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HOMOGENIZATION OF

WEAKLY COERCIVE INTEGRAL FUNCTIONALS IN

THREE-DIMENSIONAL LINEAR ELASTICITY

by Marc Briane & Antonio Jesús Pallares Martín

Abstract. — This paper deals with the homogenization through Γ-convergence of weakly coer-
cive integral energies, with the oscillating density L(x/ε)∇v:∇v, in three-dimensional elasticity.
The energies are weakly coercive in the sense where the classical functional coercivity satisfied
by the periodic tensor L: ∫

R3
L(y)∇v:∇v dy > Λ(L)

∫
R3

|∇v|2 dy,

for any smooth function v with compact support in R3, with Λ(L) > 0, is replaced by the
relaxed condition Λ(L) > 0. We prove that the homogenized tensor L0 remains strongly elliptic,
or equivalently Λ(L0) > 0, for any tensor L = L(y1) satisfying the pointwise inequality:

L(y)M :M + D:Cof(M) > 0, a.e. y ∈ R3, ∀M ∈ R3×3,

adding a quadratic null-Lagrangian for some matrix D ∈ R3×3, and assuming the periodic
functional coercivity Λper(L) > 0 (using smooth test functions v with periodic gradients).
However, we derive rigorously the loss of strong ellipticity for the homogenized tensor, which
is based on a Γ-convergence result under the sole assumption Λ(L) > 0, and on a rank-two
lamination.
Résumé (Homogénéisation de fonctionnelles intégrales faiblement coercives en élasticité linéaire
tridimensionnelle)

Dans cet article on étudie la Γ-convergence d’énergies intégrales faiblement coercives, de
densité oscillante L(x/ε)∇v:∇v, en élasticité tridimensionnelle. Les énergies sont faiblement
coercives du fait que la coercivité fonctionnelle classique satisfaite par le tenseur périodique L :∫

R3
L(y)∇v:∇v dy > Λ(L)

∫
R3

|∇v|2 dy,

pour toute fonction régulière v à support compact dans R3, avec Λ(L) > 0, est remplacée par
la condition relaxée Λ(L) > 0. On montre que le tenseur homogénéisé L0 reste fortement ellip-
tique ou, de manière équivalente, Λ(L0) > 0, pour tout tenseur L = L(y1) vérifiant l’inégalité
ponctuelle :

L(y)M :M + D:Cof(M) > 0, p.p. y ∈ R3, ∀M ∈ R3×3,

par l’addition d’un lagrangien nul pour une matrice D ∈ R3×3 donnée, et en supposant la
coercivité fonctionnelle périodique Λper(L) > 0 (obtenue avec des fonctions test v de gradient
périodique). Cependant, on obtient une perte d’ellipticité du tenseur homogénéisé, fondée sur
un résultat de Γ-convergence sous la seule hypothèse Λ(L) > 0, et sur une lamination de rang 2.
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1. Introduction

In this paper, for a bounded domain Ω of R3 and for a periodic symmetric tensor-
valued function L = L(y), we study the homogenization of the elasticity energy

(1.1) v ∈ H1
0 (Ω;R3) 7−→

∫
Ω

L(x/ε)∇v·∇v dx as ε −→ 0,

especially when the tensor L is weakly coercive (see below). It is shown in [12, 5] that
for any periodic symmetric tensor-valued function L = L(y) satisfying the functional
coercivity, i.e.,

(1.2) Λ(L) := inf

{∫
R3

L∇v:∇v dy, v ∈ C∞c (R3;R3),

∫
R3

|∇v|2 dy = 1

}
> 0,

and for any f ∈ H−1(Ω;R3), the elasticity system

(1.3)
{
−div

(
L(x/ε)∇uε

)
= f in Ω

uε = 0 on ∂Ω,

H-converges as ε→ 0 in the sense of Murat-Tartar [10] to the elasticity system with
the so-called homogenized tensor L0 defined by

(1.4) L0M :M := inf

{∫
Y3

L(M +∇v):(M +∇v) dy, v ∈ H1
per(Y3;R3)

}
for M ∈ R3×3.

Equivalently, under the functional coercivity (1.2) the energy (1.1) Γ-converges for
the weak topology of H1

0 (Ω;R3) (see Definition 1.2) to the functional

(1.5) v ∈ H1
0 (Ω;R3) 7−→

∫
Ω

L0∇v:∇v dx.

The functional coercivity (1.2), which is a nonlocal condition satisfied by the sym-
metric tensor L, is implied by the very strong ellipticity, i.e., the local condition

(1.6) αvse(L) := ess-inf
y∈R3

(
min{L(y)M :M, M ∈ R3×3

s , |M | = 1}
)
> 0,

and the converse is not true in general. Moreover, condition (1.2) implies strong
ellipticity, i.e.,

(1.7) αse(L) := ess-inf
y∈R3

(
min{L(y)(a⊗ b):(a⊗ b), a, b ∈ R3, |a| = |b| = 1}

)
> 0,

but contrary to the scalar case, the converse is not true in general.
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Here, we focus on the case where the tensor L is weakly coercive, i.e., relaxing the
condition Λ(L) > 0 by Λ(L) > 0. In this case the homogenization of the elasticity
system (1.3) associated with the energy (1.1) is badly posed in general, since one has
no a priori L2-bound on the stress tensor ∇uε (assuming the existence of a solution uε
to the elasticity system (1.3)) due to the loss of coercivity. However, it was shown by
Geymonat et al. [7] that the previous Γ-convergence result still holds when Λ(L) > 0,
under the extra condition of periodic functional coercivity, i.e.,

(1.8) Λper(L) := inf

{∫
Y3

L∇v:∇v dy, v ∈ H1
per(Y3;R3),

∫
Y3

|∇v|2 dy = 1

}
> 0.

Furthermore, using the Murat-Tartar 1∗-convergence for tensors which depend only
on one direction(1) (see [9] in the conductivity case, see [8, §3] and [2, Lem. 3.1] in the
elasticity case), Gutiérrez [8, Prop. 1] derived in two and three dimensions a 1-periodic
rank-one laminate with two isotropic phases whose tensor is

(1.9) L1(y1) = χ(y1)La +
(
1− χ(y1)

)
Lb for y1 ∈ R,

which is strongly elliptic, i.e., αse(L1) > 0, and only weakly coercive, i.e., Λ(L1) > 0,
but such that the homogenized tensor L∗1 induced by 1∗-convergence, which is shown
to agree with the Γ-limit L0

1 of formula (1.4) (see the proof of Theorem 3.9, step 4), is
not strongly elliptic, i.e., αse(L∗1) = 0. However, the 1∗-convergence process used by
Gutiérrez in [8] needs to have a priori L2-bounds for the sequence of deformations,
a property which is not compatible with the weak coercivity assumption. There-
fore, Gutiérrez’ approach is not a H-convergence process applied to the elasticity
system (1.3). Francfort and the first author [2] obtained in dimension two a similar
loss of ellipticity through a homogenization process using the Γ-convergence approach
of [7] from a more generic (with respect to (1.9)) 1-periodic isotropic tensor L = L(y1)

satisfying

(1.10) Λ(L) = 0, Λper(L) > 0 and αse(L0) = 0.

They also showed that Gutiérrez’ lamination is the only one among rank-one laminates
which implies such a loss of strong ellipticity.

The aim of the paper is to extend the result of [2] to dimension three, namely
justifying the loss of ellipticity of [8] by a homogenization process. The natural idea
is to find as in [2] a 1-periodic isotropic tensor L = L(y1) satisfying (1.10). Firstly, in
order to check the relaxed functional coercivity Λ(L) > 0, we apply the translation
method used in [2], which consists in adding to the elastic energy density a suitable
null Lagrangian such that the following pointwise inequality holds for some matrix
D ∈ R3×3:

(1.11) LM :M +D: Cof(M) > 0, ∀M ∈ R3×3.

(1)Recall that the 1∗-convergence enables us to obtain the homogenized tensor L0 from a coercive
local tensor L = L(y1) thanks to a cascade of weak convergences based on the fact that there are no
oscillations with respect to the variables y2, . . . , yd.

J.É.P. — M., 2017, tome 4
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Note that in dimension two the translation method reduces to adding the term
ddet(M) with one coefficient d, rather than a (3 × 3)-matrix D in dimension three.
But surprisingly, and contrary to the two-dimensional case of [2], we prove (see The-
orem 3.3) that for any 1-periodic tensor L = L(y1), condition (1.11) combined with
Λper(L) > 0 actually implies that αse(L0) > 0, making impossible the loss of ellipticity
through homogenization. This specificity was already observed by Gutiérrez [8] in the
particular case of isotropic two-phase rank-one laminates (1.9), where certain regimes
satisfied by the Lamé coefficients of the isotropic phases La,Lb are not compatible
with the desired equality αse(L0) = 0.

To overcome this difficulty Gutiérrez [8] considered a rank-two laminate obtained
by mixing in the direction y2 the homogenized tensor L∗1, in the sense of 1∗-convergence
(see above), of the local tensor L1(y1) defined by (1.9), with a very strongly elliptic
isotropic tensor Lc. In the present context we derive a similar loss of ellipticity by rank-
two lamination, but justifying it through homogenization still using a Γ-convergence
procedure (see Theorem 3.9). However, the proof is rather delicate, since we have
to choose the isotropic materials a, b, c so that the 1-periodic rank-one laminate ten-
sor L2 in the direction y2 obtained after the first rank-one lamination of La,Lb in the
direction y1, namely

(1.12) L2(y2) = χ2(y2)L∗1 +
(
1− χ2(y2)

)
Lc for y2 ∈ R,

satisfies

(1.13) Λ(L2) > 0 and αse(L0
2) = 0,

where L0
2 is the homogenized tensor defined by formula (1.4) with L = L2. Moreover,

the condition Λ(L2) > 0 without Λper(L2) > 0 (which seems very intricate to check)
forces us to extend the Γ-convergence result of [7, Th. 3.1(i)]. However, Braides and
the first author have proved (see Theorem 2.4) that the Γ-convergence result for the
energy (1.1) holds true under the sole condition Λ(L) > 0.

