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RANK-TWO VECTOR BUNDLES

ON HALPHEN SURFACES

AND THE GAUSS-WAHL MAP FOR DU VAL CURVES

by Enrico Arbarello & Andrea Bruno

Abstract. — A genus-g du Val curve is a degree-3g plane curve having 8 points of multiplicity g,
one point of multiplicity g−1, and no other singularity. We prove that the corank of the Gauss-
Wahl map of a general du Val curve of odd genus (> 11) is equal to one. This, together with the
results of [1], shows that the characterization of Brill-Noether-Petri curves with non-surjective
Gauss-Wahl map as hyperplane sections of K3 surfaces and limits thereof, obtained in [3], is
optimal.

Résumé (Fibrés vectoriels de rang 2 sur les surfaces de Halphen et application de Gauss-Wahl
pour les courbes de du Val)

Une courbe de du Val de genre g est une courbe plane de degré 3g ayant 8 points de
multiplicité g, un point de multiplicité g − 1 et pas d’autre singularité. Nous montrons que le
corang de l’application de Gauss-Wahl pour une courbe de du Val générale de genre impair
(> 11) est égal à 1. Ceci, joint aux résultats de [1], montre que la caractérisation, obtenue
dans [3], des courbes de Brill-Noether-Petri ayant une application de Gauss-Wahl non surjective
comme sections hyperplanes de surfaces K3 et limites de celles-ci, est optimale.
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1. Introduction

Let C be a genus g curve. Recall the Gauss-Wahl map

(1.1) ν = νC :
2∧
H0(C,ωC) −→ H0(C,ω⊗3

C )

defined by s ∧ t 7→ s · dt− t · ds. In [3] the following theorem was proved.
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258 E. Arbarello & A. Bruno

Theorem 1.1 (Arbarello, Bruno, Sernesi). — Let C be a Brill-Noether-Petri curve of
genus g > 12. Then C lies on a polarized K3 surface, or on a limit thereof, if and
only if the Gauss-Wahl map is not surjective.

This theorem proves a conjecture by J.Wahl, [19]. To be precise, the original ver-
sion of this conjecture made no mention of limiting K3 surfaces. Thus the question
remained to decide wether the statement of the Theorem 1.1 is optimal. To give a
positive answer to this question one should produce an example of a surface S ⊂ Pg

with canonical sections (so that νC is not surjective), having the following additional
properties.

(a) S is singular (i.e., has an isolated elliptic singularity), and smoothable in Pg

(to a K3 surface).
(b) The general hyperplane section C of S is a Brill-Noether-Petri curve.
(c) C is not contained in any (smooth) K3 surface.
In the proof of Theorem 1.1 a detailed analysis of surfaces with genus-g, canonical

sections was carried out, under the additional hypothesis that these sections should
be Brill-Noether-Petri curves. This led to a list of possible examples of smoothable
surfaces in Pg having isolated elliptic singularities, and, possibly, Brill-Noether-Petri
curves as hyperplane sections.

A very notable example, in the above list, is the following. Take nine general points
p1, . . . , p9 on P2. A genus-g du Val curve C0 is a degree-3g plane curve having points
of multiplicity g in p1, . . . , p8 and a point of multiplicity g − 1 at p9. All of these
curves pass through an additional point p10. Let S be the blow-up of P2 at p1, . . . , p10

and take the proper transform C of C0. The linear system |C| sends S to a surface
S ⊂ Pg which is indeed a surface with canonical sections which is smooth except for a
unique elliptic singularity. Moreover S is the limit in Pg of smooth K3 surfaces. In [1]
the following theorem was proved (see Section 1 for the definition of a nine-tuple of
k-general points).

Theorem 1.2 (Arbarello, Bruno, Farkas, Saccà). — Suppose p1, . . . , p9 are g-general.
Consider, as above, the du Val linear system |C|. Then the general element of |C| is
a Brill-Noether-Petri curve, i.e.,

µ0,L : H0(C,L)⊗H0(C,ωC ⊗ L−1) −→ H0(C,ωC)

is injective for every line bundle L on C.

Thus the pair (S,C) gives an example of surface for which properties (a) and (b),
above, are satisfied. The aim of this paper is to prove that also property (c) is satisfied
by C. We will in fact prove a statement which turns out to be stronger.

Theorem 1.3. — The corank of the Gauss-Wahl map for a general du Val curve of
genus g = 2s+ 1 > 11 is equal to one.

Corollary 1.4. — For any odd g > 11, there exist Brill-Noether-Petri curves which
are (smooth) hyperplane sections of a unique surface S ⊂ Pg whose singular locus
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consists in an elliptic singularity. Moreover S is a limit of smooth K3 surfaces. In
particular the statement of Theorem 1.1 is optimal.

The way we prove Theorem 1.3 and Corollary 1.4 is the following. Let g = 2s+ 1.
By making an appropriate choice of the nine points p1, . . . , p9 we construct a polarized
surface (S,C) in Pg, as above, which is the direct analogue of a smooth K3 surface
(S,C) in Pg, for which Pic(S) = A ·Z⊕B ·Z with A+B = C, where B is an elliptic
pencil cutting out on C a g1

s+1. We call such a surface S ⊂ Pg a polarized Halphen
surface of index s + 1. Halphen surfaces of index s + 1 were already introduced by
Cantat and Dolgachev in [6] (see Section 2.1 below). Unlike the case of K3 surfaces, all
Halphen surfaces have Picard-rank equal to 10. Polarized Halphen surfaces of index
s+ 1 are peculiar in that they possess an elliptic pencil |B| cutting out on C a g1

s+1.
Following the ideas in [2] we prove that, in the index-(s+ 1) case, the surface S can
be reconstructed from its hyperplane section C as a Brill-Noether locus of rank-two
vector bundles on C. Namely we establish an isomorphism

(1.2) S ∼= MC(2,KC , s),

where MC(2,KC , s) stands for the moduli space of rank-two vector bundles on C

having determinant equal to KC and at least s + 2 linearly independent sections.
Let S be the desingularization of S. The above isomorphism assigns to a point x ∈ S
the vector bundle Ex obtained as the restriction to C of the unique stable torsion-free
sheaf Ẽx on S which is an extension of the form

0 −→ B −→ Ẽx −→ Ix(A) −→ 0

with the property that h0(Ẽx) = s + 2. Such a torsion-free sheaf on S belongs to
the moduli space Mv(S), with v = (2, [C], s). But, unlike the case of K3 surfaces,
where this moduli space is in fact a surface isomorphic to S = S, in the case at hand
the dimension of Mv(S) is equal to five. This is one of the many instances where the
analogy between the case of K3 surfaces and the case of Halphen surfaces requires some
care. Another instance is the geometry of the moduli spaceMC(2,KC , s). Here one has
to establish, a priori, thatMC(2,KC , s) has only one isolated, normal singularity. This
requires a detailed analysis of the Petri homomorphism for rank-two vector bundles
on C. This analysis is carried out in sub-section 3.5.

Once the isomorphism (1.2) is established we prove that, in the index-(s+ 1) case,
there is no smooth K3 surface containing C. Here we proceed by contradiction using
the main theorem of [2]. If such a smooth surface X existed we would find, roughly
speaking, a degenerating family {Xt} of K3 surfaces having as possible central fibers
bothMv(X) and S. But since there are stable bundles on X with Mukai vector v (i.e.,
the Voisin bundles), Mv(X) is a surface with at most isolated rational singularities.
By Kulikov’s theorem this is not possible. This is the first step in the proof that, in
the index-(s+ 1) case, the corank of the Gauss-Wahl map is equal to one. Once this
is done the assertion about the corank is true in general. Via [20], this shows that
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for a general du Val curve C of odd genus, S ∈ Pg is the unique surface having C as
canonical section.

Acknowledgements. — It is a pleasure to thank Giulia Saccà for many interesting
conversations on the subject of this paper. Her help was decisive in wrapping up the
proof of the main theorem in the last section. We also thank Marco Franciosi for very
useful conversations about the Clifford index for singular curves and the referee for
pointing out to us a missing reference.

2. Halphen surfaces and du Val curves

2.1. Basic definitions. — Let τ : S′ → P2 be the blow-up of P2 at 9 (possibly
infinitely near) points p1, . . . , p9 ∈ P2. Assume there is a unique cubic J0 through
p1, . . . , p9 ∈ P2. Let J ′ be the proper transform of J0 in S′.

