ1 be an arithmetic subgroup of a special Mumford-Tate
group G of a polarized Hodge structure of type {(−1, 0), (0,−1)}. Then all but finitely
many finite index subgroups Γ ⊂ Γ1 occur in Theorem 2.2. If none of the irreducible
factors of the symmetric space G(R)0/K are the 1-ball, 2-ball, or genus 2 Siegel upper
half-plane, then almost all finite index subgroup Γ ⊂ Γ1 occur in Theorem 3.6. Certain
lattices in SL2(R) occur in Theorem 3.6.

Before we explain the examples, we briefly recall the notion of a Shimura vari-
ety of Hodge type following the original viewpoint of Mumford [Mum66, Mum69].
Let G be the special Mumford-Tate group of an abelian variety, and Γ ⊂ G an
arithmetic subgroup. Then, roughly speaking, the Shimura variety S parameter-
izes the set of all abelian varieties having Mumford-Tate group finer than or equal
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to G such that Γ fixes the lattice. Here “finer” should be understood as “is con-
tained in”. To be precise, let us fix a polarized Hodge structure L = HZ of type
{(−1, 0), (0,−1)} together with a polarization ψ. Let G = SMT(H) along with the
homomorphisms h : U(1) → G(R) and ρ : G → Sp(HQ, ψ) that come with it. Given
this, the subgroup K = {g ∈ G(R) | ρ(g)h = hρ(g)} is a maximal compact subgroup
of G(R) such that S̃ = G(R)/K is a Hermitian symmetric domain which embeds into
Hq = Sp(HR, ψ)/{centralizer of h}. The space Hq can be identified with the Siegel up-
per half-plane of genus q = dimH/2. Thus S̃ carries a holomorphic family of abelian
varieties U → S̃ given by pulling back the universal family from Hq. Given an arith-
metic subgroup Γ1 ⊂ G(Q), we can choose a finite index torsion free subgroup Γ ⊂ Γ1

stabilizing L. Let S = Γ\S̃. Then we can construct a family of Abelian varieties
Γ\U → S. We note that S is quasiprojective, with a minimal projective compactifi-
cation S constructed by Baily-Borel [BB66]. The following is almost immediate from
the construction.

Lemma 5.2. — The given action of Γ on L is the monodromy of Γ\U → S on the
first homology of the fibre. The fundamental group π1(Γ\U ) = Lo Γ.

As observed in [Tol90], if the boundary of S has codimension at least three, we
can apply a suitable weak Lefschetz theorem [GM88, p. 153] to show that there is
a smooth projective surface Z ⊂ S with π1(Z) ∼= π1(S), and a smooth projective
curve C ⊂ S with π1(C) � π1(S). By restricting Γ\U to these varieties, and using
standard facts about the structure of the boundary [Tol90, Rem. 2], [WK65, Th. 4.13],
we deduce:

Lemma 5.3. — With the notation as above, and suppose that none of the irreducible
factors of S̃ are the 1-ball, 2-ball, or genus 2 Siegel upper half-plane, then LoΓ ∈P.
Furthermore, there exists a fibered group L o Γg ∈ P, where Γg acts on L via a
surjective homomorphism Γg � Γ. (For the last statement, it is only necessary to
exclude the 1-ball.)

To justify the last assertion of Proposition 5.1, we use Shimura curves associated
to quaternion algebras [Shi67]. Let D be an indefinite quaternion division algebra
over Q. Concretely, D is a Q algebra with generators i, j, k and relations i2 = a,
j2 = −b and k = ij = −ji for rational numbers a, b > 0. Either D splits which means
thatD = M2(Q) orD is a division algebra. We want the latter to hold, and for this it is
sufficient to assume that the projective conic ax2−by2 +z2 = 0 has no rational points.
After extending scalars, we have an isomorphism of algebras ψ : D⊗R ∼= M2(R). We
have an involution on D given by conjugation x+ yi+ zj + wk = x− yi− zj − wk.
Let G = {α ∈ D | αα = 1} be viewed as an algebraic group over Q. Under ψ we
have G(R) ∼= SL2(R). Fix a maximal order O ⊂ D. For τ in the upper half-plane H,
Aτ = C2/ψ(O)

(
τ
1

)
is an abelian variety. For general τ , its special Mumford-Tate group

is precisely G. If Γ1 = G(Q) ∩ O, Shimura proves that the corresponding Shimura
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variety S = H1/Γ1 is compact. (It is the moduli space of abelian surfaces Aτ having
multiplication by O.) Therefore

Lemma 5.4. — If Γ ⊂ Γ1 is a torsion free subgroup of finite index, O o Γ ∈P.