The paper is divided in two sections. In the first section we prove the Γ-convergence
result for (1.1) under the assumption Λ(L) > 0, and without the condition Λper(L)>0.
The second section is devoted to the main results of the paper: In Section 3.1 we prove
the strong ellipticity of the homogenized tensor L0 for any isotropic tensor L = L(y1)

satisfying both the two conditions (1.11) (which implies Λ(L) > 0) and Λper(L) > 0.
In Section 3.2 we show the loss ellipticity by homogenization using a suitable rank-
two laminate tensor L2 of type (1.12), and the Γ-convergence result under the sole
condition Λ(L2) > 0. Finally, the Appendix is devoted to the proof of Theorem 2.2
which provides sufficient conditions on a periodic tensor L for satisfying the periodic
coercivity Λper(L) > 0.

Notation
• The space dimension is denoted by N > 2, but most of the time it will be N = 3.
• RN×Ns denotes the set of the symmetric matrices in RN×N .
• IN denotes the identity matrix of RN×N .
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• For any M ∈ RN×N , MT denotes the transposed of M , and Ms denotes the
symmetrized matrix of M .
• : denotes the Frobenius inner product in RN×N , i.e., M :M ′ := tr(MTM ′) for

M,M ′ ∈ RN×N .
• Ls(RN×N ) denotes the space of the symmetric tensors L on RN×N satisfying

LM = LMs ∈ RN×Ns and LM :M ′ = LM ′:M, ∀M,M ′ ∈ RN×Ns .

In terms of the entries Lijkl of L, this is equivalent to Lijkl = Ljikl = Lklij for any
i, j, k, l ∈ {1, . . . , N}.
• Is denotes the unit tensor of Ls(RN×N ) defined by IsM := Ms for M ∈ RN×N .
• Mij denotes the (i, j) entry of the matrix M ∈ RN×N .
• M̃ ij denotes the (N−1)× (N−1)-matrix resulting from deleting the i-th row and

the j-th column of the matrix M ∈ RN×N for i, j ∈ {1, . . . , N}.
• Cof(M) denotes the cofactors matrix ofM ∈ RN×N , i.e., the matrix with entries

(CofM)ij = (−1)i+j det(M̃ ij) for i, j ∈ {1, . . . , N}.
• adj(M) denotes the adjugate matrix of M ∈ RN×N , i.e., adj(M) = (Cof M)T .
• YN := [0, 1)N denotes the unit cube of RN .

Let L ∈ L∞per

(
YN ; Ls(RN×N )

)
be a YN -periodic symmetric tensor-valued function. In

the whole paper we will use the following ellipticity constants related to the tensor L
(see [7, §3] for further details):
• αse(L) denotes the best ellipticity constant for L, i.e.,

αse(L) := ess-inf
y∈YN

(
min{L(y)(a⊗ b):(a⊗ b), a, b ∈ RN , |a| = |b| = 1}

)
.

• αvse(L) denotes the best constant of very strong ellipticity of L, i.e.,

αvse(L) := ess-inf
y∈YN

(
min{L(y)M :M, M ∈ RN×Ns , |M | = 1}

)
.

• Λ(L) denotes the global functional coercivity constant for L, i.e.,

Λ(L) := inf

{∫
RN

L∇v:∇v dy, v ∈ C∞c (RN ;RN ),

∫
RN

|∇v|2 dy = 1

}
.

• Λper(L) denotes the functional coercivity constant of L with respect to
YN -periodic deformations, i.e.,

Λper(L) := inf

{∫
YN

L∇v:∇v dy, v ∈ H1
per(YN ;RN ),

∫
YN

|∇v|2 dy = 1

}
.

Remark 1.1
• The very strong ellipticity implies the strong ellipticity, i.e., for any tensor L,

αvse(L) > 0 =⇒ αse(L) > 0.

• According to [7, Th. 3.3(i)], if αse(L) > 0, then the following inequalities hold:

(1.14) Λ(L) 6 Λper(L) 6 αse(L).

• Using a Fourier transform we get that for any constant tensor L0,

αse(L0) > 0 ⇐⇒ Λ(L0) > 0.
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In the sequel will always assume the strong ellipticity of the tensor L, i.e.,
αse(L) > 0.

We conclude this section with the following sequential definition of Γ-convergence
(see, e.g. [4, 1]):

Definition 1.2. — LetX be a reflexive and separable Banach space endowed with the
weak topology σ(X,X ′), and let F ε:X → R be a ε-indexed sequence of functionals.
The sequence F ε is said to Γ-converge to the functional F 0:X → R for the weak
topology of X, and we denote F ε Γ-X−−⇀ F 0, if for any u ∈ X,
• ∀uε −−⇀ u, F 0(u) 6 lim inf

ε→0
F ε(uε),

• ∃uε −−⇀ u, F 0(u) = lim
ε→0

F ε(uε).

Such a sequence uε is called a recovery sequence.

Note that the weak topology of X is metrizable on closed balls of X. This will be
used in the proof of Theorem 2.4 below.

Acknowledgments. — The authors wish to thank A.Braides for the helpful Theo-
rem 2.4. They are also grateful to the unknown referees for their careful reading and
relevant remarks (especially about the Γ-convergence procedures) which have clarified
the presentation of the paper. A.J. P.-M. is also grateful to the Institut National des
Sciences Appliquées de Rennes for its hospitality, where this work was carried out
during his stay March 2–June 29, 2015.

2. The Γ-convergence results

It is stated in [12, Ch. 6, §11] that the first homogenization result in linear elasticity
can be found in Duvaut’s work (unavailable reference). It claims that if the periodic
tensor L is very strongly elliptic, i.e., αvse(L) > 0, then the solution uε ∈ H1

0 (Ω;R3)

to the elasticity system (1.3) satisfies

(2.1)


uε −−⇀ u weakly in H1

0 (Ω;R3),

L(x/ε)∇uε −−⇀ L0∇u weakly in L2(Ω;R3×3),

− div(L0∇u) = f,

for some f ∈ H−1(Ω;R3), where L0 is given by

(2.2) L0M :M := inf

{∫
Y3

L(M +∇v):(M +∇v) dy, v ∈ H1
per(Y3;R3)

}
for M ∈ R3×3,

which is attained when Λper(L) > 0. The previous homogenization result actually
holds under the weaker assumption of functional coercivity, i.e., Λ(L) > 0, as shown
in [5].
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Otherwise, from the point of view of the elastic energy consider the functionals

F ε(v) :=

∫
Ω

L(x/ε)∇v:∇v dx,(2.3)

F 0(v) :=

∫
Ω

L0∇v:∇v dx for v ∈ H1(Ω,R3).(2.4)

Then, the following homogenization result [7, Th. 3.4(i)] through the Γ-convergence
of energy (2.3), allows us to relax the very strong ellipticity of L.

Theorem 2.1 (Geymonat et al. [7]). — Under the conditions

Λ(L) > 0 and Λper(L) > 0,

one has
F ε Γ-H1

0 (Ω;R3)
−−−−−−−−−⇀ F 0,

for the weak topology of H1
0 (Ω;R3), where L0 is given by (2.2).

2.1. Generic examples of tensors satisfying Λ(L) > 0 and Λper(L) > 0

Reference [2] provides a class of isotropic strongly elliptic tensors for which Theo-
rem 2.1 applies. However, this work is restricted to dimension two. We are going to
extend the result [2, Th. 2.2] to dimension three.

Let us assume that there exist p ∈ N phases Zi, i = 1, . . . , p satisfying

(2.5)


Zi is open, connected and Lipschitz for any i ∈ {1, . . . , p},
Zi ∩ Zj = ∅ ∀ i 6= j ∈ {1, . . . , p},

Y 3 =
⋃p
i=1 Zi,

such that the tensor L satisfies

(2.6)


L(y)M = λ(y) tr(M)I3 + 2µ(y)M, ∀ y ∈ Y3, ∀M ∈ R3×3

s ,

λ(y) = λi, µ(y) = µi in Zi, ∀ i ∈ {1, . . . , p},
µi > 0, 2µi + λi > 0, ∀ i ∈ {1, . . . , p}.

We further assume the existence of d > 0 such that

(2.7) − min
i=1,...,p

{2µi + 3λi} 6 d 6 4 min
i=1,...,p

{µi}.

Now, we define the following subsets of indexes

(2.8)


I := {i ∈ {1, . . . , p}: d = 4µi},
J := {j ∈ {1, . . . , p}: 2µj + 3λj = −d},
K := {1, . . . , p}r (I ∪ J).

Note that the three previous sets are disjoint. This is true, since we have 4µi >

−(2µi + 3λi) due to 2µi + λi > 0.
In this framework, we are able to prove the following theorem which is an easy

extension of the two-dimensional result of [2, Th. 2.2]. For the reader convenience the
proof is given in the Appendix.
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Theorem 2.2. — Let L be the tensor defined by (2.6) and (2.7). Then we have
Λ(L) > 0. We also have Λper(L) > 0 provided that one of the two following condi-
tions is fulfilled by the sets defined in (2.8):
Case 1. — For each j ∈ J , there exist intervals (a−j , a

+
j ), (b−j , b

+
j ) ⊂ [0, 1] such that

(a−j , a
+
j )× (b−j , b

+
j )× {0, 1} ⊂ ∂Zj , or

(a−j , a
+
j )× {0, 1} × (b−j , b

+
j ) ⊂ ∂Zj , or

{0, 1} × (a−j , a
+
j )× (b−j , b

+
j ) ⊂ ∂Zj .

Case 2. — For each j ∈ J , there exists k ∈ K with H 2(∂Zj ∩ ∂Zk) > 0, where H 2

denotes the 2-dimensional Hausdorff measure.

Remark 2.3. — Recently, Francfort and Gloria have proved in [6, Th. 2.1] that in
dimension two a two-phase periodic isotropic tensor L(y) with Lamé’s coefficients
λ(y), µ(y) composed of inclusions of a very strong elliptic material 1, i.e., with µ1>0,
λ1 + µ1 > 0, imbedded in a strongly (but not very strongly) elliptic connected mate-
rial 2, i.e., with µ2 > 0, λ2 + 2µ2 > 0, such that µ1 = − (λ2 + µ2), satisfies Λ(L) > 0

and Λper(L) > 0.
Using similar arguments as the ones of the proofs of [2, Th. 2.2] and Theorem 2.2,

we can check that the two-dimensional result [6, Th. 2.1] can be extended in dimen-
sion three to a two-phase periodic isotropic tensor composed a very strong elliptic
material 1 (see Remark 3.2 below) imbedded in a strongly (but not very strongly)
elliptic connected material 2, satisfying

µ1 > 0, 3λ1 + 2µ1 > 0, µ2 > 0, λ2 + 2µ2 > 0 and 4µ1 = − (3λ2 + 2µ2).

