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UNIFORM SEMIGROUP SPECTRAL ANALYSIS OF

THE DISCRETE, FRACTIONAL AND CLASSICAL

FOKKER-PLANCK EQUATIONS

by Stéphane Mischler & Isabelle Tristani

Abstract. — In this paper, we investigate the spectral analysis and long time asymptotic con-
vergence of semigroups associated to discrete, fractional and classical Fokker-Planck equations
in some regime where the corresponding operators are close. We successively deal with the
discrete and the classical Fokker-Planck model, the fractional and the classical Fokker-Planck
model and finally the discrete and the fractional Fokker-Planck model. In each case, we prove
uniform spectral estimates using perturbation and/or enlargement arguments.

Résumé (Analyse spectrale uniforme des équations de Fokker-Planck discrète, fractionnaire et
classique)

Dans cet article, nous nous intéressons à l’analyse spectrale et au comportement asympto-
tique en temps long des semi-groupes associés aux équations de Fokker-Planck discrète, frac-
tionnaire et classique dans des régimes où les opérateurs correspondants sont proches. Nous
traitons successivement les modèles de Fokker-Planck discret et classique, puis fractionnaire et
classique et enfin discret et fractionnaire. Dans chaque cas, nous démontrons des estimations
spectrales uniformes en utilisant des arguments de perturbation et/ou d’élargissement.
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1. Introduction

1.1. Models and main result. — In this paper, we are interested in the spectral
analysis and the long time asymptotic convergence of semigroups associated to some
discrete, fractional and classical Fokker-Planck equations. They are simple models
for describing the time evolution of a density function f = f(t, x), t > 0, x ∈ Rd,
of particles undergoing both diffusion and (harmonic) confinement mechanisms and
write

(1.1) ∂tf = Λf = Df + div(xf), f(0) = f0.

The diffusion term may either be a discrete diffusion

Df = ∆κf := κ ∗ f − ‖κ‖L1f,

for a convenient (at least nonnegative and symmetric) kernel κ. It can also be a
fractional diffusion

(Df)(x) = −(−∆)α/2f(x)

:= cα

∫
Rd

f(y)− f(x)− χ(x− y)(x− y) · ∇f(x)

|x− y|d+α
dy,

(1.2)

with α ∈ (0, 2), χ ∈ D(Rd) radially symmetric satisfying the inequality 1B(0,1) 6 χ 6
1B(0,2), and a convenient normalization constant cα > 0. It can finally be the classical
diffusion

Df = ∆f :=

d∑
i=1

∂2
xixif.

The main features of these equations are (expected to be) the same: they are mass
preserving, namely

〈ft〉 = 〈f0〉, ∀ t > 0, 〈f〉 :=

∫
Rd
f dx,

positivity preserving, have a unique positive stationary state with unit mass that we
denote by G here and that stationary state is exponentially stable, meaning that

(1.3) ft −→ 〈f0〉G as t −→∞,

with an exponential rate for any solution ft associated to an initial datum f0 with
mass 〈f0〉. Such results can be obtained using different tools as the spectral analysis
of self-adjoint operators, some (generalization of) Poincaré inequalities or logarithmic
Sobolev inequalities as well as the Krein-Rutman theory for positive semigroup.

The aim of this paper is to deal with the above generalized Fokker-Planck equations
in an unified way and, more importantly, to establish that the convergence (1.3) is
exponentially fast for a large class of initial data taken in a fixed weighted Lebesgue or
weighted Sobolev space X, with a rate of convergence which can be chosen uniformly
with respect to the diffusion term.

We investigate three regimes where these diffusion operators are close and for which
such a uniform convergence can be established. In Section 2, we first consider the case
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Discrete, fractional and classical Fokker-Planck equations 391

when the diffusion operator is discrete

Df = Dεf := ∆κεf, κε :=
1

ε2
kε,

where k is a nonnegative, symmetric, normalized, smooth and decaying fast enough
kernel and where we use the notation kε(x) = k(x/ε)/εd, ε > 0. In the limit ε → 0,
one then recovers the classical diffusion operator D0 = ∆.

In Section 3, we next consider the case when the diffusion operator is fractional

Df = Dεf := −(−∆)(2−ε)/2f, ε ∈ (0, 2),

so that in the limit ε→ 0 we also recover the classical diffusion operator D0 = ∆.
In Section 4, we finally consider the case when the diffusion operator is a discrete

version of the fractional diffusion, namely

Df = Dεf := ∆κεf,

where (κε) is a family of convenient bounded kernels which converges towards the
kernel of the fractional diffusion operator k0 := cα | · |−d−α for some fixed α ∈ (0, 2),
in particular, in the limit ε → 0, one may recover the fractional diffusion operator
D0 = −(−∆)α/2.

In order to write a rough version of our main result, we introduce some notation. We
define the weighted Lebesgue space L1

r, r > 0, as the space of measurable functions f
such that f 〈x〉r ∈ L1, where 〈x〉2 := 1 + |x|2. For any f0 ∈ L1

r, we denote as ft the
solution to the generalized Fokker-Planck equation (1.1) with initial datum f0 and
then we define the semigroup SΛε on X by setting SΛε(t)f0 := ft.

Theorem 1.1 (rough version). — There exist r > 0 and ε0 ∈ (0, 2) such that for any
ε ∈ [0, ε0], the semigroup SΛε is well-defined on X := L1

r and there exists a unique
positive and normalized stationary solution Gε ∈ X to (1.1). Moreover, there exist
a < 0 and C > 1 such that for any f0 ∈ X, there holds

(1.4) ‖SΛε(t)f0 −Gε〈f0〉‖X 6 C eat ‖f0 −Gε〈f0〉‖X , ∀ t > 0.

Our approach is a semigroup approach in the spirit of the semigroup decomposition
framework formalized by Mouhot in [13] and developed subsequently in [8, 5, 14, 9, 7].
Theorem 1.1 generalizes to the discrete diffusion Fokker-Planck equation and to the
discrete fractional diffusion Fokker-Planck equation similar results obtained for the
classical Fokker-Planck equation in [5, 9] (Section 2) and for the fractional one in [14]
(Section 4). It also makes uniform with respect to the fractional diffusion parameter
the convergence results obtained for the fractional diffusion equation in [14] (Sec-
tion 3). It is worth mentioning that there exists a huge literature on the long-time
behaviour for the Fokker-Planck equation as well as (to a lesser extent) for the frac-
tional Fokker-Planck equation. We refer to the references quoted in [5, 9, 14] for
details. There also probably exist many papers on the discrete diffusion equation
since it is strongly related to a standard random walk in Rd, but we were not able to
find any precise reference in this PDE context.
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392 S. Mischler & I. Tristani

1.2. Method of proof. — Let us explain our approach. First, we may associate a
semigroup SΛε to the evolution equation (1.1) in many Sobolev spaces, and such a
semigroup is mass preserving and positive. In other words, SΛε is a Markov semigroup
and it is then expected that there exists a unique positive and unit mass steady
state Gε to the equation (1.1). Next, we are able to establish that the semigroup SΛε

splits as
SΛε = S1

ε + S2
ε ,

S1
ε ≈ etTε , Tε finite dimensional, S2

ε = O(eat), a < 0,
(1.5)

in these many weighted Sobolev spaces. The above decomposition of the semigroup
is the main technical issue of the paper. It is obtained by introducing a convenient
splitting

(1.6) Λε = Aε + Bε,

where Bε enjoys suitable dissipativity property and Aε enjoys some suitable Bε-power
regularity (a property that we introduce in Section 2.4 (see also [7]) and that we
name in that way by analogy with the Bε-power compactness notion introduced by
Voigt [16]). Roughly speaking, we are able to establish that the iterated convolution

(AεSBε)(∗n) enjoys some regularization property for some n > 1,

where for two functions of time U and V we define the convolution product

(U ∗ V )(t) :=

∫ t

0

U(t− s)V (s) ds

as well as the iterated convolution product by U (∗0) = I, U (∗m) = U ∗ U (∗(m−1)), for
any m > 1. It is worth emphasizing that we are able to exhibit such a splitting with
uniform (dissipativity, regularity) estimates with respect to the diffusion parameter
ε ∈ [0, ε0] in several weighted Sobolev spaces.

As a consequence of (1.5), we may indeed apply the Krein-Rutman theory devel-
oped in [11, 7] and exhibit such a unique positive and unit mass steady state Gε.
Of course for the classical and fractional Fokker-Planck equations the steady state
is trivially given by means of an explicit formula (the Krein-Rutman theory is use-
less in that cases). A next direct consequence of the above spectral and semigroup
decomposition (1.5) is that there is a spectral gap in the spectral set Σ(Λε) of the
generator Λε, namely

(1.7) λε := sup{<e ξ ∈ Σ(Λε) r {0}} < 0,

and next that an exponential trend to the equilibrium can be established, namely

(1.8) ‖SΛε(t)f0‖X 6 Cε eat ‖f0‖X ∀ t > 0, ∀ ε ∈ [0, ε0], ∀ a > λε,

for any initial datum f0 ∈ X with vanishing mass.
Our final step consists in proving that the spectral gap (1.7) and the estimate (1.8)

are uniform with respect to ε, more precisely, there exists λ∗ < 0 such that λε 6 λ∗

for any ε ∈ [0, ε0] and Cε can be chosen independent to ε ∈ [0, ε0].
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A first way to get such uniform bounds is just to have in at least one Hilbert space
Eε ⊂ L1(Rd) the estimate

∀ f ∈ D(Rd), 〈f〉 = 0, (Λεf, f)Eε 6 λ
∗‖f‖2Eε .

Estimate (1.8) then essentially follows from the fact that the splitting (1.6) holds
with operators which are uniformly bounded with respect to ε ∈ [0, ε0]. It is the
strategy we use in the case of the fractional diffusion (Section 3) and the work has
already been made in [14] except for the simple but fundamental observation that
the fractional diffusion operator is uniformly bounded (and converges to the classical
diffusion operator) when it is suitable (re)scaled.

A second way to get the desired uniform estimate is to use a perturbation argument.
Observing that, in the discrete cases (Sections 2 and 4),

∀ ε ∈ [0, ε0], Λε − Λ0 = O(ε),

for a suitable operator norm, we are able to deduce that ε 7→ λε is a continuous
function at ε = 0, from which we readily conclude. We use here again that the
considered models converge to the classical or the fractional Fokker-Planck equation.
In other words, the discrete models can be seen as (singular) perturbations of the limit
equations and our analysis takes advantage of such a property in order to capture the
asymptotic behaviour of the related spectral objects (spectrum, spectral projector)
and to conclude the above uniform spectral decomposition. This kind of perturbative
method has been introduced in [8] and improved in [15]. In Section 4, we give a new
and improved version of the abstract perturbation argument where some dissipativity
assumptions are relaxed with respect to [15] and only required to be satisfied for the
limit operator (ε = 0).

1.3. Comments and possible extensions

Motivations. — The main motivation of the present work is rather theoretical and
methodological. Spectral gap and semigroup estimates in large Lebesgue spaces have
been established both for Boltzmann like equations and Fokker-Planck like equations
in a series of recent papers [13, 8, 5, 11, 2, 1, 14, 9, 10]. The proofs are based on a
splitting of the generator method as here and previously explained, but the appro-
priate splitting are rather different for the two kinds of models. The operator Aε is a
multiplication (0-order) operator for a Fokker-Planck equation while it is an integral
(−1-order) operator for a Boltzmann equation. More importantly, the fundamental
and necessary regularizing effect is given by the action of the semigroup SBε for the
Fokker-Planck equation while it is given by the action of the operator Aε for the Boltz-
mann equation. Let us underline here that in Section 4, we exhibit a new splitting
for fractional diffusion Fokker-Planck operators (different from the one introduced
in [14]) in the spirit of Boltzmann like operators (the operator Aε is an integral oper-
ator whereas it was a multiplication operator in [14] and in Section 3). Our purpose is
precisely to show that all these equations can be handled in the same framework, by
exhibiting a suitable and compatible splitting (1.6) which does not blow up and such
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394 S. Mischler & I. Tristani

that the time indexed family of operators AεSBε (or some iterated convolution prod-
ucts of that one) has a good regularizing property which is uniform in the singular
limit ε→ 0.

Probability interpretation. — The discrete and fractional Fokker-Planck equations are
the evolution equations satisfied by the law of the stochastic process which is solution
to the SDE

(1.9) dXt = −Xtdt− dL ε
t ,

where L ε
t is the Lévy (jump) process associated to kε/ε

2 or cε/|z|d+2−ε. For two
trajectories Xt and Yt to the above SDE associated to some initial data X0 and Y0,
and p ∈ [1, 2), we have

d|Xt − Yt|p = −p|Xt − Yt|pdt,

from which we deduce

E(|Xt − Yt|p) 6 e−ptE(|X0 − Y0|p), ∀ t > 0.

We fix now Yt as a stable process for the SDE (1.9). Denoting by fε(t) the law of Xt

and Gε the law of Yt, we classically deduce the Wasserstein distance estimate

(1.10) Wp(fε(t), Gε) 6 e
−tWp(f0, Gε), ∀ t > 0.

In particular, for p = 1, the Kantorovich-Rubinstein Theorem says that (1.10) is
equivalent to the estimate

(1.11) ‖fε(t)−Gε‖(W 1,∞(Rd))′ 6 e
−t ‖f0 −Gε‖(W 1,∞(Rd))′ , ∀ t > 0.

Estimates (1.10) and (1.11) have to be compared with (1.8). Proceeding in a similar
way as in [11, 9] it is likely that the spectral gap estimate (1.11) can be extended
(by “shrinkage of the space”) to a weighted Lebesgue space framework and then to
get the estimate in Theorem 1.1 for any a ∈ (−1, 0).

Singular kernel and other confinement term. — We also believe that a similar analysis
can be handled with more singular kernels than the ones considered here. The typical
example should be k(z) = (δ−1 + δ1)/2 in dimension d = 1, and for confinement term
different from the harmonic confinement considered here, including other forces or
discrete confinement term. In order to perform such an analysis one could use some
trick developed in [11] in order to handle the equal mitosis (which uses one more
iteration of the convolution product of the time indexed family of operators AεSBε).