{J ′} = | −KS′ |, J ′2 = 0.

Definition 2.1. — S′ is said to be unnodal if it contains no (−2)-curves.

Definition 2.2
(a) The points p1, . . . , p9 are said to be k-Halphen general if h0(J ′,OJ′(hJ ′)) = 0,

for 1 6 h 6 k, i.e., if h0(S′,OS′(hJ ′)) = 1, for 1 6 h 6 k.
(b) The points p1, . . . , p9 are said to be k-general if they are k-Halphen general,

and if S′ is unnodal.

Remark (on terminology). — In [1], a set of nine points for which S′ is unnodal was
called Cremona general and a set of k-Halphen general points was called 3k-Halphen
general. We decided to follow [6] which preceded [1].

Example 2.3 (see [1]). — The points

(−2, 3), (−1,−4), (2, 5), (4, 9), (52, 375), (5234, 37866), (8,−23), (43, 282),
(1

4
,−33

8

)
are k-general for every k.

Let ` ⊂ S′ be the proper transform of a line in P2, and E1, . . . , E9 the exceptional
divisors of τ so that

J ′ = 3`− E1 − · · · − E9.

Definition 2.4. — A du Val curve of genus g is a degree-3g plane curve C0 having a
point of multiplicity g in p1, . . . , p8, a point of multiplicity g − 1 in p9, and no other
singularities. On S′ we have:

C ′ = 3g`− gE1 − · · · − gE8 − (g − 1)E9, C · J ′ = 1, dim |C ′| = g.

Remarks. — We work on S′.
(a) As soon as p1, . . . , p9 are 1-Halphen general, a du Val curve exists.
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(b) C ′ ∩ J ′ = {p10}, so that p10 is a fixed point for |C ′|. The base point

p10 = p10(g)

plays an important role.
(c) C ′ = gJ ′ +E9, so that |C ′ − J ′| is a du Val linear system of genus g− 1. Thus

the linear system |C ′| contains a reducible element formed by a du Val curve of genus
g − 1 and the elliptic curve J ′ meeting at p10.

Now blow up S′ at p10 and use the following notation:

(2.1)

σ : S −→ S′ is the blow-up,
E10 = σ−1(p10),

J ′ = σ−1(J ′) (with a slight abuse of notation),
J = proper transform of J ′,
C = proper transform of C ′,

Then

J ′ = J + E10,

C = 3g`− gE1 − · · · − gE8 − (g − 1)E9 − E10,(2.2)
J2 = −1, C · J = 0, dim |C| = g,

φ = φ|C| : S −→ S ⊂ Pg, ,

S r J
φ∼= S r {pt},

φ(J) = {pt} = {an elliptic singularity of S}.

Definition 2.5. — The pair (S,C) is a polarized Halphen surface (of genus g).

Proposition 2.6 (Arbarello, Bruno, Sernesi [3]). — S is a limit of smooth K3 surfaces
in Pg.

Theorem 2.7 (Nagata [16], and de Fernex [8]). — Suppose p1, . . . , p9 are k-general.
Let D = d` −

∑
νiEi be an effective divisor with d 6 3k and such that D · J ′ = 0.

Then D = mJ ′ for some m.

Definition 2.8 (Cantat-Dolgachev [6]). — Let m be a positive integer. Then S′ is a
Halphen surface of index m if p1, . . . , p9 are k-Halphen general for k 6 m− 1 but are
not m-Halphen general. Equivalently, if:

(i) OJ′(mJ ′) = OJ′ ,
(ii) OJ′(hJ ′) 6= OJ′ , 1 6 h 6 m− 1.
If S′ is a Halphen surface of index m, we will also say that the blow-up S of S′ at

p10(g) is a Halphen surface surface of index m.
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3. Genus-(2s+ 1) polarized Halphen surfaces of index (s+ 1)

From now on, S′ is a Halphen surface of index s+ 1, with s > 6, and C is a du Val
curve of genus g = 2s+ 1 on S′. We refer to notation (2.1) and (2.2), and we denote
by B the pencil B = (s+ 1)J ′ on S. On S we have:

J ′ = J + E10, J ′2 = 0, J ′ · J = 0, KS = −J = −J ′ + E10

F := E9 − E10, F 2 = −2, J ′ · F = 1

C = gJ ′ + F, g = 2s+ 1, C|J = OJ

A = sJ ′ + F = (g − s− 1)J ′ + F

B = (s+ 1)J ′, C = A+B.

We set
B|C = ξ, A|C = η.

We also assume that J is smooth.

3.1. Preliminary computations

Proposition 3.1. — Suppose S is a Halphen surface of index (s+ 1). Then we have:

h0(S,OS(B)) = 2, h1(S,OS(B)) = 1, h2(S,OS(B)) = 0,(i)
h0(S,OS(2B)) = 3, h1(S,OS(2B)) = 2, h2(S,OS(2B)) = 0,(ii)

h0(S,OS(2B − J)) = 2, h1(S,OS(2B − J)) = 1, h2(S,OS(2B − J)) = 0,(iii)
h0(S,OS(A−B)) = 0, h1(S,OS(A−B)) = 1, h2(S,OS(A−B)) = 0,(iv)
h0(S,OS(B −A)) = 0, h1(S,OS(B −A)) = 1, h2(S,OS(B −A)) = 0.(v)

Proof. — By hypothesis, the pencil (s+ 1)J ′ on S′ is base-point free, and since S is
Halphen of index (s+ 1) we have

h0(S,B) = h0(S′,OS′((s+ 1)J ′)) = 2.

On the other hand h2(S,B) = 0, and from the Riemann-Roch theorem on S we get (i).
We also have h2(S,OS(2B−J)) = h2(S,OS(2B)) = 0. Since OJ(2B) = OJ , and |B|

is base-point free, from the exact sequence

0 −→ OS(2B − J) −→ OS(2B) −→ OJ(2B) −→ 0

we get that

h0(S,OS(2B−J)) = h0(S,OS(B))−1 and h1(S,OS(2B−J)) = h1(S,OS(B))−1.

From
0 −→ OS(B) −→ OS(2B) −→ OB(2B) −→ 0

and again base-point freeness of |B|, we deduce

h0(S,OS(2B)) = 3, h1(S,OS(2B)) = 2, h2(S,OS(2B)) = 0,

and
h0(S,OS(2B − J)) = 2, h1(S,OS(2B − J)) = 1,
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yielding (ii) and (iii). We finally prove (iv) and (v). We have

B −A = J ′ − F = J + 2E10 − E9, B −A− J = 2E10 − E9,

so that

h0(S,OS(A−B)) = h2(S,OS(B −A− J)) = 0,

h2(S,OS(B −A)) = h0(S,OS(A−B − J)) = 0.

From the Riemann-Roch theorem,

χ(S,OS(B −A)) = h0(S,OS(B −A))− h1(S,OS(B −A))

= 1 +
(B −A)2

2
= 1− 2 = −1.

Since J is irreducible, from

0 −→ OS(J − E9) −→ OS(J − E9 + 2E10) −→ O2E10
(J − E9 + 2E10) −→ 0

we get
h0(OS(B −A)) = h0(OS(J − E9)) = 0,

so that
h1(OS(B −A)) = 1.

Finally h0(S,OS(A−B)) = h2(S,OS(A−B)) = 0 and, again from the Riemann-Roch
theorem we get h1(OS(A−B)) = 1. �

Proposition 3.2. — |A| is a base point free linear system of du Val curves of genus s,
whose general element is Brill-Noether general. The pair (S,A) is a polarized Halphen
surface of genus s which is cut out by quadrics. In particular:

h0(S,OS(A)) = s+ 1, h1(S,OS(A)) = 1, h2(S,OS(A)) = 0,(i)
h0(S,OS(A− J)) = s, h1(S,OS(A− J)) = 0, h2(S,OS(A− J)) = 0,(ii)

h0(S,OS(2A)) = 4s− 2, h1(S,OS(2A)) = 1, h2(S,OS(2A)) = 0.(iii)

Finally, if A ∈ |A| is a reducible member, then A = kJ ′+ (k− 1)E10 +As−k where
k > 1 and As−k = (s−k)J ′+E9 is a du Val integral curve of genus s−k. (The linear
system |As−k| will have a base point p10(s− k).)