2.2. Relaxation of condition Λper(L) > 0. — According to Theorem 2.1 the Γ-con-
vergence of the functional (2.3) holds true if both Λ(L) > 0 and Λper(L) > 0. However,
the following theorem due to Braides and the first author shows that in N -dimensional
elasticity for N > 2, the Γ-convergence result still holds under the sole assumption
Λ(L) > 0.

Theorem 2.4 (Braides & Briane). — Let Ω be a bounded open subset of RN , and let L
be a bounded YN -periodic symmetric tensor-valued function in L∞per

(
YN ; Ls(RN×N )

)
such that

(2.9) Λ(L) > 0.

Then, we have
(2.10) F ε Γ-H1

0 (Ω;RN )
−−−−−−−−−⇀ F 0,

for the weak topology of H1
0 (Ω;RN ) in the sense of Definition 1.2, where F 0 is given

by (2.4) with the tensor L0 defined by (2.2).

Proof. — For δ > 0, set Lδ := L + δ Is where Is is the unit symmetric tensor, and
let F ε

δ be the functional defined by (2.3) with Lδ in place of L. We claim that

(2.11) Λ(Lδ) > 0.
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To prove it consider v ∈ C∞c (RN ;RN ) and take R > 0 such that supp v ⊂ B(0, R).
Then, by (2.9) we have∫

RN

Lδ∇v:∇v dy =

∫
B(0,R)

L∇v:∇v dy + δ

∫
B(0,R)

Is∇v:∇v dy > δ
∫
B(0,R)

|e(v)|2 dy,

and since the constant of the Korn inequality is invariant by homothecy, there exists
a constant α > 0 independent of R such that Λ(Lδ) > δ α > 0.

Thanks to (2.11) we can apply Theorem 2.1 with the functional F ε
δ . Hence,

F ε
δ

Γ−−⇀ F 0
δ for the weak topology of H1

0 (Ω;RN ), where

F 0
δ (u) :=

∫
Ω

L0
δ∇u:∇u dx for u ∈ H1

0 (Ω,RN ),

and L0
δ is given by (2.2) with L = Lδ.

On the one hand, since the weak topology of H1
0 (Ω;RN ) is metrizable on the closed

balls ofH1
0 (Ω;RN ), we can apply the compactness of Γ-convergence on these balls. Fix

k ∈ N, and denote dk any metric inducing the H1
0 (Ω;RN )-weak topology on the ball

Bk ⊂ H1
0 (Ω;RN ) centered on 0 and of radius k. Then, there exists a subsequence εj

such that F εj Γ(dk)-converges to some functional F 0,k in Bk. Let u ∈ Bk, and let uεj
be a recovery sequence for F εj which converges to u in (Bk, dk). Since F εj 6 F

εj
δ

which Γ-converges to F 0
δ in the sense of Definition 1.2, we have

F 0,k(u) =
(
Γ(dk)- lim F εj

)
(u) 6 F 0

δ (u)

6 lim inf
εj→0

∫
Ω

Lδ(x/εj)∇uεj :∇uεj dx

6 lim inf
εj→0

∫
Ω

L(x/εj)∇uεj :∇uεj dx+O(δ)

=
(
Γ(dk)- lim F εj

)
(u) +O(δ) = F 0,k(u) +O(δ),

which implies that F 0
δ (u) converges to F 0,k(u) as δ → 0. Hence, the Γ(dk)-limit F 0,k

of F εj is equal to F 0 := limδ→0 F 0
δ in Bk, and is thus independent both on k and on

the subsequence εj . Then, repeating the previous argument, any subsequence of F ε

has a further subsequence which Γ(dk)-converges to F 0 in Bk. Therefore, thanks
to the Urysohn property (see, e.g. [1, Proposition 1.44]) we can conclude that the
whole sequence F ε Γ(dk)-converges to F 0 = limδ→0 F 0

δ in Bk. Finally, since any
sequence converging weakly in H1

0 (Ω;RN ) belongs to some ball Bk as well as its limit,
it follows that the Γ-lim inf and Γ-lim sup properties of Definition 1.2 hold true for
the sequence F ε.

On the other hand, let L0 be given by (2.2). For η > 0 and forM ∈ RN×N , consider
a function ϕη in H1

per(YN ;RN ) such that∫
YN

L(y)(M +∇ϕη):(M +∇ϕη) dy 6 L0M :M + η.
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We then have

L0M :M 6 L0
δM :M

6
∫
YN

Lδ(y)(M +∇ϕη):(M +∇ϕη) dy

6
∫
YN

L(y)(M +∇ϕη):(M +∇ϕη) dy +Oη(δ).

Hence, making δ tend to 0 for a fixed η, we obtain

L0M :M 6 lim inf
δ→0

(L0
δM :M)

6 lim sup
δ→0

(L0
δM :M)

6
∫
YN

L(y)(M +∇ϕη):(M +∇ϕη) dy

6 L0M :M + η.

Due to the arbitrariness of η, we get that L0
δ converges to L0 as δ → 0.

Therefore, by the Lebesgue dominated convergence theorem we conclude that for
any u ∈ H1

0 (Ω;RN ),

F 0(u) = lim
δ→0

F 0
δ (u) = lim

δ→0

∫
Ω

L0
δ∇u:∇u dx =

∫
Ω

L0∇u:∇u dx. �

3. Loss of ellipticity in three-dimensional linear elasticity through the
homogenization of a laminate

In this section we will construct an example of a three-dimensional strong elliptic
material L which is weakly coercive, i.e., Λ(L) > 0, but for which the strong ellip-
ticity is lost through homogenization. Firstly, let us recall the following result due to
Gutiérrez [8].

Proposition 3.1 (Gutiérrez [8]). — For any strongly, but not semi-very strongly
elliptic isotropic material, referred to as material a, i.e., whose tensor La satisfies
αvse(La) < 0, there are very strongly elliptic isotropic materials such that if we
laminate them with material a, in appropriately chosen proportions and directions,
we generate an effective elasticity tensor that is not strongly elliptic.

Remark 3.2 (Isotropic tensors). — The elasticity tensor L ∈ L∞
(
Y3; Ls(R3×3)

)
of an

isotropic material is given by

L(y)M = λ(y) tr(M)I3 + 2µ(y)M, for y ∈ Y3 and M ∈ R3×3
s ,

where λ and µ are the Lamé coefficients of L. As a consequence, we have

αse(L) = ess-inf
y∈Y3

(
min{µ(y), 2µ(y) + λ(y)}

)
,

αvse(L) = ess-inf
y∈Y3

(
min{µ(y), 2µ(y) + 3λ(y)}

)
.
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Here is a summary of the proof of Proposition 3.1. Consider two isotropic, homo-
geneous tensors La and Lb such that La is strongly elliptic, i.e.,

λa + 2µa > 0, µa > 0,

but not semi-very strongly elliptic, i.e.,

3λa + 2µa < 0.

and such that Lb is very strongly elliptic, i.e.,

3λb + 2µb > 0, µb > 0.

Considering the rank-one laminate in the direction y1 mixing La with volume fraction
θ1 ∈ (0, 1) and Lb with volume fraction (1−θ1), Gutiérrez [8] proved that the effective
tensor L∗1 in the sense of Murat-Tartar 1∗-convergence (see, e.g. [8, §3]) satisfies the
following properties:
• If 0 6 µa + λa, then

αse(L∗1) > 0.

• If −µb 6 µa + λa < 0, then

αse(L∗1)


= 0 if µb = −µa − λa,
> 0 if − µa − λa < µb 6 − 1

4 (2µa + 3λa),

> 0 if − 1
4 (2µa + 3λa) < µb.

• The case µa + λa < −µb is disposed of, since L∗1 does not even satisfy the
Legendre-Hadamard condition.

In the case where αse(L∗1) > 0, Gutiérrez (see [8, §5.2]) performed a second lami-
nation in the direction y2 mixing the anisotropic material generated by the first lam-
ination with volume fraction θ2 ∈ (0, 1), and a suitable very strongly elliptic isotropic
material (Lc, µc, λc) with volume fraction (1− θ2). In this way he derived a rank-two
laminate of effective tensor L∗2 which is not strongly elliptic.

In this section we will try to find a general class of periodic laminates for which
the strong ellipticity is lost through homogenization. To this end we will extend to
dimension three the rank-one lamination approach of [2] performed in dimension
two. However, the outcome is surprisingly different from that of the two-dimensional
case of [2]. Indeed, we will prove in the first subsection that it is not possible to
lose strong ellipticity by a rank-one lamination through homogenization following the
two-dimensional approach of [2]. This is the reason why we will perform a second
lamination in the second part of the section.

3.1. Rank-one lamination. — In this subsection we are going to focus on the rank-
one lamination. As noted before, in the two-dimensional case of [2] it was proved
a necessary and sufficient condition for a general rank-one laminate to lose strong
ellipticity. Mimicking the same approach in dimension three we obtain the following
quite different result.
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Theorem 3.3. — Let L ∈ L∞per

(
Y1; Ls(R3×3)

)
be a Y1-periodic isotropic tensor-valued

function which is strongly elliptic, i.e., αse(L) > 0. Assume that Λper(L) > 0 and that
there exists a constant matrix D ∈ R3×3 such that

(3.1) L(y1)M :M +D: Cof(M) > 0, a.e. y1 ∈ Y1, ∀M ∈ R3×3.

Then, the homogenized tensor L0 defined by (2.2) is strongly elliptic, i.e., αse(L0) > 0.

Remark 3.4. — In dimension two for any periodic function ϕ ∈ H1
per(Y2;R2), the only

null Lagrangian (up to a multiplicative constant) is the determinant of ∇ϕ. Although
the two-dimensional case seems a priori more restrictive than the three-dimensional
case from an algebraic point of view, the two-dimensional Theorem 3.1 of [2] shows
that for a suitable isotropic tensor L = L(y1), satisfying for some constant d ∈ R, the
condition

(3.2) L(y1)M :M + ddet(M) > 0, a.e. in Y1, ∀M ∈ R2×2,

it is possible to lose strong ellipticity through homogenization. On the contrary, the
three-dimensional Theorem 3.3 shows that it is not possible to lose strong ellipticity
under condition (3.1) which is the natural three-dimensional extension of (3.2).