Linearized and nonlinear equations. — We also believe that a similar analysis can be
adapted to nonlinear equations. The typical example we have in mind is the Landau
grazing collision limit of the Boltzmann equation. One can expect to get an exponen-
tial trend of solutions to its associated Maxwellian equilibrium which is uniform with
respect to the considered model (Boltzmann equation with and without Grad’s cutoff
and Landau equation).
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Kinetic like models. — A more challenging issue would be to extend the uniform
asymptotic analysis to the Langevin SDE or the kinetic Fokker-Planck equation by
using some idea developed in [1] which make possible to connect (from a spectral
analysis point of view) the parabolic-parabolic Keller-Segel equation to the parabolic-
elliptic Keller-Segel equation. The next step should be to apply the theory to the
Navier-Stokes diffusion limit of the (in)elastic Boltzmann equation. These more tech-
nical problems will be investigated in next works.

1.4. Outline of the paper. — Let us describe the plan of the paper. In each section,
we treat a family of equations in a uniform framework, from a spectral analysis view-
point with a semigroup approach. In Section 2, we deal with the discrete and classical
Fokker-Planck equations. Section 3 is dedicated to the analysis of the fractional and
classical Fokker-Planck equations. Finally, Section 4 is devoted to the study of the
discrete and fractional Fokker-Planck equations.

1.5. Notation. — For a (measurable) moment function ν : Rd → R+, we define the
norms

‖f‖Lp(ν) := ‖f ν‖Lp(Rd), ‖f‖p
Wk,p(ν)

:=

k∑
i=0

‖∂if‖pLp(ν), k > 1,

and the associated weighted Lebesgue and Sobolev spaces Lp(ν) and W k,p(ν), we
denote Hk(ν) = W k,2(ν) for k > 1. We also use the shorthand Lpr and W 1,p

r for
the Lebesgue and Sobolev spaces Lp(ν) and W 1,p(ν) when the weight ν is defined as
ν(x) = 〈x〉r, 〈x〉 := (1 + |x|2)1/2.

We denote by m a polynomial weight m(x) := 〈x〉q with q > 0, the range of
admissible q will be specified throughout the paper.

In what follows, we will use the same notation C for positive constants that may
change from line to line. Moreover, the notation A ≈ B shall mean that there exist
two positive constants C1, C2 such that C1A 6 B 6 C2A.

2. From discrete to classical Fokker-Planck equation

In this section, we consider a kernel k ∈ W 2,1 ∩ L1
3 which is symmetric, i.e.,

k(−x) = k(x) for any x ∈ Rd, satisfies the normalization condition

(2.1)
∫
Rd
k(x)

 1

x

x⊗ x

 dx =

 1

0

2Id

 ,

as well as the positivity condition: there exist κ0, ρ > 0 such that

(2.2) k > κ0 1B(0,ρ).

We define kε(x) := 1/εdk(x/ε), x ∈ Rd for ε > 0, and we consider the discrete and
classical Fokker-Planck equations

(2.3)

∂tf =
1

ε2
(kε ∗ f − f) + div(xf) =: Λεf, ε > 0,

∂tf = ∆f + div(xf) =: Λ0f.
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396 S. Mischler & I. Tristani

The main result of the section reads as follows.

Theorem 2.1. — Assume r > d/2 and consider a symmetric kernel k belonging to
W 2,1 ∩ L1

2r0+3 with r0 > max(r + d/2, 5 + d/2) which satisfies (2.1) and (2.2).
(1) For any ε > 0, there exists a positive and unit mass normalized steady state

Gε ∈ L1
r to the discrete Fokker-Planck equation (2.3).

(2) There exist explicit constants a0 < 0 and ε0 > 0 such that for any ε ∈ [0, ε0],
the semigroup SΛε(t) associated to the discrete Fokker-Planck equation (2.3) satisfies:
for any f0 ∈ L1

r and any a > a0,

‖SΛε(t)f0 −Gε〈f0〉‖L1
r
6 Ca e

at ‖f0 −Gε〈f0〉‖L1
r
, ∀ t > 0,

for some explicit constant Ca > 1. In particular, the spectrum Σ(Λε) of Λε sat-
isfies the separation property Σ(Λε) ∩ Da0 = {0} in L1

r, where we have denoted
Dα := {ξ ∈ Rd ; <e ξ > α}.

The method of the proof consists in introducing a suitable splitting of the opera-
tor Λε as Λε = Aε + Bε, in establishing some dissipativity and regularity properties
on Bε and AεSBε and finally in applying the version [11, 7] of the Krein-Rutman
theorem as well as the perturbation theory developed in [8, 15, 7].

2.1. Splitting of Λε. — Let us fix χ ∈ D(Rd) radially symmetric and satisfying
1B(0,1) 6 χ 6 1B(0,2). We define χR by χR(x) := χ(x/R) for R > 0 and we denote
χcR := 1− χR.

For ε > 0, we define the splitting Λε = Aε + Bε with

Aεf := M χR (kε ∗ f),

Bεf :=
( 1

ε2
−M

)
(kε ∗ f − f) +M χcR (kε ∗ f − f) + div(xf)−M χR f,

for some constants M , R to be chosen later. Similarly, we define the splitting
Λ0 = A0 + B0 with A0f := M χRf and thus B0f := Λ0f − M χRf for some
constants M,R to be chosen later.

2.2. Uniform boundedness of Aε
Lemma 2.2. — For any p ∈ [1,∞], s > 0 and any weight function ν > 1, the opera-
tor Aε is bounded from W s,p into W s,p(ν) with norm independent of ε.

Proof. — For any f ∈ Lp(ν), we have

‖Aεf‖Lp(ν) 6 C ‖kε ∗ f‖Lp 6 C ‖f‖Lp .

thanks to the Young’s inequality and because ‖kε‖L1 = ‖k‖L1 = 1. We conclude
that Aε is bounded from Lp into Lp(ν). The proof for the case s > 0 is similar and it
is thus skipped. �
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Discrete, fractional and classical Fokker-Planck equations 397

2.3. Uniform dissipativity properties of Bε. — We recall that m(x) = 〈x〉q.

Lemma 2.3. — Consider p ∈ [1, 2] and q > d(p− 1)/p. Let us suppose that k ∈ L1
pq+1.

For any a > d(1 − 1/p) − q, there exist ε0 > 0, M > 0 and R > 0 such that for any
ε ∈ [0, ε0], Bε − a is dissipative in Lpq , or equivalently

(2.4) 〈(Bε − a)f,Φ′(f)〉Lpq 6 0, ∀ f ∈ D(Rd), Φ(f) = |f |p/p.

Proof. — We split the operator in several pieces

Bεf =
( 1

ε2
−M

)
(kε ∗ f − f) +M χcR (kε ∗ f − f)

+ div(xf)−M χR f =: B1
ε + · · ·+ B4

ε ,

and we estimate each term

Ti := 〈Biεf,Φ′(f)〉Lpq =

∫
Rd

(
Biεf

)
(sign f) |f |p−1mp dx

separately. From now on, we consider a > d(1 − 1/p) − q, we fix ε1 > 0 such that
M 6 1/(2ε2

1) and we consider ε ∈ (0, ε1].
We first deal with T1. We observe that

(2.5) (f(y)− f(x)) sign(f(x)) |f |p−1(x) 6
1

p
(|f |p(y)− |f |p(x)),

using the convexity of Φ. We then compute

T1 =
( 1

ε2
−M

)∫
Rd×Rd

kε(x− y) (f(y)− f(x)) Φ′(f(x))mp(x) dy dx

6
1

p

( 1

ε2
−M

)∫
Rd×Rd

(|f |p(y)− |f |p(x)) kε(x− y)mp(x) dy dx

=
1

p

( 1

ε2
−M

)∫
Rd×Rd

(mp(y)−mp(x)) kε(x− y) |f |p(x) dy dx,

where we have performed a change of variables to get the last equality. From a Taylor
expansion, we have

mp(y)−mp(x) = (y − x) · ∇mp(x) + Θ(x, y),

where

|Θ(x, y)| 6 1

2

∫ 1

0

|D2mp(x+ θ(y − x))(y − x, y − x)| dθ

6 C |x− y|2 〈x〉pq−2 〈x− y〉pq−2,

for some constant C ∈ (0,∞). The term involving the gradient of mp gives no contri-
bution because of (2.1) and we thus obtain

(2.6)
T1 6 C

(
1−Mε2

) ∫
Rd×Rd

kε(x− y)
|x− y|2

ε2
〈x− y〉pq−2 dy |f |p(x)〈x〉pq−2 dx

6 C
∫
Rd
|f |p(x) 〈x〉pq−2 dx.
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We now treat the second term T2. Proceeding as above and thanks to (2.5) again,
we have

T2 =

∫
Rd×Rd

M χcR(x) kε(x− y) (f(y)− f(x)) Φ′(f(x))mp(x) dy dx

6
M

p

∫
Rd×Rd

k(z) {χcR(x+ εz)mp(x+ εz)− χcR(x)mp(x)} dz |f(x)|p dy.

Using the mean value theorem

χcR(x+ εz) = χcR(x) + ε z · ∇χcR(x+ θεz), mp(x+ εz) = mp(x) + εz · ∇mp(x+ θ′εz),

for some θ, θ′ ∈ (0, 1), and the estimates

|∇χcR| 6 CR and |∇mp(y + θ′εz)| 6 C 〈y〉pq−1〈z〉pq−1,

we conclude that

(2.7) T2 6M CR ε

∫
Rd
|f |pmp.

As far as T3 is concerned, we just perform an integration by parts:

(2.8)
T3 = d

∫
Rd
|f(x)|pmp(x) dx− 1

p

∫
Rd
|f(x)|p div(xmp)(x) dx

=

∫
Rd
|f(x)|pmp(x)

(
d
(

1− 1

p

)
− q |x|2

〈x〉2
)
dx.

The estimates (2.6), (2.7) and (2.8) together give∫
Rd
Bεf Φ′(f)mp 6

∫
Rd
|f(x)|pmp(x)

(
C 〈x〉−2 +

d

p′
− q |x|2

〈x〉2
+M CR ε−M χR

)
dx

=

∫
Rd
|f |pmp

(
ψεR,p −M χR

)
,

where p′ = p/(p− 1) and we have denoted

(2.9) ψεR,p(x) := C 〈x〉−2 +
d

p′
− q |x|2

〈x〉2
+M CR ε.

Because ψεR,p(x) → d/p′ − q when ε → 0 and |x| → ∞, we can thus choose M > 0,
R > 0 and ε0 6 ε1 such that for any ε ∈ (0, ε0],

∀x ∈ Rd, ψεR,p(x) 6 a.

As a conclusion, for such a choice of constants, we obtain (2.4). We refer to [5, 9] for
the proof in the case ε = 0. �

Lemma 2.4. — Let s ∈ N and q > d/2 + s. Assume that k ∈ L1
2q+1. Then, for any

a > d/2 − q + s, there exist ε0 > 0, M > 0 and R > 0 such that for any ε ∈ [0, ε0],
Bε − a is hypodissipative in Hs

q .

Proof. — The case s = 0 is nothing but Lemma 2.3 applied with p = 2. We now deal
with the case s = 1. We consider ft a solution to

∂tft = Bεft, f0 = f.
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From the previous lemma, we already know that

(2.10) 1

2

d

dt
‖ft‖2L2

q
6
∫
Rd
f2
t m

2
(
ψεR,2 −MχR

)
.

We now want to compute the evolution of the derivative of ft:

∂t∂xft = B(∂xft) +M ∂x(χcR) (kε ∗ ft − ft) + ∂xft,

which in turn implies that
1

2

d

dt
‖∂xft‖2L2

q
=

∫
Rd

(∂xft) ∂t(∂xft)m
2

=

∫
Rd

(∂xft)B(∂xft)m
2 +

∫
Rd
M ∂x(χcR) (kε ∗ ft) (∂xft)m

2

−
∫
Rd
M ∂x(χcR) ft (∂xft)m

2 +

∫
Rd

(∂xft)
2m2

=: T1 + T2 + T3 + T4.

Concerning T1, using the proof of Lemma 2.3, we obtain

(2.11) T1 6
∫
Rd

(∂xft)
2m2

(
ψεR,2 −M χR

)
.

Then, to deal with T2, we first notice that using Jensen’s inequality and (2.1), we
have

‖kε ∗ f‖2L2
q

=

∫
Rd

(∫
Rd
kε(x− y) f(y) dy

)2

m2(x) dx

6
∫
Rd×Rd

kε(x− y)m2(x) dx f2(y) dy

=

∫
Rd×Rd

k(z)m2(y + εz) dz f2(y) dy

6 C
∫
Rd
k(z)m2(z) dz

∫
Rd
f2m2.

We thus obtain using that k ∈ L1
2q:

‖kε ∗ f‖L2
q
6 C ‖f‖L2

q
.

The term T2 is then treated using the Cauchy-Schwarz inequality, Young’s inequality
and the fact that |∂x(χcR)| is bounded by a constant depending only on R:

(2.12)

T2 6M CR ‖kε ∗x ft‖L2
q
‖∂xft‖L2

q

6M CR ‖ft‖L2
q
‖∂xft‖L2

q

6M CRK(ζ)‖ft‖2L2
q

+M CR ζ‖∂xft‖2L2
q

for any ζ > 0 as small as we want.
The term T3 is handled using an integration by parts and with the fact that |∂2

x(χcR)|
is bounded with a constant which only depends on R:

(2.13) T3 =
M

2

∫
Rd
∂2
x(χcR) f2

t m
2 +

M

2

∫
Rd
∂x(χcR) f2

t ∂x(m2) 6M CR ‖ft‖2L2
q
.
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Combining estimates (2.11), (2.12) and (2.13), we easily deduce

(2.14) 1

2

d

dt
‖∂xft‖2L2

q
6 CR,M,ζ

∫
Rd
f2
t m

2

+

∫
Rd

(∂xft)
2m2

(
ψεR,2 +M CR ζ + 1−M χR

)
.

To conclude the proof in the case s = 1, we introduce the norm

|||f |||2H1
q

:= ‖f‖2L2
q

+ η ‖∂xf‖2L2
q
, η > 0.

Combining (2.10) and (2.14), we get

(2.15) 1

2

d

dt
|||ft|||2H1

q
6
∫
Rd
f2
t m

2
(
ψεR,2 + η CR,M,ζ −MχR

)
+ η

∫
Rd

(∂xft)
2m2

(
ψεR,2 +M CR ζ + 1−M χR

)
.