5.2. Kodaira surfaces. — In the previous examples, we considered only the “top”
representations τ and σ because τH , σH would give essentially nothing new. By con-
trast, let us a consider Kodaira surface. This is a smooth projective surface admitting
an everywhere smooth map to a curve f : X → C, such that the fibres are con-
nected with nonconstant moduli. Let g and q denote the genus of C and the fibres
respectively. The fundamental group is a nontrivial extension

(5.1) 1 −→ Γq −→ π1(X) −→ Γg −→ 1.

We have an associated homomorphism ρ : Γg → Modq ⊂ O(Γq) into the genus q
mapping class group. We note that this is the sole invariant, in the sense that the
extension (5.1) is uniquely determined by ρ. To see this, observe that by a theorem
of Eilenberg and Maclane [EM47], the possible extensions with outer action ρ are
parameterized by H2(Γg, Z(Γq)), but the centre Z(Γq) is trivial [FM12, Chap. 1]. Our
main theorems give strong restrictions on the possible values of im τH◦ρ. In particular,
an arbitrary ρ will not come from a Kodaira surface (or any other projective manifold).
Our interest now is in seeing how big these can be. By assumption the map C →Mq

to the moduli space of curves is nonconstant. Therefore by Torelli’s theorem, it follows
that the induced map C → Aq is also nonconstant. This forces the variation of Hodge
structure R1f∗Z to be nontrivial. In fact, it must have infinite monodromy. If the
monodromy were finite, then we could assume, after a finite base change, that it
is trivial implying that R1f∗Z is a trivial variation of Hodge structure by [Sch73,
Th. 7.24]. We can apply Theorem 2.2 to strengthen the conclusion. Therefore we have
proved that:

Lemma 5.5. — For any Kodaira surface, the representation τ ◦ ρ : Γg → Sp2q(Q) has
infinite image. In particular, im ρ is infinite. Furthermore, the identity component of
the Zariski closure of im τ ◦ρ is a nontrivial semisimple group of symplectic Hermitian
type.

In order to say more, we need a further assumption. Let us say that a Kodaira sur-
face is generic if the image of ρ has finite index in the mapping class group. Although
the original examples constructed by Kodaira [Kod67] are not generic, it is easy to
see that generic Kodaira surfaces exist. Let Mq[n] be the fine moduli space of genus q
curve with level n > 3 structure, and let Mq[n]∗ denote the Satake compactification.
Note that the boundaryMq[n]∗−Mq[n] has codimension at least 2 inMq[n]∗ provided
that q > 2. Therefore a curve C ⊂ Mq[n]∗ given as an intersection of general ample
divisors would lie entirely in Mq[n]. Let X → C be the pull back of the universal
family. Then the map on fundamental groups π1(C)→ π1(Mq[n]) would be surjective
by weak Lefschetz [GM88, p. 153]. But π1(Mq[n]) is a finite index subgroup of the
mapping class group. From Corollary 4.4, we see that:
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Lemma 5.6. — Let X → C be generic with q > 3 and suppose that H ⊂ Γq is a finite
index normal subgroup such that Γq/H is generated by fewer than q elements. Then
the image im τH ◦ ρ contains a Zariski dense subgroup of

∏
χG1

H,χ.

References
[ABC+96] J. Amorós, M. Burger, K. Corlette, D. Kotschick & D. Toledo – Fundamental groups of

compact Kähler manifolds, Mathematical Surveys and Monographs, vol. 44, American
Mathematical Society, Providence, RI, 1996.

[And92] Y. André – “Mumford-Tate groups of mixed Hodge structures and the theorem of the
fixed part”, Compositio Math. 82 (1992), no. 1, p. 1–24.

[Ara11] D. Arapura – “Homomorphisms between Kähler groups”, in Topology of algebraic varieties
and singularities, Contemp. Math., vol. 538, American Mathematical Society, Providence,
RI, 2011, p. 95–111.

[BB66] W. L. Baily, Jr. & A. Borel – “Compactification of arithmetic quotients of bounded sym-
metric domains”, Ann. of Math. (2) 84 (1966), p. 442–528.

[BP02] I. Biswas & K. H. Paranjape – “The Hodge conjecture for general Prym varieties”, J. Al-
gebraic Geom. 11 (2002), no. 1, p. 33–39.