Remark 3.5. — Observe that condition (3.1) implies that L is weakly coercive, i.e.,
Λ(L) > 0, but the converse is not true in general. Therefore, it might be possible
to find a weakly coercive, strongly elliptic isotropic tensor L = L(y1) for which the
strong ellipticity is lost. However, we have not succeeded in deriving such a tensor.

Remark 3.6. — In the proof of Proposition 3.1 Gutiérrez implicitly proved the result
of Theorem 3.3 when the matrix D has the form D = dI3 and L is of the type

L(y1) = χ(y1)La +
(
1− χ(y1)

)
Lb.

Moreover, it is worth mentioning that the cases for which Guitiérrez obtained the loss
of ellipticity with a rank-one lamination do not contradict Theorem 3.3, since in those
cases condition (3.1) does not hold.

The rest of this subsection is devoted to the proof of Theorem 3.3. For any Y1-
periodic tensor-valued function L ∈ L∞per

(
Y1; Ls(R3×3)

)
which is strongly elliptic,

i.e., αse(L) > 0, define for a.e. y1 ∈ Y1, the y1-dependent inner product

(ξ, η) ∈ R3 × R3 7−→ L(y1)(ξ ⊗ e1):(η ⊗ e1).

It is indeed an inner product because αse(L) > 0. The matrix-valued function

(3.3) L(y1) =

 l1(y1) l12(y1) l13(y1)

l12(y1) l2(y1) l23(y1)

l13(y1) l23(y1) l3(y1)


:=

L(y1)(e1 ⊗ e1):(e1 ⊗ e1) L(y1)(e1 ⊗ e1):(e2 ⊗ e1) L(y1)(e1 ⊗ e1):(e3 ⊗ e1)

L(y1)(e1 ⊗ e1):(e2 ⊗ e1) L(y1)(e2 ⊗ e1):(e2 ⊗ e1) L(y1)(e2 ⊗ e1):(e3 ⊗ e1)

L(y1)(e1 ⊗ e1):(e3 ⊗ e1) L(y1)(e2 ⊗ e1):(e3 ⊗ e1) L(y1)(e3 ⊗ e1):(e3 ⊗ e1)


is therefore symmetric positive definite.
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Similarly to [2, Lem. 3.3] the next result provides an estimate which is a direct
consequence of condition (3.1) with a matrix of the type D = dI3. Observe that for
the moment we are not assuming that the tensor L is isotropic.

Lemma 3.7. — Let L ∈ L∞per(Y1; Ls(R3×3)) be a Y1-periodic bounded tensor-valued
function with Λper(L) > 0. Assume the existence of a constant d ∈ R such that L
satisfies condition (3.1) with D = dI3. Then, we have

(3.4) L(y1)M :M > Q(M), a.e. in Y1, ∀M ∈ R3×3, M rank-one,

where

Q(M) :=
det(L̃11)

det(L)

(
LM :(e1 ⊗ e1) +

d

2
M33 +

d

2
M22

)2

+
det(L̃22)

det(L)

(
LM :(e2 ⊗ e1)− d

2
M12

)2

+
det(L̃33)

det(L)

(
LM :(e3 ⊗ e1)− d

2
M13

)2

− 2 det(L̃12)

det(L)

(
LM :(e1 ⊗ e1) +

d

2
M33 +

d

2
M22

)(
LM :(e2 ⊗ e1)− d

2
M12

)
+

2 det(L̃13)

det(L)

(
LM :(e1 ⊗ e1) +

d

2
M33 +

d

2
M22

)(
LM :(e3 ⊗ e1)− d

2
M13

)
− 2 det(L̃23)

det(L)

(
LM :(e2 ⊗ e1)− d

2
M12

)
LM :(e3 ⊗ e1)− d

2
M13

)
.

Furthermore, if L0 is the homogenized tensor of L, then αse(L0) = 0 if and only if
there exists a rank-one matrix M such that

(3.5) L(y1)M :M = Q(M), a.e. in Y1,

together with

(3.6.a)
∫
Y1

det(L̃13)

det(L)
(t)
(
L(t)M :(e1 ⊗ e1) +

d

2
M22 +

d

2
M33

)
dt

=

∫
Y1

[det(L̃23)

det(L)
(t)
(
L(t)M :(e2 ⊗ e1)− d

2
M12

)
− det(L̃33)

det(L)
(t)
(
L(t)M :(e3 ⊗ e1)− d

2
M13

)]
dt,

(3.6.b)
∫
Y1

det(L̃12)

det(L)
(t)
(
L(t)M :(e1 ⊗ e1) +

d

2
M22 +

d

2
M33

)
dt

=

∫
Y1

[det(L̃22)

det(L)
(t)
(
L(t)M :(e2 ⊗ e1)− d

2
M12

)
− det(L̃23)

det(L)
(t)
(
L(t)M :(e3 ⊗ e1)− d

2
M13

)]
dt,

(3.6.c)
∫
Y1

det(L̃11)

det(L)
(t)
(
L(t)M :(e1 ⊗ e1) +

d

2
M22 +

d

2
M33

)
dt

=

∫
Y1

[det(L̃12)

det(L)
(t)
(
L(t)M :(e2 ⊗ e1)− d

2
M12

)
− det(L̃13)

det(L)
(t)
(
L(t)M :(e3 ⊗ e1)− d

2
M13

)]
dt.
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Finally, we state a corollary of the previous result in the particular case of isotropic
tensors.

Lemma 3.8. — Let L ∈ L∞per(Y1; Ls(R3×3)) be a Y1-periodic bounded isotropic tensor-
valued function with Λper(L) > 0. Assume that there exists a constant d ∈ R such that
the Lamé coefficients of L(y1) satisfy

(3.7) max{0,−2µ(y1)− 3λ(y1)} 6 d 6 4µ(y1) for a.e. y1 in Y1.

Then, the homogenized tensor L0 defined by (2.2) is strongly elliptic.

Thanks to the previous lemmas, we are now able to demonstrate the main result
of this section.

Proof of Theorem 3.3. — Firstly, assume that (3.1) is satisfied with the matrix D be-
ing of the type D = dI3 for some d ∈ R. This is equivalent to condition (3.7), as it
was proved by Gutiérrez in [8, §4.2]. By virtue of Lemma 3.8, L0 is strongly elliptic,
which concludes the proof in this case.

In the sequel we will show that if there exists a constant matrix D ∈ R3×3 such that
condition (3.1) is fulfilled, then there exists a constant d ∈ R such that (3.1) holds
with D = dI3. This combined with Lemma 3.8 implies that L0 is strongly elliptic.

Assume that (3.1) holds for some matrix D ∈ R3×3, namely for any M ∈ R3×3, we
have a.e. in Y1,

0 6 λ(M11 +M22 +M33)2

+ 2µ
(
M2

11 +M2
22 +M2

33

+ 2
[(M12 +M21

2

)2

+
(M13 +M31

2

)2

+
(M23 +M32

2

)2])
+D11(M22M33 −M23M32)

−D12(M21M33 −M23M31) +D13(M21M32 −M22M31)

−D21(M12M33 −M13M32)

+D22(M11M33 −M13M31)−D23(M11M32 −M12M31)

+D31(M12M23 −M13M22)

−D32(M11M23 −M13M21) +D33(M11M22 −M12M21).

The previous condition is equivalent to the matrix (3.10) below being positive semi-
definite a.e. in Y1. In particular, this implies that the following matrices are positive
semi-definite a.e. in Y1:

(3.8)
(

µ µ−Dii/2

µ−Dii/2 µ

)
for i = 1, 2, 3,

(3.9) B :=


λ+ 2µ λ+D33/2 λ+D22/2

λ+D33/2 λ+ 2µ λ+D11/2

λ+D22/2 λ+D11/2 λ+ 2µ

 .
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λ+2µ λ+
D33

2
λ+

D22

2
0 0 0 0 −D32

2
−D23

2

λ+
D33

2
λ+2µ λ+

D11

2
0 0 −D31

2

D13

2
0 0

λ+
D22

2
λ+

D11

2
λ+2µ −D21

2
−D12

2
0 0 0 0

0 0 −D21

2
µ µ−D33

2
0

D23

2

D31

2
0

0 0 −D12

2
µ−D33

2
µ

D32

2
0 0

D13

2

0 −D31

2
0 0

D32

2
µ µ−D22

2
0

D21

2

0 −D13

2
0

D23

2
0 µ−D22

2
µ

D12

2
0

−D32

2
0 0

D31

2
0 0

D12

2
µ µ−D11

2

−D23

2
0 0 0

D13

2

D21

2
0 µ−D11

2
µ



Matrix (3.10).

Now, we will prove that there exists i ∈ {1, 2, 3} such that

(3.11) − ess-inf
y1∈Y1

{2µ(y1) + 3λ(y1)} 6 Dii 6 4 ess-inf
y1∈Y1

{µ(y1)}.

Note that we can assume

(3.12) ess-inf
y1∈Y1

{2µ(y1) + 3λ(y1)} < 0.

Otherwise, since the matrix (3.8) is positive semi-definite, or equivalently

(3.13) 0 6 Dii 6 4 ess-inf
y1∈Y1

{µ(y1)} for i = 1, 2, 3,

condition (3.11) holds immediately.
We assume by contradiction that (3.11) is violated for any i = 1, 2, 3. Since the

matrix B defined by (3.9) is positive semi-definite, we get for any i = 1, 2, 3,∣∣∣∣∣ λ+ 2µ λ+Dii/2

λ+Dii/2 λ+ 2µ

∣∣∣∣∣ > 0 a.e. in Y1,

which is equivalent to

− 4 ess-inf
y1∈Y1

{µ(y1) + λ(y1)} 6 Dii 6 4 ess-inf
y1∈Y1

{µ(y1)} for i = 1, 2, 3.