Proof. — Since B|J = C|J = OJ we also have

(3.1) A|J = OJ .

Hence |A| is a base-point-free linear system of du Val curves of genus s. A consequence
of (3.1) is that

p10(g) = p10(s).

A general member of |A| is Brill-Noether general by Theorem 1.2, since S is unnodal
and of index s+1. As for all du Val curves, we get (i) and (ii) from the exact sequence:

0 −→ OS(A− J) −→ OS(A) −→ OJ(A) −→ 0.
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As far as (iii) is concerned, consider the sequence

0 −→ OS(2A− J) −→ OS(2A) −→ OJ(2A) −→ 0.

Since OJ(2A) = OJ , and

h2(S,OS(2A− J)) = h2(S,OS(2A)) = 0,

we get h1(S,OS(2A)) 6= 0. On the other hand, if we restrict 2A to A and if we notice
that 2A|A is not special, we get a surjection H1(S,OS(A))→ H1(S,OS(2A)). Recall
from (i) that h1(S,OS(A)) = 1, so that h1(S,OS(2A)) = 1. From the Riemann-Roch
theorem we then obtain h0(S,OS(2A)) = 2 + 2A2 = 4s − 2. Since s > 5, and since
the curve A ⊂ Ps−1 is Brill-Noether general, it must be cut out by quadrics. On the
other hand, A is the hyperplane section of the surface S ⊂ P(H0(S,OS(A))) = Ps, so
that S must be cut out by quadrics as well. Let us now come to the last point of the
proposition. Let A ∈ |A| a reducible element and consider the blow-up σ : S → S′ of S′
at p10. Let us write A = σ∗(A′)−E10, and let Y ′ ⊂ S′ be the irreducible component
of A′ intersecting J ′, i.e., J ′ ∩ Y ′ = p10. We then have (A′ − Y ′) · J ′ = 0, and since
the points p1, . . . , p9 are s-general, from Theorem 2.7 we get that (A′− Y ′) = kJ ′ for
some k > 1. On S we have:

sJ ′ + F = A = kJ ′ + σ∗(Y ′)− E10,

where σ∗(Y ′)−E10 is effective, so that s > k. Thus As−k := σ∗(Y ′)−E10 is a du Val
curve of genus s− k. �

Proposition 3.3. — We have: B|C = ξ = g1
s+1 and A|C = η = gs3s−1. Both ξ and η

are base point free and the quadratic hull of

φη(C) ⊂ P(H0(C,OC(η))) = P(H0(S,OS(A))) = Ps

is S.

Proof. — Since B − C = −A, from the exact sequence

0 −→ OS(B − C) −→ OS(B) −→ OC(ξ) −→ 0,

using Proposition 3.2 (ii), and the Riemann-Roch, and Serre’s duality theorems we
obtain h0(C,OC(ξ)) = 2. From this we also deduce that

h0(S,OS(A)) = h0(C,OC(η)) = s+ 1.

Since |A| is a du Val system of curves of genus s whose general member is Brill-Noether
general, |A| is also quadratically normal on S and the image S ⊂ P(H0(S,OS(A))) is
generated by quadrics. Consider the exact sequence

0 −→ OS(2A− C) −→ OS(2A) −→ OC(2η) −→ 0.

From Proposition 3.1 (iv), Proposition 3.2 (iii) and the Riemann-Roch theorem on C,
we get that the restriction map induces an isomorphism

H0(S,OS(2A)) ∼= H0(C,OC(2η))
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and that
h0(S,OS(2A)) = h0(C,OC(2η)) = 4s− 2.

From the surjective homomorphism

S2(H0(C,OC(η))) = S2(H0(S,OS(A))) −→ H0(S,OS(2A)) = H0(C,OC(2η))

we see that the intersection of all the quadrics containing φη(C), i.e., the quadratic
hull of (C, η), is S. �

3.2. On some extensions of torsion-free sheaves on S. — For x ∈ S we want to
study coherent sheaves on S which are extensions:

(3.2) 0 −→ OS(B) −→ Ex −→ Ix(A) −→ 0.

Such extensions are, a priori, only torsion-free sheaves on S, and are classified by
Ext1(Ix(A),OS(B)). From the local to global spectral sequence for the Ext-functors
we get an exact sequence:

0 −→ H1(H om(Ix(A), B)) −→ Ext1(Ix(A),OS(B))

−→ H0(Ext1(Ix(A), B)) −→ H2(H om(Ix(A), B)) −→ 0.

Lemma 3.4. — We have

H om(Ix(A),OS(B)) = H om(OS(A),OS(B)) = OS(B −A)

Ext1(Ix(A),OS(B)) = Cx,and

so that H2(H om(Ix(A),OS(B))) = 0. Moreover, dim Ext1(Ix(A),OS(B)) = 2.

Proof. — Since S is regular, for x ∈ S, a locally free resolution of Ox is given by the
Koszul complex

0 −→ OS −→ O2
S −→ OS −→ Ox −→ 0.

Applying H om(−,OS(B)) and taking cohomology we get

Ext1(Ox(A),OS(B)) = 0.

From
0 −→ Ix(A) −→ OS(A) −→ Ox(A) −→ 0

we get
H om(Ix(A),OS(B)) = H om(OS(A),OS(B)) = OS(B −A).

It follows that

H2(H om(Ix(A),OS(B))) = H2(H om(OS(A),OS(B))) = H2(OS(B −A)) = 0

from Proposition 3.1 (v). Always from Proposition 3.1 (v) we get

0 −→ C = H1(H om(Ix(A),OS(B))) −→ Ext1(Ix(A),OS(B))

−→ H0(Ext1(Ix(A),OS(B))) = C −→ 0. �
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Notice that H1(H om(Ix(A),OS(B))) is naturally identified with

H1(OS(B −A)) = Ext1(OS(A),OS(B)).

We will show next that for every x ∈ S the space of isomorphism classes of non-
split extensions (3.2), which can be identified with P(Ext1(Ix(A),OS(B))), contains
exactly one extension which is not locally free and exactly one extension with s + 2

sections.
The next result is a direct consequence of Theorem 5.1.1 in [11]:

Lemma 3.5. — Extensions of the form (3.2) which are not locally free are parametrized
by Ext1(OS(A),OS(B)). In particular, for every x ∈ S there is, up to scalar, a unique
non-split extension which is not locally free.

Proof. — Following Theorem 5.1.1 in [11], and using Proposition 3.1 (v), we see that
the cohomology group H0(S,OS(A−B−J)) vanishes, so that the Cayley-Bacharach
property holds. From the proof of the Theorem 5.1.1 in [11], it then follows that non-
split extensions which are not locally free are all obtained from the unique non-split
extension

(3.3) 0 −→ OS(B) −→ E −→ OS(A) −→ 0

and sit in the diagram:

(3.4)

0

��

0

��

0 // OS(B) // Ex //

��

Ix(A)

��

// 0

0 // OS(B) // E //

��

OS(A) //

��

0

Cx

��

Cx

��

0 0 �

We will denote by y = p10(s − 1) ∈ J the unique base point of the du Val linear
system |A− J |. The point y will be relevant also in the proof of Lemma 3.29 below,
and we will find it convenient to call it p11.

Lemma 3.6. — Consider an extension of type (3.2).
(a) For every x ∈ S, we have h2(S,Ex(−J)) = 0.
(b) If x 6= y, then h1(S,Ex(−J)) = 0 and h0(S,Ex(−J)) = s.
(c) If x 6= y, the restriction map H1(S,Ex)→ H1(J,Ex|J) is an isomorphism, and

we have an exact sequence

0 −→ Cs −→ H0(S,Ex) −→ H0(S,Ex|J) −→ 0.

(d) If x = y ∈ J then h1(S,Ex(−J)) = 1 and h0(S,Ex(−J)) = s+ 1.
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Proof
(a) For any x ∈ S, consider the exact sequence

(3.5) 0 −→ OS(B − J) −→ Ex(−J) −→ Ix(A− J) −→ 0.