Using the same strategy as in the proof of Lemma 2.3, if a > d/2− q + 1, we can
choose M , R large enough and ζ, ε0, η small enough such that we have on Rd

ψεR,2 + η CR,M,ζ −MχR 6 a and ψεR,2 +M CR ζ + 1−M χR 6 a

for any ε ∈ (0, ε0], which implies that
1

2

d

dt
|||ft|||2H1

q
6 a |||ft|||2H1

q
.

The higher order derivatives are treated with the same method introducing a similar
modified Hs

q norm. �

2.4. Uniform Bε-power regularity of Aε. — In this section we prove that AεSBε
and its iterated convolution products fulfill nice regularization and growth estimates.

We introduce the notation

(2.16) Iε(f) :=
1

2ε2

∫
Rd×Rd

(f(x)− f(y))2 kε(x− y) dx dy.

Lemma 2.5. — There exists a constant K > 0 such that for any ε > 0, the following
estimate holds:

(2.17) ‖∇(kε ∗ f)‖2L2 6 K Iε(f).

Proof
Step 1. — We prove that the assumptions made on k imply

(2.18) |k̂(ξ)|2 6 K 1− k̂(ξ)

|ξ|2
, ∀ ξ ∈ Rd,

for some constant K > 0. On the one hand, we have k̂(0) = 1, k̂(ξ) ∈ R because k is
symmetric and k̂ ∈ C0(Rd) because k ∈ L1. Moreover, performing a Taylor expansion,
using the normalization condition (2.1) and the fact that k ∈ L1

3, we have

k̂(ξ) = 1− |ξ|2 +O(|ξ|3), ∀ ξ ∈ Rd.
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We then deduce that (2.18) holds with K = 1 in a small ball ξ ∈ B(0, δ). On the
other hand, for any ξ 6= 0, we have

k̂(ξ) =

∫
Eξ

k(x) cos(ξ · x) dx+

∫
Ecξ

k(x) cos(ξ · x) dx

<

∫
Eξ

k(x) dx+

∫
Ecξ

k(x) dx = 1,

where Eξ := {x ∈ Rd ; x · ξ ∈ (0, π), |x| 6 r} so that k(x) cos(ξ · x) < k(x)

for any x ∈ Eξ from (2.2). Together with the fact that k̂ ∈ C0(Rd), we deduce
that 1 − k̂(ξ) > η > 0 for any ξ ∈ B(0, δ)c. Last, because k ∈ W 1,1, we also have
|ξ|2 |k̂(ξ)|2 = |∇̂k(ξ)|2 6 C for any ξ ∈ Rd. We then deduce that (2.18) holds with
K = C/η in the set B(0, δ)c.

Step 2. — From the normalization condition (2.1), we have

Iε(f) =
1

2ε2

∫
Rd×Rd

f2(x) kε(x− y) dx dy +
1

2ε2

∫
Rd×Rd

f2(y) kε(x− y) dx dy

− 1

ε2

∫
Rd×Rd

f(x)f(y) kε(x− y) dx dy

=
1

ε2

(∫
Rd
f2 −

∫
Rd

(kε ∗ f) f

)
.

As a consequence, using Plancherel formula and the identity k̂ε(ξ) = k̂(ε ξ), ∀ ξ ∈ Rd,
we get

Iε(f) =
1

ε2

(∫
Rd
f̂2 −

∫
Rd
k̂ε f̂

2

)
=

∫
Rd
f̂2(ξ)

1− k̂(εξ)

ε2
dξ.

Then, we use again Plancherel formula to obtain

(2.19) ‖∂x(kε ∗ f)‖2L2 = ‖F(∂x(kε ∗ f))‖2L2 =

∫
Rd
|ξ|2 k̂(εξ)2 f̂2.

We conclude to (2.17) by using (2.18). �

We now introduce the following notation λ := 1/(2K) > 0 and go into the analysis
of regularization properties of the semigroup AεSBε(t).

Lemma 2.6. — Consider s1 < s2 ∈ N and q > d/2 + s2. We suppose that k ∈ L1
2q+1.

Let M , R and ε0 so that the conclusion of Lemma 2.4 holds in both spaces Hs1
q and

Hs2
q . Then, for any a ∈ (max{d/2− q + s2,−λ}, 0), there exists n ∈ N such that for

any ε ∈ [0, ε0], we have the following estimate

‖(AεSBε)(∗n)(t)‖B(H
s1
q ,H

s2
q ) 6 Ca e

at,

for some constant Ca > 0.
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Proof. — We first give the proof for the case (s1, s2) = (0, 1). We consider a ∈
(max{d/2− q+ 1,−λ}, 0), α0 and α1 such that a > α0 > α1 > max{d/2− q+ 1,−λ}
and ft := SBε(t)f with f ∈ L2

q, i.e., that satisfies

∂tft = Bεft, f0 = f.

From the proof of Lemma 2.4, there exists ε0 such that for any ε ∈ (0, ε0], we have

1

2

d

dt
‖ft‖2L2

q
6 −1

2

( 1

ε2
−M

)∫
Rd×Rd

(f(y)− f(x))
2
kε(x− y)m2(x) dy dx+ α0 ‖ft‖2L2

q

6 − 1

4ε2

∫
Rd×Rd

(f(y)− f(x))
2
kε(x− y) dy dx+ α0 ‖ft‖2L2

q

6 −1

2
Iε(ft) + α0 ‖ft‖2L2

q

where we have used thatM 6 1/(2ε2) for any ε ∈ (0, ε0]. Using Lemma 2.5, we obtain

d

dt
‖ft‖2L2

q
6 −2λ‖kε ∗x ft‖2Ḣ1 + 2α0 ‖ft‖2L2

q

6 2α0 ‖kε ∗x ft‖2Ḣ1 + 2α0 ‖ft‖2L2
q
.

Multiplying this inequality by e−2α0t, it implies that

d

dt

(
‖ft‖2L2

q
e−2α0t

)
6 2α0 ‖kε ∗x ft‖2Ḣ1 e

−2α0t

and thus, integrating in time

‖ft‖2L2
q
e−2α0t − 2α0

∫ t

0

‖kε ∗x fs‖2Ḣ1e
−2α0s ds 6 ‖f‖2L2

q
.

In particular, we obtain

(2.20)
∫ ∞

0

‖kε ∗x fs‖2Ḣ1e
−2α0s ds 6 − 1

2α0
‖f‖2L2

q
.

We now want to estimate∫ ∞
0

‖AεSBε(s)f‖2H1
q
e−2α0s ds =

∫ ∞
0

‖Aεfs‖2L2
q
e−2α0s ds+

∫ ∞
0

‖∂x (Aεfs) ‖2L2
q
e−2α0s ds

6
∫ ∞

0

‖Aεfs‖2L2
q
e−2α0s ds+

∫ ∞
0

‖M∂x(χR) kε ∗x fs‖2L2
q
e−2α0s ds

+

∫ ∞
0

‖MχR ∂x(kε ∗x fs)‖2L2
q
e−2α0s ds

=: I1 + I2 + I3.

Using dissipativity properties of Bε and boundedness of Aε, we get

I1 6
∫ ∞

0

e2α1se−2α0s ds ‖f‖2L2
q
6 C ‖f‖2L2

q
.
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We deal with I2 using the fact that M∂x(χR) is compactly supported, Young’s in-
equality and dissipativity properties of Bε:

I2 6 C
∫ ∞

0

‖kε ∗x fs‖2L2 e−2α0s ds 6 C
∫ ∞

0

‖fs‖2L2e−2α0s ds

6 C
∫ ∞

0

e2α1s e−2α0s ds ‖f‖2L2
q
6 C ‖f‖2L2

q
.

Finally, for I3, we use (2.20) to obtain

I3 6
∫ ∞

0

‖kε ∗x fs‖2Ḣ1 e
−2α0s ds 6 C ‖f‖2L2

q
.

All together, we have proved∫ ∞
0

‖AεSBε(s)f‖2H1
q
e−2α0s ds 6 C ‖f‖2L2

q
.

Consequently, using the Cauchy-Schwarz inequality, we have

(2.21)

(∫ ∞
0

‖AεSBε(s)f‖H1
q
e−as ds

)2

6
∫ ∞

0

‖AεSBε(s)f‖2H1
q
e−2α0s ds

∫ ∞
0

e−2(a−α0)s ds

6 C ‖f‖2L2
q
.

From the dissipativity of Bε in H1
q proved in Lemma 2.4 and the fact that Aε is

bounded in H1
q , we also have

‖AεSBε(s)‖H1
q→H1

q
e−as 6 C, ∀ s > 0.

Using the two last estimates together, we deduce that for any t > 0

‖(AεSBε)(∗2)(t)f‖H1
q
6
∫ t

0

‖AεSBε(t− s)‖H1
q→H1

q
‖AεSBε(s)f‖H1

q
ds

6 C eat
∫ ∞

0

e−as ‖AεSBε(s)f‖H1
q
ds

6 C eat ‖f‖L2
q
.

We have thus proved
‖(AεSBε)(∗2)(t)‖L2

q→H1
q
6 C eat,

which corresponds to the case (s1, s2) = (0, 1).
Using the same strategy, we can easily obtain that∫ ∞

0

‖AεSBε(s)f‖2Hsq e
−2as ds 6 C ‖f‖2

Hs−1
q

,

for any s > 2, and then conclude the proof of the lemma in the case ε > 0. We refer
to [5, 9] for the proof in the case ε = 0. �
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Lemma 2.7. — Consider q > d/2, k ∈ L1
2q+1 and M , R, ε0 so that the conclusions of

Lemma 2.3 hold. Then, for any a ∈ (−q, 0), there exists n ∈ N such that the following
estimate holds for any ε ∈ [0, ε0]:

∀ t > 0, ‖(AεSBε)(∗n)(t)‖B(L1
q,L

2
q)
6 Ca e

at,

for some constant Ca > 0.

Proof. — We first introduce the formal dual operators of Aε and Bε:

A∗εφ := kε ∗ (M χR φ), B∗εφ :=
1

ε2
(kε ∗ φ− φ)− x · ∇φ− kε ∗ (M χRφ).

We use the same computation as the one used to deal with T1 is the proof of Lemma 2.3
and the Cauchy-Schwarz inequality:∫

Rd
(B∗εφ)φ 6 − 1

2ε2

∫
Rd×Rd

kε(x− y) (φ(y)− φ(x))2 dy dx

+
1

2ε2

∫
Rd×Rd

(φ2(y)− φ2(x)) kε(x− y) dy dx

+
d

2

∫
Rd
φ2 + ‖kε ∗ (M χR φ)‖L2 ‖φ‖L2 .

We then notice that the second term equals 0 and we use Young’s inequality and the
fact that ‖kε‖L1 = 1 to get∫

Rd
(B∗εφ)φ 6 − 1

2ε2

∫
Rd×Rd

kε(x− y) (φ(y)− φ(x))2 dy dx

+
d

2

∫
Rd
φ2 +

1

2
‖M χR φ‖2L2 +

1

2
‖φ‖2L2

6 − Iε(φ) + C

∫
Rd
φ2

where Iε is defined in (2.16). We also have the following inequality:

Iε(χR φ) 6
1

ε2

∫
Rd×Rd

kε(x− y)φ2(x) (χR(y)− χR(x))2 dy dx

+
1

ε2

∫
Rd×Rd

kε(x− y)χ2
R(y) (φ(y)− φ(x))2 dy dx

6 C ‖∇χR‖∞
∫
Rd
φ2 + 2Iε(φ).

If we denote φt := SB∗ε (t)φ, we thus have
1

2

d

dt
‖φt‖2L2 6 −λ ‖kε ∗ (χR φt)‖2Ḣ1 + b ‖φt‖2L2 , b > 0.

Multiplying this inequality by e−bt, we obtain
d

dt

(
‖φt‖2L2 e−bt

)
6 −2λ ‖kε ∗ (χR φt)‖2Ḣ1 e

−bt, ∀ t > 0,

and integrating in time, we get

(2.22) ‖φt‖2L2 e−bt + 2λ

∫ t

0

‖kε ∗ (χR φs)‖2Ḣ1 e
−bs ds 6 ‖φ‖2L2

q
, ∀ t > 0.
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We now estimate∫ t

0

‖A∗ε SB∗ε (s)φ‖2H1 e−2bs ds =

∫ t

0

‖A∗ε φs‖2H1 e−2bs ds

=

∫ t

0

‖kε ∗ (M χR φs)‖2L2 e−2bs ds+

∫ t

0

‖kε ∗ (M χR φs)‖2Ḣ1 e
−2bs ds.

Using Young’s inequality and (2.22), we conclude that∫ ∞
0

‖A∗ε SB∗ε (t)φ‖2H1 e−2bs ds 6 C ‖φ‖2L2 .

As in the proof of Lemma 2.6, for any s > 1, we can then establish that

‖(A∗ε SB∗ε )(∗2s)(t)‖L2→Hs 6 C e
b′t, ∀ t > 0, ∀ ε ∈ (0, ε0],

for some b′ > 0, and by duality

‖(SBεAε)(∗2s)(t)‖H−s→L2 6 C eb
′t, ∀ t > 0, ∀ ε ∈ (0, ε0].

Taking ` > d/2, so that we can use the continuous Sobolev embedding L1 ⊂ H−`, we
obtain

‖(SBεAε)(∗2`)(t)‖L1→L2 6 C eb
′t.

Noticing next that

(AεSBε)(∗(2`+1)) = Aε (SBεAε)(∗(2`)) ∗ SBε
and using the fact that Aε is compactly supported combined with Lemma 2.3, we get

‖(AεSBε)(∗(2`+1))(t)‖L1
q→L2

q

6 ‖Aε‖L2→L2
q

{
‖(SBεAε)(∗(2`))(·)‖L1→L2 ∗t ‖SBε(·)‖L1

q→L1

}
(t)

6 C eb
′′t,

for some b′′ > 0. To conclude the proof, we use [5, Lem. 2.17]. Indeed, up to taking
more convolutions, we are able to recover a good rate in the last estimate. We refer
to [5, 9] for the proof in the case ε = 0. �

2.5. Convergences Aε → A0 and Bε → B0.

Lemma 2.8. — Consider s ∈ N, q > 0 and k ∈ L1
2q+3. The following convergences

hold:
‖Aε −A0‖B(Hs+1

q ,Hsq ) −−−→ε→0
0 and ‖Bε − B0‖B(Hs+3

q ,Hsq ) −−−→ε→0
0.