Since by assumption (3.11) is not satisfied for any i = 1, 2, 3 and (3.13) holds, then
the previous condition yields

(3.14) −4 ess-inf
y1∈Y1

{µ(y1)+λ(y1)} 6 Dii < − ess-inf
y1∈Y1

{2µ(y1)+3λ(y1)} for i = 1, 2, 3.
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Set d := maxi=1,2,3{Dii}. By (3.14) there exists ε > 0 such that

(3.15) d+ ε < − ess-inf
y1∈Y1

{2µ(y1) + 3λ(y1)}.

Define the set Pε ⊂ Y1 by

Pε :=
{
x1 ∈ Y1:2µ(x1) + 3λ(x1) < ess-inf

y1∈Y1

{2µ(y1) + 3λ(y1)}+ ε
}
.

It is clear that |Pε| > 0, and from (3.15) and the definition of Pε we obtain

d+ ε < − ess-inf
y1∈Y1

{2µ(y1) + 3λ(y1)} < −
(
2µ(x1) + 3λ(x1)

)
+ ε a.e. x1 ∈ Pε,

which leads to

(3.16) λ(x1) +
d

2
< −1

2

(
λ(x1) + 2µ(x1)

)
< 0 a.e. x1 ∈ Pε.

Since the matrix B from (3.9) is positive semi-definite, its determinant is non-negative
a.e. in Y1. In particular we have

0 6 det
(
B(x1)

)
=
(
λ(x1) + 2µ(x1)

)3
+ 2
(
λ(x1) +

D11

2

)(
λ(x1) +

D22

2

)(
λ(x1) +

D33

2

)
−
(
λ(x1) + 2µ(x1)

)[(
λ(x1) +

D11

2

)2

+
(
λ(x1) +

D22

2

)2

+
(
λ(x1) +

D33

2

)2]
,

(3.17)

a.e. x1 ∈ Pε. Then, it follows that

det
(
B(x1)

)
6
(
λ(x1) + 2µ(x1)

)3
+ 2
(
λ(x1) +

d

2

)3

− 3
(
λ(x1) + 2µ(x1)

)(
λ(x1) +

d

2

)2

a.e. x1 ∈ Pε.
(3.18)

To derive a contradiction let us show that the right-hand side of inequality (3.18) is
negative. By (3.16) we get

4
(
λ(x1) +

d

2

)2

>
(
λ(x1) + 2µ(x1)

)2 a.e. x1 ∈ Pε,

which, multiplying by λ(x1) + 2µ(x1) > 0, leads to(
λ(x1) + 2µ(x1)

)3 − 4
(
λ(x1) + 2µ(x1)

)(
λ(x1) +

d

2

)2

< 0 a.e. x1 ∈ Pε.

Again using (3.16) we deduce that

2
(
λ(x1) +

d

2

)3

< −
(
λ(x1) + 2µ(x1)

)(
λ(x1) +

d

2

)2

a.e. x1 ∈ Pε.

Adding the two last inequalities we obtain(
λ(x1)+2µ(x1)

)3
+2
(
λ(x1)+

d

2

)3

−3
(
λ(x1)+2µ(x1)

)(
λ(x1)+

d

2

)2

< 0 a.e. x1 ∈ Pε,

which by (3.18) implies that det(B) < 0 in Pε, a contradiction with (3.17).
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Therefore, condition (3.11) is satisfied byDii > 0 (due to (3.13)) for some i = 1, 2, 3.
Hence, condition (3.7) holds with d = Dii, or equivalently (3.1) is satisfied by the
matrix DiiI3, which concludes the proof. �

Now, let us prove the auxiliary results of the section.

Proof of Lemma 3.7. — LetM ∈R3×3 be a rank-one matrix. Then, we have det(M)=0,
and adjii(M) = 0 for i = 1, 2, 3. Therefore, we get

L0M :M = min

{∫
Y3

L(M +∇ϕ):(M +∇ϕ) dy:ϕ ∈ H1
per(Y3;R3)

}
= min

{∫
Y3

(
L(M +∇ϕ)(M +∇ϕ)

+ dI3: Cof(M +∇ϕ):ϕ ∈ H1
per(Y3;R3)

)
dy

}
> 0.

(3.19)

Take ϕ = ϕ(y1) = (ϕ1, ϕ2, ϕ3) ∈ C1
per(Y1;R3). Then, the matrix

∇ϕ = ϕ′ ⊗ e1 = ϕ′1(e1 ⊗ e1) + ϕ′2(e2 ⊗ e1) + ϕ′3(e3 ⊗ e1),

is either a rank-one or the null matrix. Also, note that

adjij(M) = (−1)i+j det(M̃ ji).

Considering the previous expressions, from (3.1) it follows that

0 6 L(M +∇ϕ):(M +∇ϕ) + d
∑3
i=1 adjii(M +∇ϕ)

= LM :M + 2LM :(e1 ⊗ e1)ϕ′1 + 2LM :(e2 ⊗ e1)ϕ′2

+ 2LM :(e3 ⊗ e1)ϕ′3 + l1(ϕ′1)2 + 2l12ϕ
′
1ϕ
′
2

+ 2l13ϕ
′
1ϕ
′
3 + l2(ϕ′2)2 + 2l23ϕ

′
2ϕ
′
3 + l2(ϕ′3)2

+ d(M33ϕ
′
1 −M13ϕ

′
3 +M22ϕ

′
1 −M12ϕ

′
2)

= LM :M + l1(ϕ′1)2 + l2(ϕ′2)2 + l3(ϕ′3)

+ 2l12ϕ
′
1ϕ
′
2 + 2l13ϕ

′
1ϕ
′
3 + 2l23ϕ

′
2ϕ
′
3

+
[
2LM :(e1 ⊗ e1) + d(M33 + dM22)

]
ϕ′1

+
[
2LM :(e2 ⊗ e1)− dM12

]
ϕ′2

+
[
2LM :(e3 ⊗ e1)− dM13

]
ϕ′3.

For the previous equalities we have used that

adjii(A+B) = adjii(A) + adjii(B) + Cof(Ãii):B̃ii.
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The purpose is to rewrite the last expression as the sum of squares. With that in
mind, one obtains

0 6 L(M +∇ϕ):(M +∇ϕ) + dI3: Cof(M +∇ϕ)

= LM :M −Q(M)

+ l1

[
ϕ′1 +

l12

l1
ϕ′2 +

l13

l1
ϕ′3 +

1

l1

(
LM :(e1 ⊗ e1) +

d

2
M22 +

d

2
M33

)]2
+

det(L̃33)

l1

[
ϕ′2 +

det(L̃23)

det(L̃33)
ϕ′3

− l12

det(L̃33)

(
LM :(e1 ⊗ e1) +

d

2
M22 +

d

2
M33

)
+

l1

det(L̃33)

(
LM :(e2 ⊗ e1)− d

2
M12

)]2
+

det(L)

det(L̃33)

[
ϕ′3 +

det(L̃13)

det(L)

(
LM :(e1 ⊗ e1) +

d

2
M22 +

d

2
M33

)
− det(L̃23)

det(L)

(
LM :(e2 ⊗ e1)− d

2
M12

)
+

det(L̃33)

det(L)

(
LM :(e3 ⊗ e1)− d

2
M13

)]2
.

(3.20)

Since ϕ′1, ϕ′2 and ϕ′3 can be chosen arbitrarily, the three square brackets in the previous
equality can be equated to 0 at any Lebesgue point y1 ∈ Y1 of L, and thus (3.4)
holds. Using a density argument the previous equality also holds a.e. in Y1, for any
ϕ ∈ H1

per(Y1;R3).
Now, we are going to prove the second part of Lemma 3.7. Assume L0 is not

strongly elliptic. Then, there exists a rank-one matrix M such that L0M :M = 0.
Taking into account expressions (3.19), the minimizer vM associated with L0M :M

(see [2, Lem. 3.2]) satisfies vM = vM (y1) and

0 = L0M :M =

∫
Y1

L(t)(M + v′M (t)⊗ e1):(M + v′M (t)⊗ e1)dt

=

∫
Y1

[
L(t)(M +∇vM (t)):(M +∇vM (t)) + dI3: Cof(M +∇vM )

]
dt.

The first inequality in (3.20) implies that the integrand of the previous expression
must be pointwisely 0, and thus the inequality in (3.20) for ϕ = vM is actually an
equality. From this we deduce

LM :M = Q(M),
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and

(3.21)



0 = (v′M )1 +
l12

l1
(v′M )2 +

l13

l1
(v′M )3

+
1

l1

(
LM :(e1 ⊗ e1) +

d

2
M22 +

d

2
M33

)
,

0 = (v′M )2 +
det(L̃23)

det(L̃33)
(v′M )3

− l12

det(L̃33)

(
LM :(e1 ⊗ e1) +

d

2
M22 +

d

2
M33

)
+

l1

det(L̃33)

(
LM :(e2 ⊗ e1)− d

2
M12

)
,

0 = (v′M )3 +
det(L̃13)

det(L)

(
LM :(e1 ⊗ e1) +

d

2
M22 +

d

2
M33

)
− det(L̃23)

det(L)

(
LM :(e2 ⊗ e1)− d

2
M12

)
+

det(L̃33)

det(L)

(
LM :(e3 ⊗ e1)− d

2
M13

)
.

Since vM is Y1-periodic, we have∫
Y1

(v′M )i dy1 = 0 i = 1, 2, 3.

Integrating the third equality in (3.21) we obtain (3.6.a). Replacing (v′M )3 in the sec-
ond equality of (3.21), we end up getting (3.6.b). Finally, replacing (v′M )2 and (v′M )3

in the first equality of (3.21) it yields (3.6.c).
Conversely, let us assume that equalities (3.5) and (3.6.a)–(3.6.c) hold. Considering

(3.6.a), taking into account that the all the integrands belong to L∞(Y1), there exists
a function ϕ3 ∈W 1,∞

per (Y1) such that, a.e. in Y1, it holds

0 = ϕ′3 +
det(L̃13)

det(L)

(
LM :(e1 ⊗ e1) +

d

2
M22 +

d

2
M33

)
− det(L̃23)

det(L)

(
LM :(e2 ⊗ e1)− d

2
M12

)
+

det(L̃33)

det(L)

(
LM :(e3 ⊗ e1)− d

2
M13

)
.