Since B − J and A− J are effective, for any x ∈ S, we have h2(S,Ex(−J)) = 0.
(b) From the exact sequence

0 −→ Ix(A− J) −→ OS(A− J) −→ (A− J)|x −→ 0

and from Proposition 3.2 (ii), we get that h1(S, Ix(A − J)) = 0, if and only if
x 6= y. Since S is of index (s + 1), we have that h1(S,O(B − J)) = 0, and hence
h1(S,Ex(−J)) = 0, if and only if x 6= y.

(c) Follows at once from (a) and (b).
(d) If x = y, we have h0(Iy(A − J)) = s and h1(Iy(A − J)) = 1, so that

h1(S,Ey(−J)) = 1. Since χ(S,Ey(−J)) = s, we must have h0(S,Ey(−J)) = s+ 1. �

Proposition 3.7. — For every x ∈ S there exists a unique, up to a scalar, non-split
extension (3.2) such that h0(S,Ex) = s + 2. If x /∈ J such an extension is a locally
free sheaf and Ex|J = O2

J . If x ∈ J such an extension is not locally free.

Proof. — We first observe that χ(S,Ex) = χ(S,Ex(−J)) = s for every x ∈ S. Since
from Propostions 3.1 (i) and 3.2 (i) we have h2(S,Ex) = 0, it follows that h0(S,Ex) =

s+ 2 if and only if h1(S,Ex) = 2.

Case x /∈ J . — In this case, restricting an extension of the form (3.2) to J we get an
extension

(3.6) 0 −→ OJ −→ Ex|J −→ OJ −→ 0

yielding a homomorphism

ρ : Ext1
S(Ix(A),OS(B)) −→ Ext1

J(OJ ,OJ) = H1(J,OJ).

This homomorphism is surjective. Indeed, look at the subspace

H1(S,OS(B −A)) ∼= H1(H om(Ix(A),OS(B))) ⊂ Ext1
S(Ix(A),OS(B)).

On this subspace ρ induces the restriction map

H1(S,OS(B −A)) −→ H1(J,OJ(B −A)) = H1(J,OJ)

induced by

0 −→ OS(B −A− J) −→ OS(B −A) −→ OJ(B −A) −→ 0,

which is an isomorphism. From (3.6), we see that h1(S,Ex|J) = 2 or 1, depending
on whether the extension class of Ex|J is zero or non-zero. It follows that, up to a
non-zero scalar, there exists a unique extension Ex whose class is in the kernel of ρ.
For such an extension we have h0(S,Ex) = s+2. By Lemma (3.5), the extension Ex is
locally free because it does not come from a non-zero element of H1(S,OS(B − A)).
We interrupt the proof of Proposition 3.7 to prove the following lemma.

Lemma 3.8. — Consider the unique non-split extension (3.3). Then h0(S,E ) = s+ 2.
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Proof. — Indeed, consider a diagram (3.4) where x /∈ J , and where (3.6) is non-split.
We get h1(S,Ex|J) = 1, so that, by Lemma 3.6, h1(S,Ex) = 1, and, as a consequence,
h0(S,Ex) = s + 1. From diagram (3.4) it follows that h0(S,E ) 6 s + 2. Now look at
the same diagram in the case in which (3.6) is split. Then h0(S,Ex) = s+ 2, so that
h0(S,E ) > s+ 2. �

Let us resume the proof of Proposition 3.7.

Case x ∈ J . — In this case, from a local computation, we get that Tor1(Ox,OJ) = Cx,
and Tor1(Ix,OJ) = 0. This means that

0 −→ OJ −→ Ex|J −→ Ix|J −→ 0

is exact and that there is a an exact sequence

0 −→ Tor1(Ox,OJ) ∼= Cx −→ Ix|J −→ OJ(−x) −→ 0.

Suppose first that Ex is locally free. Then Ex|J is locally free as well, and by compo-
sition we get a surjection of locally free sheaves

Ex|J −→ OJ(−x) −→ 0.

Hence we have an extension

0 −→ OJ(x) −→ Ex|J −→ OJ(−x) −→ 0

which splits since h1(J,OJ(2x)) vanishes. In particular h1(J,Ex|J) < 2, for all x ∈ J ,
whenever Ex is locally free. Let us then consider an extension of the form (3.2) which is
not locally free. By diagram (3.4), the restriction Ex|J is not torsion-free, and since OJ
is torsion-free, the torsion subsheaf of Ex|J is contained and hence isomorphic to Cx,
the torsion subsheaf of Ix|J . Let E′ be the torsion-free quotient of Ex|J . Then we have
an exact sequence

0 −→ Cx −→ Ex|J −→ E′ −→ 0

and an extension 0 → OJ → E′ → OJ(−x) → 0 which is necessarily split because
h1(J,OJ(x)) = 0. Then h1(J,Ex|J) = h1(S,E′) = 2. From Lemma 3.6 (a), we get
h1(S,Ex) > 2, so that h0(S,Ex) > s+2. But Ex is a subsheaf of E , thus, by Lemma 3.8,
we conclude that h0(J,Ex) = s+ 2. �

Definition 3.9. — For every x ∈ S, we will denote by

(3.7) ex : 0 −→ OS(B) −→ Ẽ x −→ Ix(A) −→ 0

the unique non-split extension with h0(S, Ẽx) = s+ 2, given by Proposition 3.7.

We now relativize this picture. We let T be a copy of S. Let p and q be the
projections of S × T to S and T respectively. Let ∆ ⊂ S × T be the diagonal. It is
straightforward to see that Ext1S×T (I∆(p∗A), p∗(B)) is a rank 2 locally free sheaf
on T whose fiber over x ∈ T is Ext1(Ix(A), B). We denote by P the associated
P1-bundle. The association x 7→ [ex] defines a section e : T → P . Let φ and ψ be the
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projections from S × P to S × T and P , respectively. From Corollary 4.4 in [13] we
get a universal extension over S × P

0 −→ φ∗(p∗OS(B))⊗ ψ∗(OP (1)) −→ EP −→ φ∗(I∆(p∗OS(A)) −→ 0.

If we identify T with its image in P via the section e, we get an extension over S×T

(3.8) 0 −→ p∗OS(B) −→ ẼT −→ (I∆(OS(A))) −→ 0

whose fiber over x ∈ T is ex (as in Definition 3.9).

3.3. Stable vector bundles on C with s+ 2 linearly independent sections

In this section, for every x ∈ S, we consider, the restriction to C of the sheaf Ẽ x

defined in (3.9). Let
Ex := Ẽx|C .

We observed that if x /∈ J , the sheaf Ex is a locally free sheaf. We will show that
h0(C,Ex) = s+ 2 and that Ex is stable.

Proposition 3.10. — For all x ∈ S, h0(C,Ex) = s+ 2. If x, y ∈ J we have Ex = Ey.

Proof. — We first consider the case x /∈ J . Since, in this case, Ẽx is a locally free
sheaf of rank 2 with determinant C, from Serre’s duality we have :

Ẽ ∨x = Ẽx(−C), hi(S, Ẽ ∨x ) = hi(S, Ẽx(−C)) = h2−i(S, Ẽx(−J)).

From Lemma 3.6 we have hi(S, Ẽx(−J) = 0, for i > 1, and then hi(S, Ẽx(−C)) = 0,
for i 6 1. We conclude the case x /∈ J by looking at the exact sequence

0 −→ Ẽx(−C) −→ Ẽx −→ Ex −→ 0.

Consider now the case x ∈ J . In this case Ẽx is not locally free, and sits in a
diagram (see the proof of Lemma 3.5):

(3.9)

0

��

0

��

0 // OS(B) // Ẽx //

��

Ix(A)

��

// 0

0 // OS(B) // E //

��

OS(A) //

��

0

Cx

��

Cx

��

0 0

where E is the unique non-split extension of OS(A) by OS(B). In particular, since
J ∩ C = ∅ for all x ∈ J we have that Ex = E |C . From Remark 3.8, we know that
h0(S,E ) = s + 2. Since E is a locally free sheaf of rank 2 with determinant C, we
have from Serre’s duality:

(3.10) E ∨ = E (−C) hi(S,E ∨) = hi(S,E (−C)) = h2−i(S,E (−J)).
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We then need to prove that

(3.11) hi(S,E (−C)) = 0, i 6 1,

i.e., we need to show that

(3.12) hi(S,E (−J)) = 0, i > 1.