Proof
Step 1. — We first deal with Aε in the case s = 0. Using that χ ∈ D(Rd) and k ∈ L1

1,
we have

‖Aεf −A0f‖L2
q

= ‖M χR (kε ∗ f − f)m‖L2 6 C ‖kε ∗ f − f‖L2

= C ‖(k̂ε − 1) f̂‖L2 6 C ε ‖f‖H1 .

Concerning the first derivative, writing that

∂x(Aεf −A0f) = M (∂xχR) (kε ∗ f − f) +M χR (kε ∗ ∂xf − ∂xf)
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and using that ∂xχR is uniformly bounded as well as χR, we obtain the result. We
omit the details of the proof for higher order derivatives.

Step 2. — In order to prove the second part of the result, we just have to prove

‖Λε − Λ0‖B(Hs+3
q ,Hsq ) −−−→ε→0

0.

Using (2.1), we have

Λεf(x)− Λ0f(x) =
1

ε2

∫
Rd
kε(x− y)(f(y)− f(x)) dy −∆f(x).

A Taylor expansion of f gives

f(y)− f(x) = (y − x) · ∇f(x) +
1

2
D2f(x)(y − x, y − x)

+
1

2

∫ 1

0

(1− s)2D3f(x+ s(y − x))(y − x, y − x, y − x) ds.

We then observe that, because of (2.1), the integral in the y variable of the gradient
term cancels and the contribution of the second term is precisely ∆f(x). We deduce
that

Λεf(x)− Λ0f(x) =
ε

2

∫
Rd
k(z)

∫ 1

0

(1− s)2D3f(x+ sεz)(z, z, z) ds dz.

Consequently, using Jensen’s inequality and the fact that k ∈ L1
2q+3, we get

‖Λε − Λ0‖2L2
q
6 C ε2

∫
Rd

∫
Rd
k(z) |z|3

∫ 1

0

|D3f(x+ sεz)|2m2(x+ sεz)m2(sεz) ds dz dx

6 C ε2 ‖f‖2H3
q
−−−→
ε→0

0.

This concludes the proof of the second part in the case s = 0. The proof for s > 0

follows from the fact that the operator ∂x commutes with Λε − Λ0. �

2.6. Spectral analysis

Lemma 2.9. — For any ε > 0, Λ∗ε1 = 0 and Λε satisfies Kato’s inequalities:

∀ f ∈ D(Λε), Λε (β(f)) > β′(f) (Λεf), β(s) = |s|.

As a consequence, for any q > 0 and any ε > 0, the semigroup SΛε is mass preserving,
it is a semigroup of contractions in L1 and it is positive in L1

q, in the sense that
SΛε(t)f0 > 0 for any t > 0 if f0 ∈ L1

q and f0 > 0.

Proof. — First, we have

sign f(x) Λεf(x) =
1

ε2

∫
Rd
kε(x− y) (f(y)− f(x)) dy sign f(x)

+ d f(x) sign f(x) + x · ∇f(x) sign f(x)

6
1

ε2

∫
Rd
kε(x− y) (|f |(y)− |f |(x)) dy + d |f |(x) + x · ∇|f |(x) = Λε|f |(x),

which ends the proof of the Kato’s inequality.
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We consider f0 6 0 and denote ft := SΛε(t)f0. We define the function β(s) = s+ =

(|s|+ s)/2. Using Kato’s inequality, we have ∂tβ(ft) 6 Λεβ(ft), and then

0 6
∫
Rd
β(ft) 6

∫
Rd
β(f0) = 0, ∀ t > 0,

from which we deduce ft 6 0 for any t > 0. Similarly, Kato’s inequality with β(s) := |s|
and Λ∗ε1 = 0 yield the contraction property in L1 and the conservation of mass. �

The operator −Λε satisfies the following form of the strong maximum principle.

Lemma 2.10. — Any nonnegative eigenfunction associated to the eigenvalue 0 is pos-
itive. In other words, we have

f ∈ D(Λε), Λεf = 0, f > 0, f 6= 0 =⇒ f > 0.

Proof. — We define

Cf =
1

ε2
kε ∗ f, Df = x · ∇xf + λ f, λ := d− 1

ε2

and the semigroup
SD(t)g := g(etx) eλt

with generator D. Thanks to the Duhamel formula

SΛε(t) = SD(t) +

∫ t

0

SD(s) CSΛ(t− s) ds,

the eigenfunction f satisfies

f = SΛε(t)f = SD(t)f +

∫ t

0

SD(s) CSΛε(t− s)f ds

>
∫ t

0

SD(s) Cf ds ∀ t > 0.

By assumption, there exists x0 ∈ Rd such that f 6≡ 0 on B(x0, ρ/2). As a consequence,
denoting ϑ := ‖f‖L1(B(x0,ρ/2)) > 0, we have

Cf > κ0 ϑ

ε2
1B(x0,ρ/2),

and then

(2.23) f >
κ0 ϑ

ε2
sup
t>0

∫ t

0

eλs 1B(e−sx0,e−tρ/2) ds > κ11B(x0,ρ/4), κ1 > 0.

Using that lower bound, we obtain

Cf > θd
κ0 κi−1

ε2
1B(x0,uiρ), and then f > κi1B(x0,viρ),

with i = 2, u2 = 1, κ2 > 0, v2 = 3/4. Repeating once more the argument, we get the
same lower estimate with i = 3, u3 = 7/4, κ3 > 0 and v3 = 3/2. By an induction
argument, we finally get f > 0 on Rd. �
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We are now able to prove Theorem 2.1. In a first step, instead of applying directly
the version of Krein-Rutman theorem established in [11] (see also [7]) and in order
to be a bit more self-contained and pedagogical, we rather follow the same line of
proof as for [11, Th. 5.3] but we perform some simplification by taking advantage of
the mass conservation property.

Proof of part (1) in Theorem 2.1. — We fix X := H6
r0+1 and we define eβ(t) := eβt for

any β ∈ R. We start observing that, because of Lemmas 2.2, 2.3 & 2.4, for any m > 0

and a ∈ (d/2 + 5− r0, 0)

SBε ∗ (AεSBε)(∗m)e−a is bounded in L∞(R+; B(X)),

uniformly in ε > 0, and because of Lemmas 2.2, 2.7 & 2.6, there exists n > 0 such
that for any a ∈ (−q, 0),

(SBεAε)(∗n)e−a is bounded in L∞(R+; B(L1, X)),

uniformly in ε > 0. Using the iterated Duhamel formula

SΛε = SBε + · · ·+ SBε ∗ (AεSBε)(∗(n−1)) + (SBεAε)(∗n) ∗ SΛε ,

the fact that SΛε is a semigroup of contractions in L1 from Lemma 2.9 and the two
above estimates, we deduce that SΛε is a bounded semigroup in X. As a consequence,
the new norm defined by

∀ f ∈ X, |||f ||| := sup
t>0
‖SL(t)f‖X

is equivalent to the usual norm of X. For a given 0 6 g0 ∈ X, 〈g0〉 = 1, we define
C := |||g0||| and next the set

C :=
{
f ∈ X ; f > 0, 〈f〉 = 1, |||f ||| 6 C

}
,

which is not empty (e.g. g0 ∈ C), convex and compact for the weak topology of X.
Moreover, thanks to Lemma 2.9, the flow is continuous for the L1 norm and preserves
positivity and total mass. By construction, we see that for any f0 ∈ C and t > 0, we
have

|||SΛε(t)f0||| = sup
s>t
‖SΛε(s)f0‖X 6 sup

s>0
‖SΛε(s)f0‖X = |||f0||| 6 C.

All together, the set C is clearly invariant by the flow SΛε . Thanks to a standard variant
of the Brouwer-Schauder-Tychonoff fixed point theorem (see for instance [3, Th. 1.2]),
we obtain the existence of an invariant element Gε for the discrete Fokker-Planck
flow which furthermore belongs to C. In other words, we have Gε ∈ D(Λε) r {0} and
ΛεGε = 0, so that Gε is a stationary state for the discrete Fokker-Planck equation.
The uniqueness of the normalized and positive steady state Gε as well as the fact
that the punctual spectrum ΣP (Λε) of Λε satisfies ΣP (Λε) ∩ ∆0 = {0} then follow
from the weak and strong maximum principle as stated in Lemmas 2.9 & 2.10. We
refer to the proof of [11, Th. 5.3] (see also [6, 12]) where these classical arguments are
presented.
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Proof of part (2) in Theorem 2.1. — We still denote X = H6
r0+1 and we now consider

the semigroup SΛε as acting on L1
r. We observe that from Lemmas 2.2, 2.3 & 2.4 for

any m > 0 and a ∈ (max(−r, d/2 + 5− r0, 0)),

(2.24) SBε ∗ (AεSBε)(∗m)e−a is bounded in L∞(R+; B(L1
r)),

uniformly in ε > 0, and that Lemmas 2.2, 2.7 & 2.6 also implies that there exists
n > 0 such that for any q ∈ [0, r], a ∈ (−r, 0),

(2.25) (AεSBε)(∗n)e−a is bounded in L∞(R+; B(L1
q, X)),

uniformly in ε > 0, where it is worth emphasizing thatX ⊂ D(Λε) andX has compact
embedding into L1

r. Using the iterated Duhamel formula

(2.26) SΛε = SBε + · · ·+ SBε ∗ (AεSBε)(∗(n−1)) + SΛε ∗ (AεSBε)(∗n)

and the corresponding identity at the level of the resolvent

RΛε = RBε + · · ·+ (−1)n−1RBε(AεRBε)n−1 + (−1)nRΛε(AεRBε)n,

where we recall that for an operator L its resolvent is defined by RL(z) := (L− z)−1

for any z ∈ Cr Σ(L), together with the estimates (2.24) & (2.25), it has been estab-
lished in [11] the following versions of Weyl’s Theorem and of the spectral mapping
theorem (see in particular [11, Th. 2.1], [11, Th. 3.1] and their proof). First, for any
a ∈ (max(−r, d/2 + 5− r0, 0)), the set Σ(Λε)∩Da is discrete. As a consequence, there
exists a ∈ (max(−r, d/2 + 5− r0, 0)) such that

Σ(Λε) ∩Daε = {0}, Π⊥ε RΛε is bounded on Daε ,

where Π⊥ε := I −Πε and Πε stands for the projection onto the null space of Λε, that
is Πεf = 〈f〉Gε for any f ∈ X (notice that L1

r ⊂ X). Next, there exists Cε > 1 such
that

(2.27) ‖SΛε(t)Π
⊥
ε ‖B(L1

r) 6 Cε e
at, ∀ a > aε, ∀ t > 0.

We now have to establish that estimate (2.27) can be obtained uniformly in
ε ∈ [0, ε0]. In order to do so, we first use a perturbation argument to prove that our
operator Λε has a spectral gap in H3

r0 which does not depend on ε.
We introduce the following spaces:

X1 := H6
r0+1 ⊂ X0 := H3

r0 ⊂ X−1 := L2
r0 .

It is worth noticing that r0 > d/2 + 5 implies that the conclusion of Lemma 2.4 is
satisfied in the three spaces Xi, i = −1, 0, 1 and that the following embeddings hold
true

X1 ⊂ H5
r0+1 ⊂ DL2

r0
(Λε) = DL2

r0
(Bε) ⊂ DL2

r0
(Aε) ⊂ X0,

where here DX(L) stands for the domain of the operator L when considered as acting
in the space X.

Collecting the estimates obtained in Lemmas 2.8, 2.2, 2.3, 2.4, 2.6 and the spectral
information available on the classical Fokker-Planck operator as established in [5, 9],
we see that there exist a0 < 0 and ε0 > 0 such that for any ε ∈ [0, ε0]:
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(i) For any i = −1, 0, 1, Aε ∈ B(Xi) uniformly in ε.
(ii) For any a > a0 and ` > 0, there exists C`,a > 0 such that

∀ i = −1, 0, 1, ∀ t > 0, ‖SBε ∗ (AεSBε)(∗`)(t)‖B(Xi,Xi) 6 C`,a e
at.

(iii) For any a > a0, there exist n > 1 and Cn,a > 0 such that

∀ i = −1, 0, ‖(AεSBε)(∗n)(t)‖B(Xi,Xi+1) 6 Cn,a e
at.

(iv) There exists a function η(ε) −−−→
ε→0

0 such that

∀ i = −1, 0, ‖Aε −A0‖B(Xi,Xi) 6 η(ε) and ‖Bε − B0‖B(Xi,Xi−1) 6 η(ε).

(v) Σ(Λ0)∩Da0 = {0} in the spaces Xi, i = −1, 0, 1, where 0 is a one dimensional
eigenvalue.

Using a perturbative argument as in [15], we deduce from the facts (i)–(v), that
there exist a0 < 0 and ε0 > 0 such that for any ε ∈ [0, ε0], the following properties
hold in X0 = H3

r0 :
(1) Σ(Λε) ∩Da0 = {0} in X0;
(2) for any f0 ∈ X0 and any a > a0,

(2.28) ‖SΛε(t)f0 −Gε〈f0〉‖X0
6 Ca e

at ‖f0 −Gε〈f0〉‖X0
, ∀ t > 0

for some explicit constant Ca > 0.
We do not give more details on that perturbation argument here and we rather refer
to the last section, where a similar but more general proof will be given with full
details.

To conclude the proof of Theorem 2.1, we use an enlargement argument as intro-
duced in [5, Th. 2.13]. More precisely, we immediately conclude by using the iterated
Duhamel formula (2.26) written as

(2.29) SΛεΠ
⊥
ε = Π⊥ε SBε + · · ·+ Π⊥ε SBε ∗ (AεSBε)(∗n−1) + (Π⊥ε SΛε) ∗ (AεSBε)(∗n)

together with the estimates (2.24), (2.25) and (2.28) in order to control the decay of
each term.

3. From fractional to classical Fokker-Planck equation

In this part, we denote α := 2− ε ∈ (0, 2] and we deal with the equations

(3.1)
{
∂tf = −(−∆)α/2f + div(xf) = Λ2−αf =: Lαf, α ∈ (0, 2)

∂tf = ∆f + div(xf) = Λ0f =: L2f.

We here recall that the fractional Laplacian ∆α/2f is defined for a Schwartz function f
through the integral formula (1.2). Moreover, the constant cα in (1.2) is chosen such
that

cα
2

∫
|z|61

z2
1

|z|d+α
= 1,
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which implies that cα ≈ (2 − α). By duality, we can extend the definition of the
fractional Laplacian to the following class of functions:{

f ∈ L1
loc(Rd) ;

∫
Rd
|f(x)| 〈x〉−d−α dx <∞

}
.