Repeating the argument with (3.6.b) and (3.6.c), we get the existence of functions ϕ2

and ϕ1 in W 1,∞
per (Y1) respectively, such that

ϕ′2 +
det(L̃23)

det(L̃33)
ϕ′3 −

l12

det(L̃33)

(
LM :(e1 ⊗ e1) +

d

2
M22 +

d

2
M33

)
+

l1

det(L̃33)

(
LM :(e2 ⊗ e1)− d

2
M12

)
= 0,

ϕ′1 +
l12

l1
ϕ′2 +

l13

l1
ϕ′3 +

1

l1

(
LM :(e1 ⊗ e1) +

d

2
M22 +

d

2
M33

)
= 0.
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These three equalities together with (3.5) imply the equality in (3.20), and thus by
(3.19) it follows that

0 =

∫
Y1

(
L(M +∇ϕ):(M +∇ϕ) + dI3: Cof(M +∇ϕ)

)
dy1 > L0M :M > 0,

which shows that L0 is not strongly elliptic.
Finally, due to the equality L0M :M = L0MT :MT , conditions (3.5) and (3.6) are

equivalent to the similar equalities replacing M by MT . �

Proof of Lemma 3.8. — Since L is isotropic, condition (3.7) is equivalent to the con-
dition (3.1) with D = dI3. As a consequence, (3.7) implies Λ(L) > 0. By [7, Cor. 3.5],
we have αse(L0) > Λ(L). Therefore, we get that αse(L0) > 0.

Assume that L0 is not strongly elliptic, i.e., αse(L0) = 0. Then, there exists a
rank-one matrix M := ξ ⊗ η in R3×3, with ξ, η ∈ R3 r {0}, such that L0M :M = 0.

Since L is isotropic, the matrix L defined in (3.3) is

L =

λ+ 2µ 0 0

0 µ 0

0 0 µ

 .

Moreover, the following equalities hold

Mij = ξiηj i, j ∈ {1, 2, 3},
LM :(e1 ⊗ e1) = (λ+ 2µ)ξiη1 + λ(ξ2η2 + ξ3η3),

LM :(e2 ⊗ e1) = µ(ξ1η2 + ξ2η1),

LM :(e3 ⊗ e1) = µ(ξ1η· + ξ3η1),

LM :M = (λ+ µ)(ξ:η)2 + µ|ξ|2|η|2.

Because L0M :M = 0, from equalities (3.5) and (3.6) in Lemma 3.7 we obtain a.e.
in Y1

(3.22)

(λ+ µ)(ξ:η)2 + µ|ξ|2|η|2

=
1

λ+ 2µ

[
(λ+ 2µ)ξ1µ1 + λ(ξ2η2 + ξ3η3) +

d

2
(ξ2η2 + ξ3η3)

]2
+

1

µ

[
µ(ξ1η2 + ξ2η1)− d

2
ξ1η2

]2
+

1

µ

[
µ(ξ1η3 + ξ3η1)− d

2
ξ1η3

]2
,

together with

0 = ξ1η3 + ξ3η1 −
ξ1η3

2

∫
Y1

d

µ
(t) dt,(3.23)

0 = ξ1η2 + ξ2η1 −
ξ1η2

2

∫
Y1

d

µ
(t) dt,(3.24)

0 = ξ1η1 + (ξ2η2 + ξ3η3)

∫
Y1

λ+ d/2

λ+ 2µ
(t) dt.(3.25)
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After some calculations, from (3.22) we get

(3.26) (λ+ 2µ)2 − (λ+ d/2)2

λ+ 2µ
(ξ2η2 + ξ3η3)2 + µ(ξ2η3 − ξ3η2)2

+
d(µ− d/4)

µ
ξ2
1(η2

2 + η2
3) = 0 a.e. in Y1.

Observe that, since L is isotropic and (strictly) strongly elliptic in Y1, we have

µ > 0, 2µ+ λ > 0 a.e. in Y1,

which implies that
(λ+ 2µ)2 −

(
λ+

d

2

)2

> 0 a.e. in Y1.

Hence, taking into account assumption (3.7), equality (3.26) implies the following
three conditions:[

(λ+ 2µ)2 −
(
λ+

d

2

)2]
(ξ2η2 + ξ3η3)2 = 0 a.e. in Y1,(3.27)

ξ2η3 = ξ3η2,(3.28)

d
(
µ− d

4

)
ξ2
1(η2

2 + η2
3) = 0 a.e. in Y1.(3.29)

We will now prove by contradiction that we cannot have d = 4µ a.e. in Y1. Other-
wise, equalities (3.23), (3.24) and (3.25) can be written as

(3.30)


0 = ξ1η3 − ξ3η1,

0 = ξ1η2 − ξ2η1,

0 = ξ1η1 + ξ2η2 + ξ3η3.

Under these conditions, if η1 6= 0, then the first and second equalities of (3.30) lead to

ξ3 = η3
ξ1
η1
, ξ2 = η2

ξ1
η1
.

Replacing ξ2 and ξ3 in the third equality in (3.30), we obtain

ξ1(η2
1 + η2

2 + η2
3) = 0.

Since η 6= 0, we get ξ1 = 0. This implies that ξ2 = ξ3 = 0, a contradiction with ξ 6= 0.
Therefore, we necessarily have η1 = 0. Moreover, using the two first equalities of
(3.30) and the fact that η 6= 0, we obtain ξ1 = 0. As a consequence, (3.30) reduces to

(3.31) ξ2η2 + ξ3η3 = 0.

If η2 6= 0, then using (3.28) we get

ξ3 = ξ2
η3

η2
,

and replacing ξ3 in the previous equality, it yields

ξ2(η2
2 + η2

3) = 0.

Again, since η 6= 0, we have ξ2 = 0. Using (3.28) and the assumption η2 6= 0, it
follows that ξ3 = 0, again a contradiction with ξ, η 6= 0. Thus, we necessarily have
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η2 = 0. Taking into account that η1 = η2 = 0 we have η3 6= 0, hence from (3.31)
we deduce that ξ3 = 0. Now (3.28) is written as ξ2η3 = 0. However, recall that
ξ1 = ξ3 = η1 = η2 = 0. This implies that either ξ = 0 or η = 0, a contradiction.

We have just shown that the set {d < 4µ} has a positive Lebesgue measure.
Similarly, we can check that d > 0. Using (3.27) and (3.29) together with 0 < d 6 4µ,
we deduce that

ξ2η2 + ξ3η3 = ξ2
1(η2

2 + η2
3) = 0,

which combined with (3.25) also gives ξ1η1 = 0. As above, using the three previous
equalities, (3.23), (3.24) and (3.28), we get a contradiction with the fact that ξ, η 6= 0.
Therefore, we have proved that L0 is strongly elliptic if (3.7) holds for some d. �

3.2. Rank-two lamination. — In the proof of Proposition 3.1 for dimension three
[8, §5.2], Gutiérrez performed a rank-one laminate mixing a strongly elliptic but
not semi-very strongly isotropic material La, and a very strongly elliptic isotropic
material Lb. However, as it was noted at the beginning of the section, there are some
cases for which the strong ellipticity of the homogenized tensor is not lost after this
first lamination. In fact, our Theorem 3.3 shows that for a general rank-one laminate,
it is not possible to lose the strong ellipticity through homogenization if there exists
a matrix D ∈ R3×3 satisfying condition (3.1). As done in [8], we need to perform
a second lamination with a third material Lc which can be very strongly elliptic, in
order to lose the strong ellipticity in those cases.

Our purpose is to justify Gutiérrez’ approach using formally 1∗-convergence (see
[8, §3]), by a homogenization procedure using the Γ-convergence result of Theo-
rem 2.4.

Theorem 3.9. — For any strongly elliptic but not semi-very strongly elliptic isotropic
tensor La whose Lamé coefficients satisfy

(3.32) 4µa + 3λa > 0,

there exist two very strongly elliptic isotropic tensors Lb,Lc and volume fractions
θ1, θ2 ∈ (0, 1) such that the tensor L2 obtained by laminating in the direction y2 the
effective tensor L∗1 – firstly obtained by laminating in the direction y1 the tensors
La, Lb with proportions θ1, 1− θ1 – and the tensor Lc with proportions θ2 and 1− θ2

respectively, namely

(3.33) L2(y2) := χ2(y2)L∗1 +
(
1− χ2(y2)

)
Lc for y2 ∈ Y1,

where χ2 is a 1-periodic characteristic function with
∫ 1

0
χ2(t) dt = θ2, satisfies

(3.34) Λ(L2) = 0,

and
(3.35)

∫
Ω

L2(x2/ε)∇v:∇v dx
Γ-H1

0 (Ω)3

−−−−−−−⇀
∫

Ω

L0
2∇v:∇v dx,

where the homogenized tensor L0
2 is not strongly elliptic, i.e.,

(3.36) αse(L0
2) = 0.
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Remark 3.10. — Theorem 3.9 shows that for certain strongly elliptic but not very
strongly elliptic isotropic tensors, namely those whose Lamé parameters satisfy (3.32),
it is possible to find two very strongly elliptic isotropic tensors for which the homoge-
nization process through Γ-convergence using a rank-two lamination leads to the loss
of ellipticity of the effective tensor.

Proof of Theorem 3.9. — We divide the proof into four steps.

Step 1. Choice of La, Lb, θ1, θ2. — Let La be a strongly elliptic but not semi-very
strongly elliptic isotropic tensor satisfying (3.32). Our aim is to find two very strongly
isotropic tensors Lb,Lc and two volume fractions θ1, θ2 such that the strong ellipticity
is lost through homogenization using a rank-two lamination.