This is done via a computation which is similar but easier than the one in
Lemma 3.6. We leave this to the reader. �

In order to prove stability of the locally free sheaf Ex for all x ∈ S we first prove
an analogue of Lemma 4.3 of [2].

Lemma 3.11. — Let D ⊂ C ⊂ S be a finite closed subscheme of length d > 1. Assume
that

(3.13) h0(S,ID(A)) > max
{

3, s− d− 1

2

}
.

Then d = 1.

Proof. — We view S as embedded in Ps = PH0(S,O(A)). Consider a hyperplane H
passing through D, i.e., defining a non-zero element of H0(S,ID(A)). We set A =

H ∩ S. If A is integral we proceed exactly as in Lemma 4.3 of [2] and we obtain
that, if d > 2, then Cliff(A) 6 1. Since A is a du Val linear system, A|A is very
ample, using Theorem A in the appendix (with J. Harris) of [7] (see also [9, Th.A])
it follows that Cliff(A) = 1. Let D∗ be the adjoint divisor to D, with respect to a
general section s ∈ H0(A,KA), in the sense of Definition 2.8 in [9]. If we set L = KA,
M1 = D, M2 = D∗ in the proof of the nonvanishing theorem of Green-Lazarsfeld
(in the appendix of [10]) we get that the Koszul cohomology group Ks−3,1(A) 6= 0.
From duality we obtain K1,2(A) 6= 0, i.e., the canonical model of A is not cut out by
quadrics. But, by Proposition 3.2, the surface φA(S) is cut out by quadrics and A is
a hyperplane section of φA(S). This is impossible. This shows that d = 1.

Suppose that A is not integral. Then, from Lemma 3.2, A = kJ ′+(k−1)E10+As−k
where k > 1 and As−k = (s−k)J ′+E9 is a du Val integral curve of genus s−k. Such
linear system has a base point at r = p10(s− k) ∈ J . Notice that r does not lie on D
as J and C are disjoint and D ⊂ C.

Let q = q10 = E10 ∩ C. and write

D = D′ + lq, degD = d, k > 1, l 6 k − 1.

We have

(3.14) h0(S,ID(A)) = h0(S,ID′(As−k)) > max
{

3, s− d− 1

2

}
.

In particular we observe that s − k > 3. We may view D′ as a subscheme of the
integral curve As−k on S . As such it defines a rank-one torsion-free sheaf on As−k
which we still denote by D′. From (3.14) we get

(3.15) h0(As−k, ωAs−k
(−D′)) > 2.
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Thus, by the Riemann-Roch theorem on As−k:

(3.16)
h0(As−k,OAs−k

(D′)) = h0(As−k, ωAs−k
(−D′)) + (d− l)− s+ k + 1

>
d+ 1

2
− l + k + 1

Therefore either h0(As−k,OAs−k
(D′)) = 1 and d + 1 6 2, implying that d 6 1,

which is precisely what we aim at, or h0(As−k,OAs−k
(D′)) > 2, which, together with

(3.15) tells us that D′ contributes to the Clifford index of As−k. Let us see that this
case can not occur. By (3.16) we get

(3.17)
Cliff D′ = d− l − 2h0(As−k,OAs−k

(D′)) + 2

6 d− l − 2
(d+ 1

2
− l + k + 1

)
+ 2 6 −1 + l − 2k 6 −k − 2

and this is impossible because As−k verifies the hypotheses of Theorem A in the
appendix of [7] or in [9]. �

As a Corollary, exactly as in [2], we get:

Corollary 3.12. — For all x ∈ S the locally free sheaf Ex is stable on C.

Proof. — Since Lemmas 5.2, 5.3 and 5.4 of [2] hold verbatim, we can apply Proposi-
tion 5.5 of [2], and obtain the result. �

There is another important consequence of Lemma 3.11 to be used in the last
section. It is based on Mukai’s Lemma 1 in [15] whose statement we include for the
convenience of the reader.

Lemma 3.13 (Mukai). — Let E be a rank two vector bundle on C with canonical
determinant, and let ζ be a line bundle on C. If ζ is generated by global sections, then
we have

dim HomOC
(ζ, E) > h0(C,E)− deg ζ.

Corollary 3.14. — Let

0 −→ L −→ E −→ KCL
−1 −→ 0

be an extension on C where |L| is a is a base-point-free g1
s+2. Then E is stable.

Proof. — This is proved exactly as in Remark 5.11 of [2] (with E instead of EL) by
using Mukai’s Lemma 3.13, and Lemma 5.3 of [2], which holds in our situation as
well, while Lemma 4.3 of [2] can be substituted by Lemma 3.11 above. �

The relevance of this Corollary is the following result asserting the existence on C
of base-point-free g1

s+2’s.

Lemma 3.15. — Let C be a smooth hyperplane section of an (s + 1)-special Halphen
surface. Then there exists on C a base-point-free g1

s+2.
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Proof. — Here we can repeat, word by word, the proof of item (iii) of Proposition 4.5
in [2]. Recalling the notation introduced at the beginning of this section, the only
result we need to check is that, also in our situation h0(C, ηξ−1) = 1. We look at the
sequence

0 −→ OS(−2B) −→ OS(A−B) −→ ηξ−1 −→ 0

and we readily conclude using Proposition 3.1, (iii), (iv) and Serre’s duality. �

Remark 3.16. — Let C be a a smooth genus g curve. To any pair (v, L) where v is a
vector in the cokernel of the Gauss-Wahl map (1.1), and L is a base-point-free pencil
on C, Voisin, [18] associates a rank-two vector bundle EL,v, often denoted simply by
EL. This vector bundle is an extension

0 −→ L −→ EL −→ KCL
−1 −→ 0

having the property that

(3.18) h0(C,EL) = h0(C,L) + h0(C,KCL
−1).

We call such a bundle a Voisin bundle. Voisin interprets the vector v as a ribbon
in Pg having the curve C as hyperplane section. Thanks to Theorem 7.1 in [19]
and Theorem 3 in [3], whenever g > 11, and whenever the Clifford index of C is
greater or equal than 3, this ribbon can be integrated to a bona fide surface X ⊂ Pg

having isolated singularities and canonical hyperplane sections, among which C itself.
When X is a K3 surface, EL = EL,X is nothing but the restriction to C of the
Lazarsfeld-Mukai bundle EL,X on X whose dual FL,X is defined by

0 −→ FL,X −→ H0(C,L)⊗ OS −→ L −→ 0.

When g = 2s+ 1 and |L| is a base-point-free g1
s+2 on C, then

(3.19) h0(C,EL,X) = s+ 2.

3.4. Brill Noether loci on the hyperplane section of an (s + 1)-special Halphen
surface. — For any x ∈ S we have produced a rank-two, locally free, stable, sheaf

Ex := Ẽ x|C

on C with determinant equal to KC and having s + 2 linearly independent sections
(Proposition 3.10, and Corollary 3.12).

Let
MC(2,KC , s+ 2) = {vector bundles E on C | rkE = 2, detE = KC , h

0(E) > s+ 2}

be the Brill-Noether locus of stable rank-two locally free sheaves on C whose deter-
minant is KC with at least s+ 2 sections.

Via the universal family of extensions (3.8), we can define a morphism:

(3.20)
σ : T = S −→MC(2,KC , s+ 2)

x 7−→ Ex.

By construction the map σ contracts the curve J to a point, but we are now going
to show that this is the only fiber of σ containing more than one point.
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Proposition 3.17. — The restriction of σ to S r J is injective.

Proof. — By construction, if x /∈ C, the sheaf Ex is an extension

0 −→ ξ −→ Ex −→ η −→ 0

while, if x ∈ C, the sheaf Ex is an extension

0 −→ ξ(x) −→ Ex −→ η(−x) −→ 0.

It will suffice to show that

dim HomOC
(ξ, Ex) = 1.

In order to do this, we consider the exact sequence on S:

0 −→ Ẽx(−B − C) −→ Ẽx(−B) −→ Ex ⊗ ξ−1 −→ 0.

Since h0(S, Ẽx(−B−C)) = 0, and h0(S, Ẽx(−B)) = 1, it will be enough to show that

H1(S, Ẽx(−B − C)) = 0.