In particular, one can define (−∆)α/2m when q < α (where we recall again that
m(x) = 〈x〉q).

We recall that the equation ∂tf = Lαf admits a unique equilibrium of mass 1

that we denote Gα (see [4] for the case α < 2). Moreover, if α < 2, one can prove
that Gα(x) ≈ 〈x〉−d−α (see [14]) and for α = 2, we have an explicit formula G2(x) =

(2π)−d/2e−|x|
2/2. The main result of this section reads:

Theorem 3.1. — Assume α0 ∈ (0, 2) and q < α0. There exists an explicit constant
a0 < 0 such that for any α ∈ [α0, 2], the semigroup SLα(t) associated to the frac-
tional Fokker-Planck equation (3.1) satisfies: for any f0 ∈ L1

q, any a > a0 and any
α ∈ [α0, 2],

‖SLα(t)f0 −Gα〈f0〉‖L1
q
6 Cae

at‖f0 −Gα〈f0〉‖L1
q
, ∀ t > 0

for some explicit constant Ca > 1. In particular, the spectrum Σ(Lα) of Lα satisfies
the separation property Σ(Lα) ∩Da0 = {0} in L1

q for any α ∈ [α0, 2].

3.1. Exponential decay in L2(G
−1/2
α ). — We recall a result from [4] which establishes

an exponential decay to equilibrium for the semigroup SLα(t) in the small space
L2(G

−1/2
α ).

Theorem 3.2. — There exists a constant a0 < 0 such that for any α ∈ (0, 2),
(1) in L2(G

−1/2
α ), there holds Σ(Lα) ∩Da0 = {0};

(2) the following estimate holds: for any f0 ∈ L2(G
−1/2
α ) and any a > a0,

‖SLα(t)f0 −Gα〈f0〉‖L2(G
−1/2
α )

6 eat ‖f0 −Gα〈f0〉‖L2(G
−1/2
α )

, ∀ t > 0.

3.2. Splitting of Lα and uniform estimates. — The proof of Theorem 3.1 is based
on the splitting of the operator Lα as Lα = A + Bα, where A is the multiplier
operator Af := M χRf , for some M,R > 0 to be chosen later, and an extension
argument taking advantage of the already known exponential decay in L2(G

−1/2
α ).

As a straightforward consequence of the definition of A, we get the following esti-
mates.

Lemma 3.3. — Consider s ∈ N and p > 1. The operator A is uniformly bounded in α
from W s,p(ν) to W s,p with ν = m or ν = G

−1/2
α .

We next establish that Bα enjoys uniform dissipativity properties.

Lemma 3.4. — For any a > −q, there exist M > 0 and R > 0 such that for any
α ∈ [α0, 2], Bα − a is dissipative in L1

q.
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Proof. — We just have to adapt the proof of Lemma 5.1 from [14] taking into account
the constant cα. Indeed, we have∫

Rd
(Lαf) sign f m 6

∫
Rd
|f(x)|m(x)

(Iα(m)(x)

m(x)
− x · ∇m(x)

m(x)

)
dx.

We can then show that thanks to the rescaling constant cα, Iα(m)/m goes to 0 at
infinity uniformly in α ∈ [α0, 2). As a consequence, if a > −q, since (x · ∇m)/m goes
to −q at infinity, one may choose M and R such that for any α ∈ [α0, 2),

Iα(m)(x)

m(x)
− x · ∇m(x)

m(x)
−M χR(x) 6 a, ∀x ∈ Rd,

which gives the result. �

Lemma 3.5. — For any a > a0, where a0 is defined in Theorem 3.2, Bα − a is dissi-
pative in L2(G

−1/2
α ).

Proof. — The proof also comes from [14, Lem. 5.1]. �

We finally establish that ASBα enjoys some uniform regularization properties.

Lemma 3.6. — There exist some constants b ∈ R and C > 0 such that for any α ∈
[α0, 2], the following estimates hold:

∀ t > 0, ‖SBα(t)‖B(L1,L2) 6 C
ebt

td/2α0
.

As a consequence, we can prove that for any a > max(−q, a0), α ∈ [α0, 2],

(3.2) ∀ t > 0, ‖(ASBα)(∗n)(t)‖
B(L1

q,L
2(G
−1/2
α ))

6 C eat.

Proof. — We do not write the proof for the case α = 2, for which we refer to [5, 9].

Step 1. — The key argument to prove this regularization property of SBα(t) is the
Nash inequality. For α ∈ [α0, 2), from the proof of [14, Lem. 5.3], we obtain that there
exist b > 0 and C > 0 such that for any α ∈ [α0, 2),

∀ t > 0, ‖SBα(t)f‖L2 6 C
ebt

td/(2α0)
‖f‖L1 .

Step 2. — Using that A is compactly supported, we can write

‖ASBα(t)f‖L2
q
6 C ‖SBα(t)f‖L2 6 C

ebt

td/(2α0)
‖f‖L1 .

Using the same method as in [5], we can first deduce that there exists `0 ∈ N, γ ∈ [0, 1)

and K ∈ R such that for any α ∈ [α0, 2],

‖(ASBα)(∗`0)(t)f‖
L2(G

−1/2
α )

6 C
ebt

tγ
‖f‖L1

q
.

We next conclude that (3.2) holds using [5, Lem. 2.17] together with Lemmas 3.4
and 3.3. �
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3.3. Spectral analysis. — Before going into the proof of Theorem 3.1, let us notice
that we can make explicit the projection Πα onto the null space through the following
formula: Παf = 〈f〉Gα for any f ∈ L1

q. Moreover, since the mass is preserved by the
equation ∂tf = Lαf , we can deduce that Πα(SLα(t)f) = Παf for any t > 0 and any
f ∈ L1

q.

Proof of Theorem 3.1. — We use the enlargement argument for each α ∈ [α0, 2] ex-
actly as in the end of the proof of part (2) in Theorem 2.1, by taking advantage of the
several estimates established in Theorem 3.2 and in Lemmas 3.3, 3.4, 3.5 and 3.6. �

4. From discrete to fractional Fokker-Planck equation

Let us fix α ∈ (0, 2). We consider the equations

(4.1)
{
∂tf = kε ∗ f − ‖kε‖L1f + divx(xf) =: Λεf, ε > 0,

∂tf = −(−∆)α/2f + divx(xf) =: Λ0f,

where
kε(x) := 1ε6|x|61/ε k0(x) + 1|x|<ε k0(ε), k0(x) := |x|−d−α.

Notice that

(4.2) ∀x ∈ Rd r {0}, kε(x)↗ k0(x) as ε −→ 0.

For α ∈ (0, 2), the fractional Laplacian on Schwartz functions is still defined
through the formula (1.2). However, since α is fixed in this part, we can get rid
of the constant cα and consider that it equals 1. The main theorem of this section
reads:

Theorem 4.1. — Assume 0 < r < α/2.
(1) For any ε > 0, there exists a positive and unit mass normalized steady state

Gε ∈ L1
r to the discrete fractional Fokker-Planck equation (4.1).

(2) There exist an explicit constant a0 < 0 and a constant ε0 > 0 such that for
any ε ∈ [0, ε0], the semigroup SΛε(t) associated to the discrete and fractional Fokker-
Planck equations (4.1) satisfies: for any f0 ∈ L1

r and any a > a0,

‖SΛε(t)f0 −Gε〈f0〉‖L1
r
6 Ca e

at ‖f0 −Gε〈f0〉‖L1
r
∀ t > 0,

for some explicit constant Ca > 1. In particular, the spectrum Σ(Λε) of Λε satisfies
the separation property Σ(Λε) ∩Da0 = {0} in L1

r.

The method of the proof is similar to the one of Section 2. We introduce a suitable
splitting Λε = Aε + Bε, establish some dissipativity and regularity properties on Bε
and AεSBε and apply the Krein-Rutman theory revisited in [11, 7]. However, let us
emphasize that we introduce a new splitting for the fractional operator (a different one
from Section 3 and from [14]) and we also develop a new perturbative argument in the
same line as [8, 15, 7] but with some less restrictive assumptions on the operators Aε
and Bε, requiring that they are fulfilled only on the limit operator (i.e., for ε = 0).
We finally recall that we denote m(x) = 〈x〉q during the proofs.
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4.1. Splittings of Λε. — For any 0 < β < β′, as previously, we introduce χβ(x) :=

χ(x/β), χcβ := 1− χβ ; we also define χβ,β′ := χβ′ − χβ and introduce the function ξβ
defined on Rd × Rd by ξβ(x, y) := χβ(x) + χβ(y)− χβ(x)χβ(y) and ξcβ := 1− ξβ . We
denote I0(f) := −(−∆)α/2f and Iε(f) := kε ∗ f − ‖kε‖L1f for ε > 0. We split these
operators into several parts: for any ε > 0,

Iε(f)(x) =

∫
Rd
kε(x− y)χη(x− y) (f(y)− f(x)− χ(x− y)(y − x) · ∇f(x)) dy

+

∫
Rd
kε(x− y)χcL(x− y) (f(y)− f(x)) dy

+

∫
Rd
kε(x− y)χη,L(x− y) (f(y)− f(x)) ξcR(x, y) dy

(4.3)
−
∫
Rd
kε(x− y)χη,L(x− y) ξR(x, y) dy f(x)

+

∫
Rd
kε(x− y)χη,L(x− y) ξR(x, y)f(y) dy

=: B1
εf + B2

εf + B3
εf + B4

εf +Aεf,

where the constants η ∈ [ε, 1], R > 0 and 0 < L 6 1/ε will be chosen later. One
can notice that given the facts that η > ε and L 6 1/ε, we have for any ε > 0,
Aε = A0 =: A. Finally, we denote for any ε > 0,

B5
εf = div(xf) and Bεf = B1

εf + B2
εf + B3

εf + B4
εf + B5

εf.

4.2. Convergence Bε → B0.

Lemma 4.2. — Consider p ∈ (1,∞) and q ∈ (0, α/p). The following convergence
holds:

‖Bε − B0‖B(W s+2,p
q ,W s,p

q ) 6 η1(ε) −−−→
ε→0

0, s = −2, 0.

Proof. — Let us notice that Bε − B0 = Λε − Λ0.

Step 1. — We first consider the case s = 0 and we introduce the notation k0,ε :=

k0 − kε. We compute

‖Λεf − Λ0f‖pLpq =

∫
Rd

∣∣∣∣∫
Rd
k0,ε(z) (f(x+ z)− f(x)− χ(z)z · ∇f(x)) dz

∣∣∣∣p mp(x) dx

6 C
∫
Rd

∣∣∣∣∣
∫
|z|61

k0,ε(z) (f(x+ z)− f(x)− χ(z)z · ∇f(x)) dz

∣∣∣∣∣
p

mp(x) dx

+ C

∫
Rd

∣∣∣∣∣
∫
|z|>1

k0,ε(z) (f(x+ z)− f(x)− χ(z)z · ∇f(x)) dz

∣∣∣∣∣
p

mp(x) dx

=: T1 + T2.
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To deal with T1, we perform a Taylor expansion of f of order 2 and we use that
χ(z) = 1 if |z| 6 1, in order to get

T1 6 C
∫
Rd

(∫
|z|61

k0,ε(z) |z|2
∫ 1

0

(1− s) |D2f(x+ sz)| ds dz
)p

mp(x) dx.

From Hölder’s inequality applied with the measure µε(dz) := 1|z|61 k0,ε(z) |z|2 dz, we
have

T1 6 C

(∫
Rd
µε(dz)

)p/p′ ∫
Rd×Rd

(∫ 1

0

|D2f(x+ sz)| ds
)p

µε(dz)m
p(x) dx

where p′ = p/(p − 1) is the Hölder conjugate exponent of p. Using now Jensen’s
inequality, we get

T1 6 C

(∫
Rd
µε(dz)

)p/p′ ∫
Rd×Rd

∫ 1

0

|D2f(x+ sz)|p ds µε(dz)mp(x) dx

6 C

(∫
Rd
µε(dz)

)p ∫
Rd
|D2f(x)|pmp(x) dx,

with ∫
Rd
µε(dz) =

∫
|z|61

k0,ε(z) |z|2 dz −−−→
ε→0

0

by Lebesgue dominated convergence theorem. To treat T2, we first notice that the
term involving ∇f(x) gives no contribution, because k0,εχ ≡ 0 for ε ∈ (0, 1/2), so
that performing similar computations as for T1, we have

T2 6 C
∫
Rd

∣∣∣∣∫
|z|>1

k0,ε(z) (f(x+ z)− f(x)) dz

∣∣∣∣pmp(x) dx

6 C

(∫
|z|>1

k0,ε(z) dz

)p/p′ ∫
Rd

∫
|z|>1

|k0,ε(z)|(|f |p(x+ z) + |f |p(x)) dz mp(x) dx

6 C

(∫
|z|>1

k0,ε(z)m
p(z) dz

)p ∫
Rd
|f |p(x)mp(x) dx,

with ∫
|z|>1

k0,ε(z)m
p(z) dz −−−→

ε→0
0

by the Lebesgue dominated convergence theorem again. As a consequence, we obtain

‖(Λε − Λ0)(f)‖Lpq 6 η(ε)‖f‖W 2,p
q
, η(ε) −−−→

ε→0
0.

Step 2. — We now consider the case s = −2, and we recall that by definition

‖Λεf − Λ0f‖W−2,p
q

= sup
‖φ‖

W2,p′61

∫
Rd
f (Λε − Λ0)∗(φm)

= sup
‖φ‖

W2,p′61

∫
Rd
f (Λε − Λ0)(φm)
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where p′ = p/(p − 1) and because (Λε − Λ0)∗ = Λε − Λ0 (where Λ∗ stands for the
formal dual operator of Λ). For sake of simplicity, we introduce the notation

(4.4) Tν(x, y) := ν(y)− ν(x)−∇ν(x) · (y − x)χ(x− y).

We then estimate the integral in the right hand side of the previous equality:∫
Rd
f (Λε − Λ0)(φm) =

∫
Rd

(Λε − Λ0)(φm)

m
f m

6 ‖(Λε − Λ0)(φm)/m‖Lp′ ‖f‖Lpq .

Moreover,

(4.5) (Λε − Λ0)(φm)(x) = (Iε − I0)(φm)(x)

= (Iε − I0)(φ)(x)m(x) +

∫
Rd
k0,ε(z)φ(x+ z) Tm(x, x+ z) dz

+

∫
Rd
k0,ε(z)χ(z) z · ∇m(x) (φ(x+ z)− φ(x)) dz.