[Cat08] F. Catanese – “Differentiable and deformation type of algebraic surfaces, real and symplec-
tic structures”, in Symplectic 4-manifolds and algebraic surfaces, Lect. Notes in Math.,
vol. 1938, Springer, Berlin, 2008, p. 55–167.

[EM47] S. Eilenberg & S. MacLane – “Cohomology theory in abstract groups. II. Group extensions
with a non-Abelian kernel”, Ann. of Math. (2) 48 (1947), p. 326–341.

[FM12] B. Farb & D. Margalit – A primer on mapping class groups, Princeton Mathematical
Series, vol. 49, Princeton University Press, Princeton, NJ, 2012.

[Fox52] R. H. Fox – “On Fenchel’s conjecture about F -groups”, Mat. Tidsskr. B. 1952 (1952),
p. 61–65.

[GM88] M. Goresky & R. MacPherson – Stratified Morse theory, Ergeb. Math. Grenzgeb. (3),
vol. 14, Springer-Verlag, Berlin, 1988.

[GLLM15] F. Grunewald, M. Larsen, A. Lubotzky & J. Malestein – “Arithmetic quotients of the
mapping class group”, Geom. Funct. Anal. 25 (2015), no. 5, p. 1493–1542.

[Hel78] S. Helgason – Differential geometry, Lie groups, and symmetric spaces, Pure and Applied
Mathematics, vol. 80, Academic Press, Inc., New York-London, 1978.

[Kob12] T. Koberda – “Asymptotic linearity of the mapping class group and a homological version
of the Nielsen-Thurston classification”, Geom. Dedicata 156 (2012), p. 13–30.

[Kod67] K. Kodaira – “A certain type of irregular algebraic surfaces”, J. Analyse Math. 19 (1967),
p. 207–215.

[Loo97] E. Looijenga – “Prym representations of mapping class groups”, Geom. Dedicata 64
(1997), no. 1, p. 69–83.

[Mil94] J. S. Milne – “Shimura varieties and motives”, in Motives (Seattle, WA, 1991), Proc.
Sympos. Pure Math., vol. 55, American Mathematical Society, Providence, RI, 1994,
p. 447–523.

[Mil05] , “Introduction to Shimura varieties”, in Harmonic analysis, the trace formula,
and Shimura varieties, Clay Math. Proc., vol. 4, American Mathematical Society, Prov-
idence, RI, 2005, p. 265–378.

[Moo] B. Moonen – “An introduction to Mumford-Tate groups”, preprint available from http:
//www.math.ru.nl/~bmoonen.

[Mum66] D. Mumford – “Families of abelian varieties”, in Algebraic Groups and Discontinuous
Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), American Mathematical
Society, Providence, RI, 1966, p. 347–351.

[Mum69] , “A note of Shimura’s paper ‘Discontinuous groups and abelian varieties’”, Math.
Ann. 181 (1969), p. 345–351.

[MF82] D. Mumford & J. Fogarty – Geometric invariant theory, second ed., Ergeb. Math. Gren-
zgeb. (3), vol. 34, Springer-Verlag, Berlin, 1982.

J.É.P. — M., 2017, tome 4

http://www.math.ru.nl/~bmoonen
http://www.math.ru.nl/~bmoonen


Fibered fundamental groups 611

[Sat65] I. Satake – “Holomorphic imbeddings of symmetric domains into a Siegel space”, Amer. J.
Math. 87 (1965), p. 425–461.

[Sch73] W. Schmid – “Variation of Hodge structure: the singularities of the period mapping”,
Invent. Math. 22 (1973), p. 211–319.

[Shi67] G. Shimura – “Construction of class fields and zeta functions of algebraic curves”, Ann.
of Math. (2) 85 (1967), p. 58–159.

[Tol90] D. Toledo – “Examples of fundamental groups of compact Kähler manifolds”, Bull. Lon-
don Math. Soc. 22 (1990), no. 4, p. 339–343.

[WK65] J. A. Wolf & A. Korányi – “Generalized Cayley transformations of bounded symmetric
domains”, Amer. J. Math. 87 (1965), p. 899–939.

Manuscript received February 3, 2016
accepted May 15, 2017

Donu Arapura, Department of Mathematics, Purdue University
West Lafayette, IN 47907, U.S.A.
E-mail : arapura@purdue.edu
Url : https://www.math.purdue.edu/~dvb/

J.É.P. — M., 2017, tome 4

mailto:arapura@purdue.edu
https://www.math.purdue.edu/~dvb/

	1. Nonabelian monodromy
	2. Smooth projective families
	3. Fibered fundamental groups
	4. Étale covers of general curves
	5. Examples
	References