From

(3.21) 0 −→ OS(−C) −→ Ẽx(−B − C) −→ Ix(−2B) −→ 0

we obtain χ(S, Ẽx(−B − C)) = 2s+ 1. It will then be enough to show that

h2(S, Ẽx(−B − C)) = 2s+ 1.

From Serre duality, and from the identification Ẽx(−C) = Ẽ ∨x , we have that

h2(S, Ẽx(−B − C)) = h2(S, Ẽ ∨x (−B)) = h0(S, Ẽx(B − J)).

Let us consider the base-point-free-pencil trick on S for B. From the exact sequence

0 −→ OS(−B) −→ H0(S,B)⊗ OS −→ OS(B) −→ 0

we obtain

0 −→ Ẽx(−B − J) −→ H0(S,B)⊗ Ẽx(−J) −→ Ẽx(B − J) −→ 0.

From (3.21) we obtain
h0(S, Ẽx(−B − J)) = 0.

From Lemma 3.6 we have h1(S, Ẽx(−J)) = 0 and, since χ(S, Ẽx(−J)) = s, we also
get h0(S, Ẽx(−J)) = s. Then it is enough to show that

(3.22) h1(S, Ẽx(−B − J)) = 1.

We will do this considering the exact sequence:

(3.23) 0 −→ OS(−J) −→ Ẽx(−B − J) −→ Ix(A−B − J) −→ 0.

We first observe that, from Serre duality, from the identification Ẽx(−C) = Ẽ ∨x ,
and from the exact sequence

0 −→ OS(B −A) −→ Ẽx(−A) −→ Ix −→ 0

we get

(3.24) h2(S, Ẽx(−B − J)) = h0(S, Ẽx(−A)) = 0.
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We then compute hi(S,Ix(A−B − J)) from

0 −→ Ix(A−B − J) −→ OS(A−B − J) −→ OS(A−B − J)|x −→ 0.

We obtain
0 −→ C −→ H1(S,Ix(A−B − J)

−→ H1(S,OS(A−B − J)) = H1(S,OS(B −A)) = C −→ 0

and H2(S,Ix(A−B − J)) = 0 Consider then (3.23). We have obtained

0 −→ H1(S, Ẽx(−B − J)) −→ C2 −→ C −→ 0,

which gives h1(S, Ẽx(−B − J)) = 1, �

Proposition 3.18. — σ is surjective.

Proof. — Since h0(C,E) > s + 2, by the preceding lemma, there must be an exact
sequence

0 −→ ξ(D) −→ E −→ η(−D) −→ 0

for some effective divisor D of degree d on C. Since E is stable we must have

deg(ξ(D)) = s+ 1 + d 6 deg(E)/2 = 2s,

i.e., d 6 s− 1. We have

s+ 2 6 h0(ξ(D)) + h0(η(−D)) = 2h0(η(−D))− s+ 1 + d,

so that
h0(η(−D)) > s− d− 1

2
>
s+ 2

2
> 3

since s > 5. We can the apply Lemma 3.11, and deduce that d 6 1. Two cases can
occur. Either:

0 −→ ξ(p) −→ E −→ η(−p) −→ 0,

0 −→ ξ −→ E −→ η −→ 0.or

In the first case E ∼= Ep because the extension does not split and is unique. In the
second case the coboundary

H0(C, η) −→ H1(C, ξ)

has rank one and then it corresponds to a point of the quadric hull φ|η|(C). From
Proposition 3.3 the quadratic hull of φ|η|(C) is exactly S. We thus find a point x ∈ S
such that

H0(S, Ix(A)) = Im[H0(S,E)→ H0(C, η) = H0(S,A)].

Again by uniqueness, we have E = Ex = Ẽx|C . �

At this stage we have a well defined morphism

σ : S −→MC(2,KC , s)

such that
(a) σ(J) = [E], where E = Ex, and x is any point in J ,
(b) σ : S r J →MC(2,KC , s) r {[E]} is bijective.
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In particular there is an induced, bijective, morphism

(3.25) σ : S −→MC(2,KC , s).

In order to prove that σ is an isomorphism, in the next sub-section we will prove

Proposition 3.19. — MC(2,KC , s) r {[E]} is smooth.

Proposition 3.20. — MC(2,KC , s) is normal.

Since S is normal the consequence will be:

Corollary 3.21. — σ is an isomorphism.

3.5. The Petri map for some bundles on C. — Let (S,C) be as in the previous
section. We denote by MC(2,KC) the moduli space of rank two, semistable vector
bundles on C with determinant equal to KC , containing the Brill-Noether locus

MC(2,KC , s) = {[F ] ∈MC(2,KC) | h0(C,F ) > s+ 2}.

A point [F ] ∈ MC(2,KC), corresponding to a stable bundle F , is a smooth point
of MC(2,KC), and

T[F ](MC(2,KC)) = H0(S2F )∨ ∼= C3g−3.

In particular, since χ(C, S2F ) = 3g − 3, this shows that if F is any stable rank-two
locally free sheaf of determinant KC , then

(3.26) h1(S2F ) = 0.

It is well known that the Zariski tangent space to the Brill-Noether locus
MC(2,KC , s) at a point [F ] can be expressed in terms of the “Petri” map

(3.27) µ : S2H0(C,F ) −→ H0(C, S2F ).

Indeed

(3.28) T[F ](MC(2,KC , s)) = Im(µ)⊥.

We will compute the tangent space at Ex for x /∈ J by considering the map

S2H0(S, Ẽx) −→ H0(S, S2Ẽx).

From the exact sequence (3.2) we deduce the following exact sequence

(3.29) 0 −→ Ẽx(B) −→ S2Ẽx −→ I 2
x (2A) −→ 0.

Proposition 3.22. — For x /∈ J , we have:
(i) h0(S, S2Ẽx(−C)) = 0, and h1(S, S2Ẽx(−C)) = 5,
(ii) h0(S, Ẽx(B)) = 2s+ 3, h1(S, Ẽx(B)) = 2, and h2(S, Ẽx(B)) = 0,
(iii) h1(S, S2Ẽx) = 3.
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Proof. — Consider the exact sequence

(3.30) 0 −→ Ẽx(−A) −→ S2Ẽx(−C) −→ I 2
x (A−B) −→ 0.

From Proposition 3.2 we get

h0(S,I 2
x (A−B)) = 0,

and from (3.24) we get h0(S,Ex(−A)) = 0, so that h0(S, S2Ẽx(−C)) = 0. From
Proposition 3.1 (iv) we get

χ(S, Ẽx(−A)) = χ(S,OS(B −A)) + χ(S,Ix) = −1.

Moreover, from Proposition 3.1 (iv), and from the exact sequences

0 −→ Ix(A−B) −→ OS(A−B) −→ OS(A−B)|x −→ 0

and
0 −→ I 2

x (A−B) −→ Ix(A−B) −→ OS(A−B)|x ⊗Ix/I
2
x −→ 0

we get χ(S,I 2
x (A−B)) = χ(S,OS(A−B))− 3 = −4. It follows that

χ(S, S2Ẽx(−C)) = −5

In order to prove (i) it suffices to show that h2(S, S2Ẽx(−C)) = 0. This follows at
once from the two equalities:

h2(S,I 2
x (A−B)) = h2(S,OS(A−B)) = 0,

h2(S,Ex(−A)) = h2(S,OS(B −A)) + h2(S,Ix) = 0.and

Let us consider the cohomology of Ẽx(B). From the exact sequence

(3.31) 0 −→ OS(2B) −→ Ẽx(B) −→ Ix(C) −→ 0

and from Proposition 3.1 (ii), we get that χ(S, Ẽx(B)) = 2s+ 1 and h2(S, Ẽx(B)) = 0.
To complete item (ii) it suffices to prove that h1(S, Ẽx(B)) = 2. In Lemma 3.6
we showed that, when x /∈ J , then h0(S, Ẽx(−J)) = s and h1(S, Ẽx(−J)) = 0.
From (3.23) we have h0(S, Ẽx(−B − J)) = 0 and h1(S, Ẽx(−B − J)) = 1. Since
χ(S, Ẽx(−B − J)) = −1, this gives h2(S, Ẽx(−B − J)) = 0.