We deduce that

‖(Λε − Λ0)(φm)/m‖p
′

Lp′
6 C

(
‖(Iε − I0)(φ)‖p

′

Lp′

+

∫
Rd

1

mp′(x)

∣∣∣∣∫
Rd
k0,ε(z)φ(x+ z) Tm(x, x+ z) dz

∣∣∣∣p′ dx
+

∫
Rd

1

mp′(x)

∣∣∣∣∫
Rd
k0,ε(z)χ(z) z · ∇m(x) (φ(x+ z)− φ(x)) dz

∣∣∣∣p′ dx)
=: C (J1 + J2 + J3).

To deal with J1, we use the step 1 of the proof which gives us

‖(Iε − I0)(φ)‖Lp′ 6 η(ε)‖φ‖W 2,p′ , η(ε) −−−→
ε→0

0.

The term J2 is split into two parts:

J2 6 C

(∫
Rd

1

mp′(x)

∣∣∣∣∣
∫
|z|61

k0,ε(z)φ(x+ z) Tm(x, x+ z) dz

∣∣∣∣∣
p′

dx

+

∫
Rd

1

mp′(x)

∣∣∣∣∣
∫
|z|>1

k0,ε(z)φ(x+ z) Tm(x, x+ z) dz

∣∣∣∣∣
p′

dx

)
=: J21 + J22.

We first notice that for |z| 6 1,

Tm(x, x+ z) =

∫ 1

0

(1− θ)D2m(x+ θz)(z, z) dθ,

which implies that

J21 6 C
∫
Rd

1

mp′(x)

(∫ 1

0

∫
|z|61

k0,ε(z)|z|2|D2m(x+ θz)||φ|(x+ z)dθdz

)p′
dx.
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Since 0 < q < 2, |D2m| 6 C and 1/mp′ 6 C in Rd, we thus deduce using Hölder’s
inequality and a change of variable,

J21 6 C

(∫
|z|61

k0,ε(z) |z|2 dz
)p′
‖φ‖p

′

Lp′
with

∫
|z|61

k0,ε(z) |z|2 dz −−−→
ε→0

0.

Concerning J22, we use |zχ(z)| 6 C for any |z| > 1 and |∇m| 6 Cm in Rd, and we
obtain that J22 is bounded from above by

C

∫
Rd

1

mp′(x)

(∫
|z|>1

k0,ε(z)|φ|(x+ z) (m(x+ z) +m(x) + |∇m(x)|) dz
)p′

dx

6 C
∫
Rd

(∫
|z|>1

k0,ε(z) |φ|(x+ z)m(z) dz

)p′
dx,

which implies, using Hölder’s inequality and a change of variable,

J22 6 C

(∫
|z|>1

k0,ε(z)m
p(z) dz

)p′
‖φ‖p

′

Lp′
with

∫
|z|>1

k0,ε(z)m
p(z) dz −−−→

ε→0
0.

Finally, we handle J3 performing a Taylor expansion of φ:

φ(x+ z)− φ(x) =

∫ 1

0

(1− s)∇φ(x+ sz) · z ds

which implies, using that |∇m|p′/mp′ ∈ L∞, Hölder’s inequality and a change of
variable,

J3 6

(∫
Rd

|∇m|p′(x)

mp′(x)

(∫
|z|62

k0,ε(z) |z|2
∫ 1

0

|∇φ|(x+ sz) ds dz

)p′
dx

)1/p′

6 C
∫
|z|62

k0,ε(z) |z|2 dz ‖∇φ‖Lp′ with
∫
|z|62

k0,ε(z) |z|2 dz −−−→
ε→0

0.

As a consequence, we obtain that

‖(Λε − Λ0)(φm)/m‖Lp′ 6 η(ε)‖φ‖W 2,p′ , η(ε) −−−→
ε→0

0,

which concludes the proof. �

4.3. Regularization properties of Aε
Lemma 4.3. — For any p∈(1,∞), (s, t) = (−2, 0) or (0, 2), the operator Aε=A0 =A
defined in (4.3) by

Af =

∫
Rd
k0(x− y)χη,L(x− y) ξR(x, y)f(y) dy

is bounded from W s,p to W t,p(ν) for any weight function ν.

Proof. — First, one can notice that

(4.6)

ξR(x, y)χη,L(x− y) 6 (χR(x) + χR(y)) χη,L(x− y)

6
(
1|x|62R + 1|y|62R

)
1η6|x−y|62L

6 21η6|x−y|62L 1|x|62(R+L) 1|y|62(R+L),
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the proof is hence immediate in the case s = t = 0 using Young’s inequality:

‖Af‖Lp(ν) 6 C ‖Af‖Lp 6 ‖k0 1η6|·|62L‖L1 ‖f‖Lp .

We now deal with the case (s, t) = (0, 2). First, we have for ` = 1, 2

∂`x(Af)(x) =
∑

i+j+k=`

∫
Rd
∂ix(k0(x− y)) ∂jx(χη,L(x− y)) ∂kx(ξR(x, y)) f(y) dy,

and for any (i, j, k) such that i+ j + k = `,∣∣∂ix(k0(x−y)) ∂jx(χη,L(x−y)) ∂kx(ξR(x, y))
∣∣6C |∂ix(k0(x−y))|1η6|x−y|62L 1|x|62(R+L).

As a consequence, for ` = 0, 1, 2,

‖∂`x(Af)‖Lp(ν) 6
2∑
i=0

‖∂ixk0 1η6|·|62L‖L1 ‖f‖Lp ,

which concludes the proof in the case (s, t) = (0, 2).
Finally, arguing by duality, we have

‖Af‖Lp(ν) 6 C sup
‖φ‖

Lp
′61

∫
Rd

(Af)φ = C sup
‖φ‖

Lp
′61

∫
Rd

(Aφ) f

6 C sup
‖φ‖

Lp
′61

‖f‖W−2,p ‖Aφ‖W 2,p′ 6 C ‖f‖W−2,p ,

which proves the estimate in the case (s, t) = (−2, 0). �

4.4. Dissipativity properties of Bε and B0

Lemma 4.4. — Consider p ∈ [1, 2] and q ∈ (0, α/p). For any a > d(1− 1/p)− q, there
exist ε1 > 0, η > 0, L > 0 and R > 0 such that for any ε ∈ [0, ε1], Bε−a is dissipative
in Lpq .

Proof. — We consider a > d(1−1/p)− q and we estimate for i = 1, . . . , 5 the integral∫
Rd
(
Biεf

)
(sign f) |f |p−1mp.

We first deal with B1
ε in both cases ε > 0 and ε = 0 simultaneously noticing that

for any ε > 0,

B1
εf(x) =

∫
Rd

(kε χη)(x− y) (f(y)− f(x)− (y − x) · ∇f(x)) dy.

Then, using (2.5), we have∫
Rd

(B1
εf)(sign f) |f |p−1mp

6
1

p

∫
Rd×Rd

(|f |p(y)− |f |p(x)− (y − x) · ∇|f |p(x)) (kε χη)(x− y)dymp(x) dx

=
1

p

∫
Rd×Rd

(mp(y)−mp(x)− (y − x) · ∇mp(x)) (kε χη)(x− y) dy |f |p(x) dx.
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Using a Taylor expansion of order 2 and that pq < α < 2, we get∫
Rd

(mp(y)−mp(x)− (y − x) · ∇mp(x)) (kε χη)(x− y) dy

=

∫
Rd

∫ 1

0

(1− θ)D2mp(x+ θz))(z, z) (kε χη)(z) dθ dz

6 C
∫
|z|62η

|z|2 k0(z) dz,

and thus∫
Rd

(
B1
εf
)

(sign f) |f |p−1mp 6 κη

∫
R
|f |pmp with κη ≈

∫
|z|62η

k0(z) |z|2 dz −−−→
η→0

0.

Concerning B2
ε , we also treat the case ε > 0 and ε = 0 in a same time using (2.5):∫

Rd

(
B2
εf
)

(sign f) |f |p−1mp

6
1

p

∫
Rd×Rd

kε(x− y) (|f |p(y)− |f |p(x)) χcL(x− y)mp(x) dy dx

=
1

p

∫
Rd×Rd

kε(x− y) (mp(y)−mp(x)) χcL(x− y) |f |p(x) dy dx.

We now use the fact that the function s 7→ spq/2 is pq/2-Hölder continuous since
pq/2 < α/2 6 1 to obtain

|mp(x)−mp(y)| 6 C ||x| − |y||pq/2 (|x|+ |y|)pq/2

6 C |x− y|pq/2 min
(
(|x|+ |x− y|+ |x|)pq/2, (|y|+ |x− y|+ |y|)pq/2

)
(4.7) 6 C

(
min

(
|x− y|pq/2|x|pq/2, |x− y|pq/2|y|pq/2

)
+ |x− y|pq

)
6 C 〈x− y〉pq min

(
〈x〉pq/2, 〈y〉pq/2

)
.

We deduce that∫
Rd

(
B2
εf
)

(sign f) |f |p−1mp 6 C
∫
|z|>L

k0(z)mp(z) dz

∫
Rd
|f |p(x) 〈x〉pq/2 dx

6 κL

∫
Rd
|f |pmp, with κL ≈

∫
|z|>L

k0(z)mp(z) dz −−−−−→
L→+∞

0.

We now handle the third term B3
ε first using inequality (2.5) again:∫

Rd

(
B3
εf
)
(sign f) |f |p−1mp

6
1

p

∫
Rd×Rd

kε(x− y)χη,L(x− y) ξcR(x, y) (|f |p(y)− |f |p(x))mp(x) dy dx

=
1

p

∫
Rd×Rd

kε(z)χη,L(z) ξcR(y + z, y) |f |p(y) (mp(y + z)−mp(y)) dy dz.

We then use the Taylor-Lagrange formula which gives us the existence of θ ∈ (0, 1)

such that
mp(y + z) = mp(y) + z · ∇mp(y + θz).
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Notice that there exists CL > 0 depending on L such that |∇mp(y+θz)| 6 CL 〈y〉pq−1

for any y ∈ Rd, |z| 6 2L. We hence obtain∫
Rd

(
B3
εf
)

(sign f) |f |p−1mp

6 CL

∫
Rd×Rd

kε(z) |z|χη,L(z) ξcR(y + z, y) |f |p(y) 〈y〉pq−1 dy dz

6 CL

∫
Rd×Rd

kε(z) |z|χη,L(z)χcR(y) |f |p(y)
mp(y)

〈y〉
dy dz

6 CL

∫
η6|z|62L

k0(z) |z| dz
∫
|y|>2R

|f |p(y)
mp(y)

〈y〉
dy,

which leads to∫
Rd

(
B3
εf
)

(sign f) |f |p−1mp 6 Cη,L

∫
Rd
|f |p(y)

mp(y)

R
dy.

As a consequence, we obtain∫
Rd

(
B3
εf
)

(sign f) |f |p−1mp 6 κR Cη,L

∫
Rd
|f |m with κR ≈

1

R
−−−−−→
R→+∞

0.

We estimate the term involving B4
ε using that ξR(x, y) > χR(x), and we get∫

Rd

(
B4
εf
)

(sign f) |f |p−1mp 6 −
∫

2η6|z|6L
kε(z) dz

∫
|x|6R

|f |pmp.

Finally, using integration by parts, we have∫
Rd

(
B5
εf
)

(sign f) |f |p−1mp =

∫
Rd
|f(x)|pmp(x)

(
d
(

1− 1

p

)
− x · ∇mp(x)

pmp(x)

)
dx.

Gathering all the previous estimates and denoting

ψεη,L,R(x) := κη+κL+κR Cη,L−
∫

2η6|z|6L
kε(z) dz 1|x|6R−

(
d
(

1− 1

p

)
− x · ∇m

p(x)

pmp(x)

)
,

we obtain ∫
Rd

(Bεf) (sign f) |f |p−1mp 6
∫
Rd
ψεη,L,R(x) |f |p(x)mp(x) dx.

First, since ϕm : x 7→ d(1 − 1/p) − x · ∇mp(x)/pmp(x) is a continuous function,
we can bound it from above by a constant CR depending on R on {|x| 6 R} for any
R > 0. We denote ` := d(1− 1/p)− q which is the limit of ϕm as |x| → ∞. One can
also notice that Aεη,L :=

∫
2η6|z|6L kε(z) dz →∞ as ε→ 0 and η → 0. We first choose

ε1 > 0, η > ε1, L 6 1/ε1 and R > 0, so that we have

|x| > R =⇒ ϕm(x) 6
a+ `

2
and κη + κL + κR Cη,L 6

a− `
2

.

Up to make decrease the value of η, we can then choose ε0 < ε1 such that for any
ε ∈ [0, ε0],

κη + κL + κR Cη,L + CR −Aεη,L 6 a.
As a conclusion, for this choice of constants, for any x ∈ Rd and ε ∈ [0, ε0], we have
ψεη,L,R(x) 6 a, which yields the result. �
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Lemma 4.5. — Consider q ∈ (0, α/2). There exists b ∈ R such that for any s ∈ N,
B0 − b is hypodissipative in Hs

q .

Proof

Step 1. — We first treat the case s = 0. We write B0 = Λ0 −A0 and we compute∫
Rd

(B0f) f m2 =

∫
Rd

(Λ0f) f m2 −
∫
Rd

(A0f) f m2

=

∫
Rd
I0(f) f m2 +

∫
Rd

div(xf) f m2 −
∫
Rd

(A0f) f m2

=: T1 + T2 + T3.

Concerning T1, we have

T1 =

∫
Rd×Rd

k0(x− y) (f(y)− f(x)− χ(x− y) (y − x) · ∇f(x))f(x)m2(x) dy dx

= −1

2

∫
Rd×Rd

k0(x− y) (f(y)− f(x))2 dym2(x) dx+
1

2

∫
Rd
f2 I0(m2).

Since one can prove that I0(m2)/m2 goes to 0 at infinity (cf. [14, Lem. 5.1]) and is
thus bounded in Rd, we can deduce that there exists C ∈ R+ such that

T1 6 −
1

2

∫
Rd×Rd

k0(x− y) (f(y)− f(x))2 dym2(x) dx+ C

∫
Rd
f2m2.

We observe that

− 1

2

∫
Rd×Rd

k0(x− y) (f(y)− f(x))2 dym2(x) dx

6 −1

4

∫
Rd×Rd

k0(x− y) ((fm)(y)− (fm)(x))2 dy dx

+
1

2

∫
Rd×Rd

k0(x− y) (m(y)−m(x))2 dx f2(y) dy.