Let χ1, χ2:R→ {0, 1} be two 1-periodic characteristic functions such that∫
Y1

χ1(y1) dy1 = θ1 and
∫
Y1

χ2(y2) dy2 = θ2,

where θ1, θ2 ∈ (0, 1) will be chosen later.
The 1∗-convergence procedure of [8, §5.2] applied to the tensor

(3.37) L1(y1) := χ1(y1)La +
(
1− χ1(y1)

)
Lb for y1 ∈ Y1,

yields a non-isotropic effective tensor L∗1. The computations of [8, §5.2] lead to an
explicit expression of the tensor L∗1 whose non-zero entries are

(3.38)

(L∗1)1111 =
1

A
,

(L∗1)1122 = (L∗1)2211 = (L∗1)1133 = (L∗1)3311 =
B

A
,

(L∗1)1212 = (L∗1)1221 = (L∗1)2112 = (L∗1)2121 =
1

E
,

(L∗1)1313 = (L∗1)1331 = (L∗1)3113 = (L∗1)3131 =
1

E
,

(L∗1)2222 =
B2

A
+ 2(C +D),

(L∗1)2233 = (L∗1)3322 =
B2

A
+ 2D,

(L∗1)2323 = (L∗1)2332 = (L∗1)3223 = (L∗1)3232 = C,

(L∗1)3333 =
B2

A
+ 2(C +D),

where

(3.39)

A =
θ1

2µa + λa
+

1− θ1

2µb + λb
, B =

θ1λa
2µa + λa

+
(1− θ1)λb
2µb + λb

,

C = θ1µa + (1− θ1)µb, D =
θ1µaλa

2µa + λa
+

(1− θ1)µbλb
2µb + λb

,

E =
θ1

µa
+

1− θ1

µb
.
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Now, let us specify the choice of the two very strongly elliptic isotropic tensors
Lb, Lc, and the volume fractions θ1, θ2. For the Lamé parameters of material c we
denote λc = αcµc as done in [8]. We assume that

−1

4
(2µa + 3λa) 6 µb <

µa(2µa + 3λa)

3λa
,(3.40)

λb >
2µ2

bλa
µa(2µa + 3λa)− 3µbλa

,(3.41)

θ1 =
−λb(2µa + λa)

2(µbλa − µaλb)
,(3.42)

αc >
−D
C +D

,(3.43)

µc = C
αc(C + 2D)

D(1 + αc)
,(3.44)

θ2 =
αc(C +D)

αc(C +D)−D(2 + αc)
.(3.45)

Observe that, thanks to the first inequality in (3.40), the tensor L1 given by (3.37)
satisfies Λ(L1) > 0 (see [8, §4.2]). Hence, by Theorem 3.3 the homogenized tensor
L0

1 = L∗1 (see Step 4 below) is strongly elliptic. This justifies the first lamination from
the point of view of homogenization through Γ-convergence.

To conclude the first step, let us check that the previous conditions satisfy the
assumptions of Theorem 3.9. The tensor La is strongly elliptic but not semi-very
strongly elliptic, i.e.,

µa > 0, 2µa + 3λa < 0,

which implies that µb > 0. The fact that necessarily λa < 0 together with (3.40)
implies that λb > 0 thanks to (3.41), and thus Lb is very strongly elliptic. The volume
fraction θ1 clearly belongs to (0, 1), since (3.42) reads as

θ1 =
λb(2µa + λa)

λb(2µa + λa)− λa(2µb + λb)
.

The choice of θ1 implies that in (3.39)

(3.46) B = 0.

In addition, C + D > 0 as it was proved in [8, App.C] and C + 2D < 0 by (3.40),
(3.41) and (3.42). This also implies that D < 0. Thanks to the previous inequalities
we have θ2 ∈ (0, 1), αc > 0 and µc > 0, which implies that Lc is very strongly elliptic.

Step 2. Λ(L2) > 0. — To get Λ(L2) > 0 we will prove that for

D :=

4µc 0 0

0 0 0

0 0 0

 ,

we have

(3.47) L2(y2)M :M +D: Cof(M) > 0 a.e. y2 ∈ Y1, for all M ∈ RN×N .
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We need to prove that the previous inequality holds in each homogeneous phase of L2.
Firstly, for the phase Lc which is isotropic and very strongly elliptic, we get for any
M ∈ R3×3,

LcM :M+D: Cof(M)

= 2µc

[
M2

11 +M2
22 +M2

33

+ 2
(M12 +M21

2

)2

+ 2
(M13 +M31

2

)2

+ 2
(M23 +M32

2

)2]
+ λc(M11 +M22 +M33)2 + 4µc(M22M33 −M23M32)

= (λc + 2µc)(M
2
11 +M2

22 +M2
33)

+ 2λc(M11M22 +M11M33) + 2(λc + 2µc)M22M33

+ µc(M12 +M21)2 + µc(M31 +M13)2 + µc(M23 −M32)2.

This quantity is non-negative for anyM ∈ R3×3, since the following matrix is positive
semi-definite: λc + 2µc λc λc

λc λc + 2µc λc + 2µc
λc λc + 2µc λc + 2µc

 ,

due to the strong ellipticity of Lc. Therefore, the desired inequality holds for the
homogeneous phase Lc.

Secondly, we need to check the same inequality for the phase with L∗1. By (3.38)
we have for M ∈ R3×3,

L∗1M :M +D: Cof(M) =
1

A
M2

11 +
[B2

A
+ 2(C +D)

]
(M2

22 +M2
33)

+ 2
B

A
(M11M22 +M11M33)

+ 2
[B2

A
+ 2D + 2µc

]
(M22M33)

+
1

E
(M12 +M21)2 +

1

E
(M13 +M31)2

+ C(M2
23 +M2

32) + 2(C − 2µc)M23M32.

Since E > 0, this quantity is non-negative for any M ∈ R3×3 if the following two
matrices are positive semi-definite:

1/A B/A B/A

B/A B2/A+ 2(C +D) B2/A+ 2D + 2µc

B/A B2/A+ 2D + 2µc B2/A+ 2(C +D)

 ,(3.48)

(
C C − 2µc

C − 2µc C

)
.(3.49)

Since C > 0, the matrix (3.49) is positive semi-definite if and only if µc 6 C. Taking
into account that µc 6 C, we can check that the matrix (3.48) is positive semi-definite
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if−(C+2D)6µc. Therefore, the matrices (3.48) and (3.49) are positive semi-definite if

(3.50) − (C + 2D) 6 µc 6 C.

By the definition (3.44) of µc, we deduce that the first inequality of (3.50) holds if
and only if

αcC

−D(1 + αc)
> 1,

which is satisfied due to inequality (3.43). For the second inequality of (3.50), we need
to check that (see (3.44))

αc(C + 2D)

D(1 + αc)
6 1,

or equivalently,

αc >
D

C +D
.

This is true since αc > 0 by (3.43) and D
C+D < 0. Therefore, condition (3.47) holds

true, and consequently

(3.51) Λ(L2) > 0.

Step 3. L2 loses the strong ellipticity through homogenization. — On the one hand, due
to Λ(L2) > 0, by virtue of Theorem 2.4 the Γ-convergence (3.35) holds with the
homogenized tensor L0

2 which is given by the minimization formula (2.2) replacing L
by L2.

On the other hand, following Gutiérrez’ 1∗-convergence procedure we obtain a
homogenized tensor L∗2 such that (see [8, §5.2] for the expression of L∗2)

L∗2(e3 ⊗ e3):(e3 ⊗ e3) = I1 +
G2

1

F1
,

where by (3.46),

I1 = 4(1− θ2)
1 + αc
2 + αc

+ 2θ2C
C + 2D

C +D
,

G1 = (1− θ2)
αc

2 + αc
+ θ2

D

C +D
,

F1 6= 0.

It is not difficult to check that the choice of Lb, Lc, θ1, θ2 leads to I1 = G1 = 0, which
yields

(3.52) L∗2(e3 ⊗ e3):(e3 ⊗ e3) = 0.

To conclude the proof it is enough to show that

(3.53) L∗2 = L0
2.

Indeed, thanks to L∗2 = L0
2 equality (3.52) implies the loss of ellipticity (3.36), and

(3.36) implies Λ(L2) 6 0. This combined with (3.51) finally shows the desired lost of
functional coercivity (3.34).
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Step 4. L∗2 = L0
2. — By formally using 1∗-convergence in terms of [2, Lem. 3.1], Gutiér-

rez’s computations for the tensor L∗2 in [8, §5.2] can be written as

(3.54)



A−1[L∗2] =

∫ 1

0

A−1[L2](t) dt,

A−1
im[L∗2](L∗2)2mkl =

∫ 1

0

(
A−1
im[L2](t)(L2)2mkl(t)

)
dt,

(L∗2)ijkl − (L∗2)ij2mA
−1
mn[L∗2](L∗2)2nkl

=

∫ 1

0

(
(L2)ijkl(t)− (L2)ij2m(t)A−1

mn[L2](t)(L2)2nkl(t)
)
dt,

where in the present context, for any L ∈ L∞per(Y1; Ls(R3×3)), A[L] ∈ L∞per(Y1;R3×3
s )

is defined by

A[L](y2)ξ := [L(y2)(ξ ⊗ e2)]e2 for y2 ∈ Y1 and ξ ∈ R3.

By focusing on the first equality of (3.54) we have

(3.55) A−1[L∗2] =

∫ 1

0

A−1[L2](t) dt = θ2A
−1[L∗1] + (1− θ2)A−1[Lc],

where all the quantities are finite. Now, similarly to the proof of Theorem 2.4 we
consider the perturbation of L2 defined by

(3.56) Lδ := L2 + δ Is for δ > 0.

On the one hand, due to Λ(Lδ) > 0 (which by (1.14) implies 0 < Λper(Lδ) 6 αse(Lδ)),
thanks to [2, Lem. 3.2] the 1∗-limit L∗δ of Lδ and the homogenized tensor L0

δ of Lδ
defined by (2.2) agree. Then, applying [2, Lem. 3.1] with Lδ we get that

(3.57) A−1[L∗δ ] =

∫ 1

0

A−1[Lδ](t)dt = θ2A
−1[L∗1 + δ Is] + (1− θ2)A−1[Lc + δ Is].

Observe that we have

A[L∗1 + δ Is] > A[L∗1], A[L∗1 + δ Is] −→ A[L∗1] as δ −→ 0,

where the previous inequality must be understood in the sense of the quadratic forms.
This combined with the fact that both L∗1 + δ Is and L∗1 are strongly elliptic tensors
(which implies that the previous matrices are positive definite), yields

A−1[L∗1 + δ Is] 6 A−1[L∗1],

and thus,
A−1[L∗1 + δ Is] −→ A−1[L∗1] as δ −→ 0.

Similarly, we have

A−1[Lc + δ Is] −→ A−1[Lc] as δ −→ 0.