We apply all of this to the exact sequence:

(3.32) 0 −→ Ẽx(−B − J) −→ Ẽx(−J) −→ Ẽx(−J)|B −→ 0

and we deduce that h1(B, Ẽx(−J)|B) = h1(B, Ẽx(B)|B) = 0 (recall that B and J are
trivial on B). From the sequence

(3.33) 0 −→ Ẽx −→ Ẽx(B) −→ Ẽx(B)|B −→ 0

we get h1(S, Ẽx(B)) 6 2. In order to prove that equality holds, we consider the base-
point-free-pencil trick sequence for B twisted by Ẽx:

(3.34) 0 −→ Ẽx(−B) −→ H0(S,OS(B))⊗ Ẽx −→ Ẽx(B) −→ 0.

Since h2(S, Ẽx(−B)) = 0 and h1(S, Ẽx(−B)) = 2, we get h1(S, Ẽx(B)) = 2. This
proves (ii).
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As for (iii), using (ii), the sequence 3.29, and the fact that

h1(S,I 2
x (A)) = h1(S,OS(2A)) = 1,

we get h1(S, S2Ẽx) 6 3. In order to prove equality we consider the sequence:

(3.35) 0 −→ S2Ẽx(−J) −→ S2Ẽx −→ S2Ẽx|J −→ 0.

Since Ẽx|J ∼= O2
J and h2(S, S2Ẽx(−J)) = h0(S, S2Ẽ ∨x ) = 0, we have

h1(S, S2Ẽx) > h1(S, S2Ẽx|J) = 3. �

We consider again the two sequences

0 −→ Ẽx(B) −→ S2Ẽx −→ I 2
x (2A) −→ 0(3.36)

0 −→ OS(2B) −→ Ẽx(B) −→ Ix(A+B) −→ 0(3.37)

and the two exact sequences (the first of which defines the vector space U)

0 −→ U −→ S2H0(Ẽx) −→ S2H0(IxA) −→ 0,(3.38)
0 −→ S2H0(S,OS(B)) −→ U −→ H0(S,OS(B))⊗H0(Ix(A)) −→ 0.(3.39)

Proposition 3.23. — The map c : S2H0(S, Ẽx)→ H0(S, S2Ẽx) is surjective.

Proof. — From sequences (3.37), (3.38) and (3.39) we get a diagram:

0 // U //

u
��

S2H0(S, Ẽx)

c
��

l // S2H0(S,Ix(A))

F
��

// 0

0 // H0(S, Ẽx(B)) // H0(S, S2Ẽx)
m // H0(I 2

x (2A)) // 0

wherem is surjective from Proposition 3.22 (ii), (iii), and the fact that h1(I 2
x (2A))=1,

(as follows from Proposition 3.2 (iii)). We claim that u is an isomorphism. Consider
the diagram

0 // S2H0(S,OS(B)) //

��

U

u
��

// H0(S,OS(B))⊗H0(S,Ix(A))

��

// 0

0 // H0(S,OS(2B)) // H0(S, Ẽx(B))
v // H0(S,Ix(A+B))

Since, from base-point-free-pencil trick, S2H0(OS(B)) → H0(OS(2B)) is an isomor-
phism and

H0(S,OS(B))⊗H0(Ix(A)) −→ H0(Ix(A+B))

is injective, the claim follows, via a dimension count, from Proposition 3.22 (ii). From
Lemma 5.13 of [2], which can be applied verbatim in our situation, also F is surjective,
so that c is also surjective. �
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As a corollary we have:

Corollary 3.24. — For every x /∈ J ,

dimT[Ex](MC(2,KC , s)) = 2.

Proof. — Consider the commutative diagram of maps:

S2H0(C,Ex)
a // H0(C, S2Ex)

S2H0(S, Ẽx)

b

OO

c
// H0(S, S2Ẽx)

d

OO

Proposition 3.22 (i) implies that d is injective, while Proposition 3.23 tells that c is
surjective. Therefore

corank(a) 6 corank(d).

From the sequence

0 −→ S2Ẽx(−C) −→ S2Ẽx −→ S2Ex −→ 0,

from (3.26), and from Proposition 3.22 (ii) and (iii) we get that corank(a) 6 2. Since
Coker(a)⊥ = T[Ex]MC(2,KC , s), we conclude that dim[T[Ex]MC(2,KC , s)] 6 2. But
from Proposition 3.18 it follows that T[Ex]MC(2,KC , s) has dimension at least 2

at [Ex], and this proves the result. �

Proof of Proposition 3.19. — The fact that σ : S r J → MC(2,KC , s) r {[E]} is
bijective tells us that dimMC(2,KC , s) = 2. Proposition 3.19 follows then from Corol-
lary 3.24. �

The surface MC(2,KC , s) has an isolated singularity at the point [E], and is oth-
erwise smooth. In order to show that MC(2,KC , s) is normal it suffices to prove the
following Lemma

Lemma 3.25. — dimT[E]MC(2,KC , s) = 3.

Proof. — The proof will follow the path that led to the proof of Corollary 3.24.
The ingredients will be essentially the same but the various computations will be
drastically different. We start with the commutative diagram:

(3.40)

S2H0(C,E)
a // H0(C, S2E)

S2H0(S,E )

b

OO

c
// H0(S, S2E )

d

OO

where
0 −→ OS(B) −→ E −→ OS(A) −→ 0
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is the unique non split extension of OS(A) by OS(B), and E = E|C . We must prove
that

(3.41) corank a = 3.

Lemma 3.26. — h0(S2E (−C)) = h2(S2E (−C)) = 0, h1((S2E (−C)) = h1((S2E ) = 1.

Proof. — From the basic sequence 0 → OS(B) → E → OS(A) → 0, we deduce
the exact sequence 0 → OS(B − A) → E (−A) → OS → 0. The coboundary of this
sequence is given by the extension class which is not zero. It follows that h0(E (−A)) =

h2(E (−A)) = 0. Now look at the exact sequence

0 −→ E (−A) −→ S2E (−C) −→ OS(A−B) −→ 0.

By what we just remarked, we get that h0(S2E (−C)) = h2(S2E (−C)) = 0. On the
other hand χ(S2E (−C)) = −1, so that h1((S2E (−C)) = 1. From the exact sequence

(3.42) 0 −→ S2E (−C) −→ S2E −→ S2E −→ 0

and the fact that h1(S2E) = 0 (Corollary 3.14), we deduce that h1(S2E ) 6 1. Since
OJ(A) = OJ(B) = OJ we have an exact sequence

0 −→ OJ −→ E|J −→ OJ −→ 0,

from which we deduce the exact sequence

0 −→ E|J −→ S2E|J −→ OJ −→ 0.

It follows that h1(S2E|J) 6= 0. Since h2(S2E (−J)) = h0(S2E (−2C)) = 0 we get that
h1(S2E ) 6= 0. This proves the lemma. �

Lemma 3.27. — Both b and d, in the above diagram are isomorphisms.

Proof. — The statement about b follows from (3.11). The statement about d follows
from the exact sequence (3.42) and Lemma 3.26. �

To prove Lemma 3.25, we are now reduced to proving

(3.43) corank c = 3.

Consider diagram 3.9. The first row is exact at the level of global sections. Also since
A · J = 0, we must have H0(S,Ix(A)) = H0(S,OS(A − J)), whenever x ∈ J . It fol-
lows that the homomorphism H0(S,E )→ H0(S,OS(A)) factors through a surjective
homomorphism onto H0(S,OS(A− J)), and we have the exact sequence

0 −→ H0(S,OS(B)) −→ H0(S,E ) −→ H0(S,OS(A− J)) −→ 0

giving rise to two exact sequences

0 −→ U −→ S2H0(S,E ) −→ S2H0(S,OS(A− J)) −→ 0,

0 −→ S2H0(S,OS(B)) −→ U −→ H0(S,OS(B))⊗H0(S,OS(A− J)) −→ 0,
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and a diagram

(3.44)

0 // U //

u
��

S2H0(E )

c
��

l // S2H0(OS(A− J))

F
��

// 0

0 // H0(E (B)) // H0(S2E )
m // H0(OS(2A))

α // H1(E (B)) ∼= C // 0

To explain the homomorphism α, observe that, a priori, we have an exact sequence

H0(OS(2A))
α−−→ H1(E (B)) −→ H1(S2E ) −→ H1(OS(2A) −→ H2(E (B)).