We split the last term into two pieces, that we estimate in the following way:∫
|x−y|61

k0(x−y) (m(y)−m(x))2 dx f2(y) dy

6
∫ 1

0

∫
|x−y|61

k0(x− y) |x− y|2 |∇m(x+ θ(y − x))|2 dx f2(y) dydθ

6 C
∫
Rd
f2m2

and∫
|x−y|>1

k0(x− y) (m(y)−m(x))2 dx f2(y) dy

6 C
∫
|x−y|>1

k0(x− y) (m2(y) +m2(y)m2(x− y)) dx f2(y) dy

6 C
∫
|z|>1

k0(z)mp(z) dz

∫
Rd
f2m2 6 C

∫
Rd
f2m2.
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We recall that the homogeneous Sobolev space Ḣs for s ∈ R is the set of tempered
distributions u such that û belongs to L1

loc and

‖u‖2
Ḣs

:=

∫
Rd
|ξ|2s |û(ξ)|2 dξ <∞,

and that for s ∈ (0, 1), there exists a constant c0 > 0 such that

‖u‖2
Ḣs

= c−1
0

∫
Rd×Rd

(u(x)− u(y))2

|x− y|d+2s
dx dy,

from which we deduce the following identity:

(4.8) c0 ‖u‖2Ḣα/2 =

∫
Rd×Rd

(u(x)− u(y))2 k0(x− y) dx dy ∀α ∈ (0, 2).

As a consequence, up to change the value of C, we have proved

T1 6 −
c0
4
‖f m‖2

Ḣα/2
+ C

∫
Rd
f2m2.

Next, we compute

T2 =

∫
Rd
f2m2

(d
2
− x · ∇m2

2m2

)
6
d

2

∫
Rd
f2m2.

Concerning T3, we use Lemma 4.3 and the Cauchy-Schwarz inequality:

T3 6 ‖A0f‖L2
q
‖f‖L2

q
6 C ‖f‖2L2

q
.

As a consequence, gathering the three previous inequalities, we have∫
Rd

(B0f) f m2 6 −c0
4
‖f m‖2

Ḣα/2
+ b0

∫
Rd
f2m2, b0 ∈ R.

Step 2. — We now consider b > b0 and we prove that for any s ∈ N, B0 − b is
hypodissipative in Hs

q . For s ∈ N∗, we introduce the norm

(4.9) |||f |||2Hsq =

s∑
j=0

ηj ‖∂jxf‖2L2
q
, η > 0,

which is equivalent to the classical Hs
q norm. We use again the fact that B0 = Λ0−A0

and we only deal with the case s = 1, the higher order derivatives being treated in
the same way. First, we have

∂x(B0f) = Λ0(∂xf) + ∂xf − ∂x(A0f).

Then, we can notice that

A0f(x) =

∫
Rd
k0(z)χη,L(z) ξR(x, x+ z) f(x+ z) dz

so that

∂x(A0f)(x) = A0(∂xf)(x) + Ã0f(x), with ‖Ã0f‖L2
q
6 C ‖f‖L2 ,

where the last inequality is obtained thanks to inequality (4.6) as in the proof of
Lemma 4.3. We deduce that

∂x(B0f) = B0(∂xf) + ∂xf − Ã0f.
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Then, doing the same computations as in the case s = 0, we obtain∫
Rd
∂x(B0f) (∂xf)m2 =

∫
Rd
B0(∂xf) (∂xf)m2 +

∫
Rd

(∂xf)2m2 −
∫
Rd
Ã0f (∂xf)m2

=: J1 + J2 + J3.

with
J1 6 −

c0
4
‖(∂xf)m‖2

Ḣα/2
+ b0

∫
Rd

(∂xf)2m2

6 −c0
8
‖f m‖2

Ḣ1+α/2 +
c0
4
‖f ∂xm‖2Ḣα/2 + b0

∫
Rd

(∂xf)2m2

6 −c0
8
‖f m‖2

Ḣ1+α/2 + C
(
‖f‖2L2

q
+ ‖f m‖2

Ḣ1

)
,

and also
J2 6

1

2

(
‖f‖2L2

q
+ ‖f m‖2

Ḣ1

)
.

Finally, using the Cauchy-Schwarz inequality, we have

J3 6 ‖Ã0f‖L2
q
‖∂xf‖L2

q
6 C

(
‖f‖2L2

q
+ ‖f m‖2

Ḣ1

)
.

As a consequence, we have∫
Rd
∂x(B0f) (∂xf)m2 6 −c0

8
‖f m‖2

Ḣ1+α/2 + b1
(
‖f‖2L2

q
+ ‖f m‖2

Ḣ1

)
, b1 ∈ R.

We now introduce ft the solution to the evolution equation

∂tft = B0ft, f0 = f,

and we compute
1

2

d

dt
|||ft|||2H1

q
=

∫
Rd

(B0ft) ftm
2 + η

∫
Rd
∂x(B0ft) (∂xft)m

2

6 −c0
4
‖ftm‖2Ḣα/2 − η

c0
8
‖ftm‖2Ḣ1+α/2

+ ‖ft‖2L2
q
(b0 + η b1) + η b1 ‖ftm‖2Ḣ1 .

We now use the following interpolation inequality

‖h‖Ḣ1 6 ‖h‖α/2
Ḣα/2

‖h‖1−α/2
Ḣ1+α/2

,

which implies

(4.10) ‖h‖2
Ḣ1 6 K(ζ) ‖h‖2

Ḣα/2
+ ζ ‖h‖2

Ḣ1+α/2 , ζ > 0.

We obtain
1

2

d

dt
|||ft|||2H1

q
6
(
−c0

4
+ η b1K(ζ)

)
‖ftm‖2Ḣα/2 + η

(
−c0

8
+ ζ b1

)
‖ftm‖2Ḣ1+α/2

+ ‖ft‖2L2
q
(b0 + η b1).

Choosing ζ small enough so that −c0/8 + ζ b1 < 0 and then η small enough so that
−c0/4 + η b1K(ζ) < 0 and b0 + η b1 < b, we get

1

2

d

dt
|||ft|||2H1

q
6 b |||ft|||2H1

q

which concludes the proof in the case s = 1. �
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We now introduce the operator B0,m defined by

(4.11) B0,m(h) = mB0(m−1h).

Corollary 4.6. — Consider q such that 2q < α. There exists b ∈ R such that for any
s ∈ N, B0,m − b is hypodissipative in Hs.

Proof. — The proof comes from Lemma 4.5 and is immediate noticing that the norms
defined on Hs

q by

‖f‖21 =

s∑
j=0

‖∂jxf‖2L2
q

and ‖f‖22 := ‖f m‖2Hs

are equivalent. �

Lemma 4.7. — Consider q such that 2q < α. There exists b ∈ R such that for any
s ∈ N, B0,m − b is hypodissipative in H−s, (or equivalently, B0 − b is hypodissipative
in H−sq ).

Proof. — We introduce the dual operator of B0,m defined by:

B∗0,mφ = ω I0(mφ)− x · ∇φ− x · ∇m
m

φ− ωA0(mφ),

where ω := m−1. We now want to prove that B∗0,m is hypodissipative in Hs.

Step 1. — We consider first the case s = 0 and we compute∫
Rd

(B∗0,mφ)φ =

∫
Rd
I0(mφ)ω φ−

∫
Rd
x · (∇φ)φ−

∫
Rd

x · ∇m
m

φ2 −
∫
Rd
ωA0(mφ)φ

=: T1 + · · ·+ T4.

We have
T2 =

d

2

∫
Rd
φ2 and T3 6 0.

Next, using (4.6), we have ‖A0(mφ)‖L2 6 C ‖A0(|φ|)‖L2 and thus

T4 6 C
(
‖A0(|φ|)‖2 + ‖φ‖2L2

)
6 C ‖φ‖2L2

from Lemma 4.3. Let us now estimate T1.

Case α < 1. — We write

T1 =

∫
Rd×Rd

k0(x− y) ((mφ)(y)− (mφ)(x))ω(x)φ(x) dy dx

=

∫
Rd×Rd

k0(x− y) (φ(y)− φ(x))φ(x) dy dx

+

∫
|x−y|61

k0(x− y) (m(y)−m(x))ω(x)φ(y)φ(x) dy dx

+

∫
|x−y|>1

k0(x− y) (m(y)−m(x))ω(x)φ(y)φ(x) dy dx

=: T11 + T12 + T13.
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Let us point out here that from (4.8), we have

T11 =

∫
Rd
I0(φ)φ

= −1

2

∫
Rd×Rd

k0(x− y) (φ(y)− φ(x))2 dy dx+
1

2

∫
Rd
I0(φ2)

= −c0
2
‖φ‖2

Ḣα/2
.

Next, using a Taylor expansion, there exists θ ∈ (0, 1) such that

T12 =

∫
|x−y|61

k0(x− y) (m(y)−m(x))ω(x)φ(y)φ(x) dy dx

(4.12)
6 C

∫
|x−y|61

k0(x− y) |x− y| |∇m(x+ θ(y − x))|ω(x) (φ2(y) + φ2(x)) dy dx.

Using that |∇m(x+ θ(y − x))|ω(x) 6 C for any x, y ∈ Rd, |x− y| 6 1, we deduce

T12 6 C
∫
Rd
φ2.

Concerning T13, we have from (4.7)

|m(y)−m(x)| 6 C 〈x− y〉q min
(
〈x〉q/2, 〈y〉q/2

)
,

from which we deduce

T13 6 C
∫
Rd
φ2.

Altogether, we have thus proved

T1 6 −
c0
2
‖φ‖2

Ḣα/2
+ C

∫
Rd
φ2.

Case α ∈ [1, 2). — We write

T1 =

∫
Rd×Rd

k0(x− y) Tmφ(x, y)ω(x)φ(x) dy dx

=

∫
Rd
I0(φ)φ+

∫
|x−y|61

k0(x− y) Tm(x, y)ω(x)φ(y)φ(x) dy dx

+

∫
|x−y|>1

k0(x− y) Tm(x, y)ω(x)φ(y)φ(x) dy dx

+

∫
Rd×Rd

k0(x− y) (φ(y)− φ(x))φ(x)ω(x)∇m(x) · (y − x)χ(y − x) dy dx

=: T11 + T12 + T13 + T14

where we recall that Tν is defined in (4.4). We have again

T11 = −c0
2
‖φ‖2

Ḣα/2
.
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Arguing similarly as for T12 in (4.12), but using a Taylor expansion at order 2 instead
of order 1, we obtain

T12 6 C
∫
Rd
φ2.

Next, we split T13 into two parts:

T13 6 C
∫
|x−y|>1

k0(x− y) |m(y)−m(x)|ω(x)(φ2(x) + φ2(y)) dx dy

+ C

∫
16|x−y|62

k0(x− y) |x− y| |∇m(x)|ω(x) (φ2(x) + φ2(y)) dx dy

6 C
∫
|x−y|>1

k0(x− y) 〈x− y〉q 〈x〉−q/2 (φ2(x) + φ2(y)) dx dy

+ C

∫
16|x−y|62

k0(x− y) (φ2(x) + φ2(y)) dx dy,

where we have used (4.7), we thus obtain:

T13 6 C
∫
Rd
φ2.

Concerning T14, we use Young’s inequality which implies that for any ζ > 0,

T14 6 ζ
∫
Rd×Rd

k0(x− y) (φ(y)− φ(x))2 dy dx

+K(ζ)

∫
Rd×Rd

k0(x− y)φ2(x)
|∇m(x)|2

m2(x)
|y − x|2 χ2(x− y) dy dx

6 ζ c0 ‖φ‖2Ḣα/2 +K(ζ)

∫
|z|62

k(z) |z|2 dz
∫
Rd
φ2.

Consequently, taking ζ > 0 small enough, we have

T1 6 −
c0
4
‖φ‖2

Ḣα/2
+ C

∫
Rd
φ2.

We hence conclude that∫
Rd

(B∗0,mφ)φ 6 −c0
4
‖φ‖2

Ḣα/2
+ b0

∫
Rd
φ2, b0 ∈ R.

Step 2. — We now consider b > b0 and we prove that for any s ∈ N, B∗0,m − b is
hypodissipative in Hs. As in (4.9), for s ∈ N∗, we introduce the norm

|||φ|||2Hs :=

s∑
j=0

ηj ‖∂jxφ‖2L2 , η > 0,

which is equivalent to the classical Hs norm. We only deal with the case s = 1, the
higher order derivatives are treated in the same way. First, using the identity (4.5)
(with k0 instead of k0,ε), we notice that

B∗0,mφ = I0(φ) + ω C1
m(φ) + ω C2

m(φ)− x · ∇φ− x · ∇m
m

φ− ωA0(mφ),
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where

C1
m(φ)(x) =

∫
Rd
k0(x− y)φ(y) (m(y)−m(x)− (y − x) · ∇m(x)χ(x− y)) dy

=

∫
Rd
k0(z)φ(x+ z) (m(x+ z)−m(x)− z · ∇m(x)χ(z)) dz

and

C2
m(φ)(x) =

∫
Rd
k0(x− y) (φ(y)− φ(x))∇m(x) · (y − x)χ(x− y) dy

=

∫
Rd
k0(z) (φ(x+ z)− φ(x))∇m(x) · z χ(z) dz.

Before going into the computation of ∂x(B∗0,mφ), we also notice that

∂x (ωA0(mφ)) = ωA0(m∂xφ) + Â0,m(φ),

where Â0,m satisfies
‖Â0,m(φ)‖L2 6 C ‖φ‖L2

thanks to (4.6). Consequently, we have

∂x(B∗0,mφ) = B∗0,m(∂xφ) + ω C1
∂xm(φ) + ω C2

∂xm(φ) + ∂xω C1
m(φ) + ∂xω C2

m(φ)

− ∂xφ− ∂x
(x · ∇m

m

)
φ− Â0,m(φ)

and∫
Rd
∂x(B∗0,mφ) ∂xφ =

∫
Rd
B∗0,m(∂xφ) (∂xφ) +

∫
Rd
ω C1

∂xm(φ) (∂xφ) +

∫
Rd
ω C2

∂xm(φ) (∂xφ)

+

∫
Rd
∂xω C1

m(φ) (∂xφ) +

∫
Rd
∂xω C2

m(φ) (∂xφ)−
∫
Rd

(∂xφ)2

−
∫
Rd
∂x

(x · ∇m
m

)
φ (∂xφ)−

∫
Rd
Â0,m(φ) (∂xφ)

=: J1 + · · ·+ J8.