Hence, from the two previous convergences and taking into account (3.55), (3.57), we
deduce that

A−1[L∗δ ] −→ A−1[L∗2] as δ −→ 0.
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On the other hand, following the proof of Theorem 2.4 we have

L∗δ = L0
δ −→ L0

2 as δ −→ 0.

Therefore, we obtain the equality

(3.58) A−1[L0
2] = A−1[L∗2].

Using similar arguments, we can prove that L0
2 and L∗2 satisfy for any i, j, k, l ∈

{1, 2, 3},

A−1
im[L∗2](L∗2)2mkl = A−1

im[L0
2](L0

2)2mkl,(3.59)

(L∗2)ijkl − (L∗2)ij2mA
−1
mn[L∗2](L∗2)2nkl = (L0

2)ijkl − (L0
2)ij2mA

−1
mn[L0

2](L0
2)2nkl.(3.60)

Since the set of equalities (3.54) completely determine the tensor L∗2, equalities (3.58),
(3.59), (3.60) thus imply the desired equality (3.53), which concludes the proof. �

Appendix

Proof of Theorem 2.2. — We simply adapt the proof of [2, Th. 2.2] to dimension 3.
Firstly, let us prove the first part of the theorem, i.e., Λ(L) > 0. The quasi-affinity

of the cofactors (see [3]) reads as

(3.61)
∫
Y3

adjii(∇v) dy = 0, ∀ v ∈ C∞c (R3;R3), ∀ i ∈ {1, 2, 3}.

As a consequence, for any d ∈ R, the definition of Λ(L) can be rewritten as

Λ(L) = inf

{∫
R3

[
Le(v):e(v) + d

∑3
i=1 adjii(∇v)

]
dy, v ∈ C∞c (R3;R3)

}
.

If we compute the integrand in the previous infimum, we obtain

(3.62) Λ(L) = inf

{∫
R3

[
P (y; ∂1v1, ∂2v2, ∂3v3) +Q(y; ∂3v2, ∂2v3)

+Q(y; ∂3v1, ∂1v3) +Q(∂2v1, ∂1v2)
]
dy, v ∈ C∞c (R3;R3)

}
,

where 
P (y; a, b, c) :=

(
a b c

) λ+ 2µ λ+ d/2 λ+ d/2

λ+ d/2 λ+ 2µ λ+ d/2

λ+ d/2 λ+ d/2 λ+ 2µ

ab
c

 ,

Q(y; a, b) :=
(
a b
)( µ µ− d/2

µ− d/2 µ

)(
a

b

)
.

We can check that condition (2.7) with d > 0 implies that the quadratic forms P
and Q are non negative. Hence, the integrand in (3.62) is pointwisely non-negative,
and thus Λ(L) > 0.
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Now, let us prove that Λper(L) > 0. By the definition of Λper(L) and using the
same argument as before, we have

Λper(L) = inf

{∫
Y3

[
Le(v):e(v) + d

∑
i adjii(∇v)

]
dy,

v ∈ H1
per(Y3;R3),

∫
Y3

|∇v|2 dy = 1

}
.

Similar computations lead to

(3.63) Λper(L) = inf

{∫
Y3

[
P (y; ∂1v1, ∂2v2, ∂3v3) +Q(y; ∂3v2, ∂2v3)

+Q(y; ∂3v1, ∂1v3) +Q(∂2v1, ∂1v2)
]
dy

}
.

Take y ∈ Zi, i ∈ I. Then, using that 4µi = d, we have

P (y; a, b, c) = (λi + 2µi)(a+ b+ c)2 > 0,

Q(y; a, b) = µi(a− b)2 > 0.and

For y ∈ Zj , j ∈ J , using that 2µj + 3λj = −d, we get

P (y; a, b, c) =
(
µj +

λj
2

)[
(a− b)2 + (a− c)2 + (b− c)2

]
> 0,

Q(y; a, b) = d
(
µj +

d

4

)
> 0.and

Finally, for y ∈ Zk, k ∈ K, since −(2µk + 3λk) < d < 4µk, it is easy to see that the
quadratic forms P and Q are positive semi-definite. Therefore, we have just proved
that there exists α > 0 such that

P (y; a, b, c) > α(a+ b+ c)2,

Q(y; a, b) > α(a− b)2,
y ∈ Zi, i ∈ I,(3.64)

P (y; a, b, c) > α[(a− b)2 + (a− c)2 + (b− c)2],

Q(y; a, b) > α(a2 + b2),
y ∈ Zj , j ∈ J,(3.65)

P (y; a, b, c) > α(a2 + b2 + c2),

Q(y; a, b) > α(a2 + b2),
y ∈ Zk, k ∈ K,(3.66)

which implies that Λper(L) > 0.
Assume by contradiction that Λper(L) = 0. In this case there exists a sequence

vn ∈ H1
per(Y3;R3) with ∫

Y3

vn dy = 0,

such that

(3.67)
∫
Y3

|∇vn|2 dy = 1, ∀n ∈ N,

together with ∫
Y3

L(y)e(vn):e(vn) dy −→ 0.
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By the Poincaré-Wirtinger inequality, vn is bounded in L2(Y3;R3). Moreover,
by (3.63) we have

(3.68)
∫
Y3

[
P (y; ∂1v

n
1 , ∂2v

n
2 , ∂3v

n
3 ) +

∑
i<j

Q(y; ∂jv
n
i , ∂iv

n
j )
]
dy −→ 0.

Take k ∈ K. Using (3.66) we get∫
Zk

[
P (y; ∂1v

n
1 , ∂2v

n
2 , ∂3v

n
3 ) +

∑
i<j

Q(y; ∂jv
n
i , ∂iv

n
j )
]
dy > α

∫
Zk

|∇vn|2 dy.

Then, using (3.68) and the fact that both P and Q are non negative, it follows that∫
Zk

|∇vn|2 dy −→ 0 ∀ k ∈ K,

and therefore

(3.69) lim
n→∞

∑
k∈K

∫
Zk

∑
q,r=1,2,3

(∂rv
n
q )2 dy = 0.

Next, take j ∈ J . By (3.65) we obtain∫
Zj

[
P (y; ∂1v

n
1 , ∂2v

n
2 , ∂3v

n
3 ) +

∑
i<k

Q(y; ∂kv
n
i , ∂iv

n
k )
]
dy

> α
∫
Zj

∑
i<k

[
(∂iv

n
i − ∂kvnk )2 + (∂kv

n
i )2 + (∂iv

n
k )2
]
dy.

Again using (3.68) and the non-negativity of P and Q we get

(3.70) lim
n→∞

∫
Zj

[
(∂iv

n
i −∂kvnk )2 + (∂kv

n
i )2 + (∂iv

n
k )2
]

= 0 for i, k ∈ {1, 2, 3}, i < k.

From (3.70) and the continuity of the operator ∂1:L2(Zj)→ H−1(Zj) we deduce that

(3.71)
{

∂2(∂1v
n
1 ) = ∂1(∂2v

n
1 ) −→ 0 strongly in H−1(Zj),

∂1(∂1v
n
1 ) = ∂1(∂1v

n
1 − ∂2v

n
2 ) + ∂2(∂1v

n
2 ) −→ 0 strongly in H−1(Zj).

By (3.67) we also have

(3.72) ∂1v
n
1 is bounded in L2(Zj).

However, thanks to Korn’s Lemma (see, e.g. [11]) the following norms are equivalent
in L2(Zj): {

‖∇·‖H−1(Zj ;R3) + ‖·‖H−1(Zj),

‖·‖L2(Zj).

Hence, from estimates (3.71), (3.72) and the compact embedding of L2 into H−1,
it follows that

∂1v
n
1 is strongly convergent in L2(Zj).

Furthermore, by (3.71) and the fact that Zj is connected for all j, there exists cj ∈ R
such that

∂1v
n
1 −→ cj strongly in L2(Zj),
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which combined with (3.70) yields

∇vn −→ cjI3 strongly in L2(Zj)
3.

Since vn is bounded in L2(Y3;R3), we can conclude that there exists Vj ∈ R3 such
that

(3.73) vn −→ v := cjy + Vj strongly in H−1(Zj ;R3).

• In Case 1, by the periodicity of the limit cjy + Vj it is necessary to have cj = 0.
• In Case 2, since Zk is connected, by (3.69) there exists a constant ck such that vn

converges to χZjv + χZk
ck strongly in H1(Zj ∪ Zk). Hence, since the sets Zj and Zk

are regular, the trace of v must be equal to ck a.e. on ∂Zj ∩ ∂Zk. Therefore, the only
way for cjy+Vj to remain constant on a set of non-null H 2-measure is to have cj = 0.

In both cases this implies that ∇vn converges strongly to 0 in L2(Zj ;R3×3), and
thus

(3.74) lim
n→∞

∑
j∈J

∫
Zj

∑
r,q=1,2,3

(∂qv
n
r )2dy = 0.

Finally, take i ∈ I. By (3.64) we have∫
Zi

[
P (y; ∂1v

n
1 , ∂2v

n
2 , ∂3v

n
3 ) +

∑
r<q

Q(y; ∂qv
n
r , ∂rv

n
q )
]
dy

> α
∫
Zi

[
(∂1v

n
1 + ∂2v

n
2 + ∂3v

n
3 )2 + (∂2v

n
1 − ∂1v

n
2 )2

+ (∂3v
n
1 − ∂1v

n
3 )2 + (∂3v

n
2 − ∂2v

n
3 )2
]
dy.

By virtue of (3.68) we also have

(3.75)
∫
Zi

[
(∂1v

n
1 + ∂2v

n
2 + ∂3v

n
3 )2 + (∂2v

n
1 − ∂1v

n
2 )2

+ (∂3v
n
1 − ∂1v

n
3 )2 + (∂3v

n
2 − ∂2v

n
3 )2
]
dy −→ 0 as n −→∞.

Limits (3.74), (3.69) combined with (3.61) yield

lim
n→∞

∑
i∈I

∫
Zi

3∑
r=1

adjrr(∇vn)dy = 0.

Therefore, upon subtracting twice this quantity to the sum over i ∈ I of (3.75) we
conclude that

(3.76) lim
n→∞

∑
i∈I

∫
Zi

3∑
r,q=1

(∂qv
n
r )2dy = 0.

Finally, limits (3.74), (3.69) and (3.76) contradict condition (3.67). The proof is thus
complete. �
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