We have from the step 1 of the proof

J1 6 −
c0
4
‖φ‖2

Ḣ1+α/2 + b0

∫
Rd

(∂xφ)2.

Moreover, we easily obtain that

J6 + J7 + J8 6 C

(∫
Rd
φ2 +

∫
Rd

(∂xφ)2

)
.

The term J2 is first separated into two parts:

J2 =

∫
|z|61

k0(z)φ(y) T∂xm(x, x+ z)ω(x) ∂xφ(x) dz dx

+

∫
|z|>1

k0(z)φ(y)T∂xm(x, x+ z)ω(x)∂xφ(x) dz dx

=: J21 + J22,
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where we recall that T∂xm is defined in (4.4). The term J21 is treated as T12 is the
step 1 of the proof. Concerning J22, as for T13, we split it into two parts:

J22 6
∫
|z|>1

k0(z) |(∂xm)(x+ z)− (∂xm)(x)|ω(x)(φ2(x+ z) + (∂xφ)2(x)) dx dz

+

∫
16|z|62

k0(z) |z| |∇(∂xm)(x)|ω(x) (φ2(x+ z) + (∂xφ)2(x+ z)) dx dz

6 C
∫
|z|>1

k0(z) (φ2(x+ z) + (∂xφ)2(x)) dx dz

+ C

∫
16|z|62

k0(z) (φ2(x+ z) + (∂xφ)2(x+ z)) dx dz,

where the second inequality comes from the fact that

|(∂xm)(y)− (∂xm)(x)|ω(x) 6 C and |∇(∂xm)(x)|ω(x) 6 C ∀x, y ∈ Rd

because q < α/2 < 1. We hence deduce that

J2 6 C

(∫
Rd
φ2 +

∫
Rd

(∂xφ)2

)
.

Concerning J3, we perform a Taylor expansion of φ and we use the fact that
|∇(∂xm)|ω ∈ L∞:

(4.13) J3 =

∫
Rd×Rd

k0(x− y)

∫ 1

0

(1− t)∇φ(y + t(x− y)) · (y − x) dt

∇(∂xm)(x) · (y − x)χ(x− y)ω(x) ∂xφ(x) dy dx

6 C
∫
|z|62

k0(z) |z|2
∫ 1

0

|∇φ(x+ tz)|2 dt dz dx+

∫
|z|62

k0(z) |z|2 |∂xφ(x)|2 dz dx,

where we have used Jensen’s inequality and Young’s inequality. We use a change of
variable for the first term of the RHS of (4.13), which implies that

J3 6 C ‖φ‖2Ḣ1 .

We deal with J4 splitting it into two parts (|x− y| 6 1 and |x− y| > 1) and using the
same method as for T12 and T13 in the step 1 of the proof, we obtain

J4 6 C

(∫
Rd
φ2 +

∫
Rd

(∂xφ)2

)
.

To deal with J5, we proceed exactly as for J3 and we obtain

J5 6 C ‖φ‖2Ḣ1 .

Summarizing the previous inequalities and using (4.10), we obtain that for any ζ > 0,∫
Rd
∂x(B∗0,mφ) ∂xφ 6 −

c0
4
‖φ‖2

Ḣ1+α/2 + b1
(
‖φ‖2L2 + ‖φ‖2

Ḣ1

)
6 −c0

4
‖φ‖2

Ḣ1+α/2 + b1
(
‖φ‖2L2 +K(ζ)‖φ‖2

Ḣα/2
+ ζ‖φ‖2

Ḣ1+α/2

)
,

b1 ∈ R. This implies that if φt is the solution of

∂tφt = B∗0,mφt, φ0 = φ,
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then
1

2

d

dt
|||φt|||2H1 6

(
− c0

4
+ η b1K(ζ)

)
‖φt‖2Ḣα/2

+ η
(
− c0

4
+ ζ b1

)
‖φt‖2Ḣ1+α/2 + (b0 + η b1)‖φt‖2L2 .

Taking ζ and η small enough, we deduce that
1

2

d

dt
|||φt|||2H1 6 b |||φt|||2H1 ,

this concludes the proof in the case s = 1. �

We now fix 0 < r < α/2 as in the assumptions of Theorem 4.1. We also introduce
r0 ∈ (r, α/2) and m0(x) := 〈x〉r0 . From Lemma 4.4 applied with p = 1, there exists
a < 0 such that Bε−a is dissipative in L1

r0 for any ε ∈ [0, ε1] (or equivalently, Bε,m0
−a

is dissipative in L1, where Bε,m0
is defined as B0,m in (4.11)). From Lemma 4.4 applied

with p = 2, Corollary 4.6 and Lemma 4.7, there exists b ∈ R such that Bε − b is
dissipative in L2

r0 for any ε ∈ [0, ε1] (or equivalently, Bε,m0 − b is dissipative in L2)
and B0,m0

− b is hypodissipative in Hs and H−s for any s ∈ N∗.
We introduce pθ := 2/(1+θ) and its Hölder conjugate p′θ := 2/(1−θ) for θ ∈ (0, 1).

We then choose θ ∈ (0, 1) such that aθ := aθ+b(1−θ) < 0, p′θ ∈ N and p′θ(r0−r) > d.
We denote

X1 := W 2,pθ
r0 ⊂ X0 := Lpθr0 ⊂ X−1 := W−2,pθ

r0 .

Lemma 4.8. — The operator B0 − aθ is hypodissipative in Xi, i = −1, 0, 1 and the
operator Bε − aθ is dissipative in X0 for any ε ∈ (0, ε1].

Proof. — We prove that B0,m0
− aθ is hypodissipative in W−2,pθ , Lpθ and W 2,pθ

by interpolation. To conclude for X0, we just have to interpolate the results coming
from Lemma 4.4 with p = 1 and Lemma 4.5 with s = 0 and use the fact that[
L1, L2

]
θ

= Lpθ with 1/pθ = θ+ (1− θ)/2 i.e., pθ = 2/(1 + θ). Then, for X1 and X−1,
we first choose s0 large enough so that s0(1 − θ) = 2. We then have

[
L1, Hs0

]
θ

=

W 2,pθ ,
[
L1, H−s0

]
θ

= W−2,pθ and we conclude thanks to Lemma 4.4 with p = 1 and
Lemma 4.5 with s = s0.

We prove that Bε − aθ is dissipative in X0 exactly in the same way as we proved
that B0 − aθ is dissipative in X0. �

4.5. Spectral analysis. — We here divide the proof of Theorem 4.1 into two parts,
using Krein-Rutman theory for the first part and using both perturbative and en-
largement arguments for the second part.

Proof of part (1) of Theorem 4.1. — First, we notice that as in Section 2 (Lemmas
2.9 and 2.10), we can prove that the operator Λε satisfies Kato’s inequalities, SΛε is
a positive semigroup and (−Λε) satisfies a strong maximum principle. Using Krein-
Rutman theory as recalled in the proof of part (1) in Theorem 2.1, this gives the first
part of Theorem 4.1 i.e., that there exists a unique Gε > 0 such that ‖Gε‖L1 = 1,
ΛεGε = 0. Moreover, it also implies that the projection Πε,0 onto the null space of Λε
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is given through the explicit formula Πε,0f = 〈f〉Gε for any f ∈ L1
r and any f ∈ Xi,

i = −1, 0, 1.

Proof of part (2) of Theorem 4.1. — We first develop a perturbative argument which is
detailed in what follows, improving a bit similar results presented in [9, 15]. The main
difference with those previous works lies in the fact that we have some dissipativity
properties in all the spaces Xi, i = −1, 0, 1 only for the limit operator B0. Concerning
the perturbation Bε, we only require it to be dissipative in X0.

Lemma 4.9. — For any z ∈ Ω := Daθ r {0} we define the family of operators

Kε(z) := −(Λε − Λ0)RΛ0(z) (ARBε(z)).

There exists a function η2(ε) −−−→
ε→0

0 such that

(4.14) ‖Kε(z)‖B(X0) 6 η2(ε) ∀ z ∈ Ωε := ∆a rBε, Bε := B(0, η2(ε)).

Moreover, there exists ε2 ∈ (0, ε1) such that for any ε ∈ (0, ε2) the operators I+Kε(z)

and Λε − z are invertible for any z ∈ Ωε and

∀ z ∈ Ωε, RΛε(z) = Uε(z) (I +Kε(z))
−1

with
Uε := RBε −RΛ0

(ARBε).
As an immediate consequence, there holds

Σ(Λε) ∩Daθ ⊂ Bε.

Proof. — We know that the operators ARBε(z) : X0 → X1 (from Lemmas 4.3
and 4.8) and RΛ0

(z) : X1 → X1 (previous works from [5, 9]) are bounded for any
z ∈ Ω and that the operators Λε − Λ0 : X1 → X0 are small as ε → 0 uniformly in
z ∈ Ω (Lemma 4.2). Because 0 is a simple eigenvalue, we have

‖RΛ0(z)‖B(X1) 6 C |z|−1 ∀ z ∈ Ω.

for some C > 0. We introduce the constant Caθ > 0 (coming from Lemmas 4.3
and 4.8) such that

‖ASBε(t)‖B(X0,X1) 6 Caθ e
aθt.

Defining η2(ε) := (C Caθ η1(ε))1/2, we deduce that for any z ∈ Ωε,

(4.15) ‖Kε(z)‖B(X0) 6 η1(ε)
C

η2(ε)
Caθ = η2(ε).

We choose ε2 > 0 such that η2(ε) < 1 for any ε ∈ (0, ε2), we thus obtain that
‖Kε(z)‖ < 1 for any ε ∈ (0, ε2) and z ∈ Ωε, which implies that I+Kε(z) is invertible.

We compute
(Λε − z)Uε = (Bε − z +A)RBε − (Λε − Λ0 + Λ0 − z)RΛ0

ARBε
= I +Kε.

For z ∈ Ωε, ε ∈ (0, ε2), we denote Jε(z) := Uε(z) (I +Kε(z))
−1, so that

(Λε − z)Jε(z) = I,

which implies that Λε − z has a right-inverse Jε(z).

J.É.P. — M., 2017, tome 4



Discrete, fractional and classical Fokker-Planck equations 431

Since Λε − z is invertible for <e z large enough and Jε(z) is uniformly locally
bounded in Ωε, we deduce that Λε − z is invertible in Ωε, and its inverse is its right-
inverse Jε(z). �

Lemma 4.10. — Let us denote

Πε :=
i

2π

∫
Γε

RΛε(z) dz, Γε := {z ∈ C ; |z| = η2(ε)}

the spectral projector onto eigenspaces associated to eigenvalues contained in Bε.
There exists η3(ε) such that

‖Πε −Π0‖B(X0) 6 η3(ε) −−−→
ε→0

0.

Proof. — First, we have

Πε =
i

2π

∫
Γε

{RBε(z)−RΛ0
(z)(ARBε(z))} (I +Kε(z))

−1 dz

=
i

2π

∫
Γε

RBε(z)
{
I −Kε(z)(I +Kε(z))

−1
}
dz

− i

2π

∫
Γε

RΛ0
(z)(ARBε(z))

{
I −Kε(z)(I +Kε(z))

−1
}
dz

=
1

2iπ

∫
Γε

RBε(z)Kε(z)(I +Kε(z))
−1 dz

− i

2π

∫
Γε

RΛ0
(z)(ARBε(z))

{
I −Kε(z)(I +Kε(z))

−1
}
dz

and similarly,

Π0 =
i

2π

∫
Γε

RΛ0
(z) dz =

i

2π

∫
Γε

{RB0
(z)−RΛ0

(z) (ARB0
(z))} dz

=
1

2iπ

∫
Γε

RΛ0
(z) (ARB0

(z)) dz.

Consequently,

Π0 −Πε =
1

2iπ

∫
Γε

RΛ0
(z) {ARB0

(z)−ARBε(z)} dz

− 1

2iπ

∫
Γε

{RBε(z)−RΛ0
(z)ARBε(z)}Kε(z)(I +Kε(z))

−1 dz

=: T1 + T2.

Concerning T1, we use the identity

ARB0
(z)−ARBε(z) = ARB0

(z)(Bε − B0)RBε(z)

with Lemmas 4.2, 4.3 and 4.8 which imply that

RBε(z) ∈ B(X0), ‖Bε − B0‖X0→X−1
6 η1(ε) −−−→

ε→0
0, ARB0

(z) ∈ B(X−1, X0).

To treat T2, we use estimate (4.14) on Kε(z), the facts that RBε(z) ∈ B(X0) and
that we also have RΛ0

(z)ARBε(z) ∈ B(X0). This concludes the proof. �
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Proposition 4.11. — There exists ε0 ∈ (0, ε2) such that for any ε ∈ (0, ε0), the
following properties hold in X0:

(1) Σ(Λε) ∩Daθ = {0};
(2) for any f0 ∈ X0 and any a > aθ,

‖SΛε(t)f0 −Gε〈f0〉‖X0 6 Ca e
at ‖f0 −Gε〈f0〉‖X0 , ∀ t > 0,

for some explicit constant Ca > 1.

Proof. — We know that if P and Q are two projectors such that ‖P −Q‖B(X0) < 1,
then their ranges are isomorphic. Lemma 4.10 thus implies that there exists ε0 ∈
(0, ε1) such that for any ε ∈ (0, ε0),

dim R(Πε) = dim R(Π0) = 1.

We also know that 0 is an eigenvalue for Λε (cf. part (1) of Theorem 4.1). This
concludes the proof of the first part of the proposition.

To get the estimate on the semigroup, we use a spectral mapping theorem coming
from [11, Th. 2.1]. The hypotheses of the theorem are satisfied because Bε − a is
hypodissipative in X0 (and thus in D(Λε|X0

) = D(Bε|X0
)) and A ∈ B(X0,W

2,pθ
r0+1)

(and thus A ∈ B(X0, D(Λε|X0
)). �

We now end the proof of part (2) of Theorem 4.1 using an enlargement argument
from the “small space” E = Lpθr0 to the “large” space E = L1

r. More precisely, we
use the estimates established in Proposition 4.11, Lemmas 4.3 and 4.4–4.8 as well
as A ∈ B(E , E) in order to control the decay of each term involved in the iterated
Duhamel formula (2.29).
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