We already know that h1(S2E ) = h1(OS(2A) = 1, therefore it suffices to prove the
following lemma.

Lemma 3.28. — h1(E (B)) = 1, h2(E (B)) = 0.

Proof. — Look at the exact sequence coming from the base-point-free-pencil-trick

0 −→ E (−B) −→ H0(S,OS(B))⊗ E −→ E (B) −→ 0.

The cohomology of E (−B) is readily computed via

0 −→ OS −→ E (−B) −→ OS(A−B) −→ 0

and one gets h0(E (−B)) = h2(E (−B)) = 0, h1(E (−B)) = 1. The lemma follows from
this. �

We can now go back to diagram (3.44).

Lemma 3.29. — The homomorphism u is surjective.

Proof. — Since h1(S,OS(2B)) = 2, h1(S,E (B)) = h1(S,OS(C)) = 1, we have the
following diagram with exact rows.

(3.45)

0 // S2H0(OS(B)) //

∼=
��

U

u
��

w // H0(OS(B))⊗H0(OS(A− J))

γ
��

// 0

0 // H0(OS(2B)) // H0(E (B))
r // H0(OS(C))

β
// C2 // 0

The kernel of γ is H0(OS(A−B − J) = 0. The image of r has dimension

2s = dimH0(OS(B)⊗H0(OS(A− J)). �

Let us go back to diagram (3.44). Let W = Im(m). We have

Im(F ) ⊂W ⊂ H0(OS(2A)), codimH0(OS(2A))W = 1,

dim(Coker(c) = dim Coker{F : S2H0(OS(A− J))→W}

= dim Coker{F : S2H0(OS(A− J))→ H0(OS(2A))} − 1.
(3.46)

The homomorphism

F : S2H0(OS(A− J)) −→ H0(OS(2A))
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factors through H0(OS(2A− 2J)). Let us study the linear system |A− J |. We have

A− J = (s− 1)J + (s− 1)E10 + E9.

Since (A − J) · E10 = 0, we may as well work in S′. There we consider the divisor
A′ = sJ ′ + E9, so that

(3.47) A′ − J ′ = (s− 1)J ′ + E9

whose proper transform under S → S′ is A− J . Let τ : S1 → S′ be the blow-up of S′
at p11 = p10(s− 1). Let J1 be the proper transform of J ′ and E11 the preimage of p11

under τ . The proper transform of (3.47) in S1 is

A1 = (s− 1)J1 + (s− 2)E11 + E9 = τ∗(A′ − J ′)− E11.

By construction

H0(OS1
(A1)) = H0(OS(A− J)) = H0(OS′(A

′ − J ′)).

We see that A1 is a Brill-Noether-Petri du Val curve of genus s− 1; since s− 1 > 5,
its canonical image is projectively normal. As a consequence the homomorphism λ

S2H0(OS1(A1))
λ−→ H0(OS1(2A1))

is surjective. On the other hand the sections of H0(OS(A− J)) vanish on p11 so that
we may identify H0(OS1

(2A1)) with Im(F ). Since A1 is a du Val curve on S1 we have
h0(OS1

(2A1)) = 4s− 6 while h0(OS(2A)) = 4s− 2 (we are using Proposition 3.2 for
both A and A1). From (3.46), it follows that dim(Coker(c)) = 3. This finishes the
proof of Lemma 3.25. �

Proof of Proposition 3.20 and Corollary 3.21. — This follows from the very well known
fact that an isolated surface singularity with embedding dimension equal to 3 is nor-
mal. �

4. On the corank of the Gauss-Wahl map of a general du Val curve

We will prove our main Theorem 1.3 by showing that in fact the corank-one prop-
erty holds for du Val curves which are hyperplane sections of Halphen surfaces of
index (s+1).

We recall that surfaces with canonical hyperplane sections which are not cones, or
smooth K3 surfaces, are classified by Epema (see e.g. [3, §9]).

If S is such a surface, we have a diagram

(4.1)
S

p
��

q
// S ⊂ Pg

S0

where q is the minimal resolution and S0 is a minimal model of S. The minimal
model S0 can be either a ruled surface over a curve Γ or P2. Notice that, since S0 is
ruled, S has many minimal models which are connected by birational transformations
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whose graph is dominated by S. For instance, if S0 is a rational surface, we can always
assume that S0 = P2 (see for instance [3, §11.3]). Suppose C ⊂ S is a du Val curve,
so that S0 = P2, and

C = 3g`− gE1 − · · · − gE8 − (g − 1)E9 − E10.

We can change the plane model C0 by any quadratic transformation centered at any
three points among p1, . . . , p10. We will call this transformed curve a birational du
Val curve.

Before proving the main Theorem of this section, we recall Theorem 6.1 in [2]:

Theorem 4.1. — Let (S,C) be a general polarized K3 surface with Pic(S) ∼= Z·[C] and
g = 2s+ 1. Let v = (2, [C], s) so that Mv(S) is a smooth polarized K3 surface. There
is a unique, generically smooth, 2-dimensional irreducible component VC(2,KC , s) of
MC(2,KC , s), containing the Voisin bundles EL, with L ∈ W 1

s+2(C), such that σ
induces an isomorphism of Mv(S) onto VC(2,KC , s)red. In particular VC(2,KC , s)red

is a K3 surface.

Theorem 4.2. — Let C ⊂ Pg−1 be a du Val curve of genus g = 2s + 1 > 11 which
is the hyperplane section of a polarized Halphen surface of index (s + 1). Then the
corank of the Gauss-Wahl map for C is equal to 1.

We will start by proving an intermediate result which, in fact, catches the geometric
significance of Theorem 4.2.

Theorem 4.3. — Let C ⊂ Pg−1 be a du Val curve of genus g = 2s+ 1 > 11 which is
the hyperplane section of a polarized Halphen surface of index (s+ 1). Then C is not
a hyperplane section of a smooth K3 surface in Pg.

Proof. — Suppose, by contradiction, that C is a hyperplane section of a smooth K3
surface X ⊂ Pg. We can choose families

X ⊂ Pg × T
h
��

(T, t0)

, C ⊂ Pg−1 × T
k
��

(T, t0)

parametrized by a smooth pointed curve (T, t0) having the following properties.
A fiber Xt of h is K3 surface in Pg. A fibre Ct of k is a hyperplane section of Xt. Also
Xt0 = X, and Ct0 = C. For t belonging to a dense open set A ⊂ T , the Picard group
of Xt is of rank 1 and generated by [Ct]. As in Theorem 4.1, if vt = (2, [Ct], s), there
is an isomorphism

(4.2) Mvt(Xt) ∼= VC(2,KCt
, s)red, t ∈ A.

Moreover, for t ∈ A, the moduli spaceMvt(Xt) is a smooth K3 surface. Following [11,
Th. 4.3.7], we can construct relative families of moduli spaces

σ : M −→ (T, t0), τ : V −→ (T, t0),

Mt = Mvt(Xt), Vt = V (2,KCt
, s).where
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Since for t ∈ A, the fiber Mt is a smooth K3 surface, we may find an analytic
neighbourhood ∆ ⊂ T of t0 such that, for t 6= t0 the fiber Mt is a smooth K3 surface.
By virtue of (4.2), we may also assume that for t ∈ ∆r {t0} the fiber Vt is a smooth
K3 surface. By Corollary 3.21, we know that M(2,KC , s) = S, in particular

VCt0
(2,KCt0

, s)red = VCt0
(2,KCt0

, s) = M(2,KC , s) = S

and as a consequence VCt(2,KCt , s)red = VCt(2,KCt , s), for t ∈ ∆.

Claim 4.4. — Set v = vt0 = (2, [C], s). Then Mvt0
(Xt0) = Mv(X) is a K3 surface

with isolated singularities of type A1.

Proof of the Claim. — Let us first produce a smooth point in Mv(X). The K3 sur-
face X contains the curve C, on which, by Lemma 3.15, there exists a base-point-free
g1
s+2 = |L|. Starting from X, and recalling Remark 3.16, we can consider the rank
two vector bundles EL,X , and EL,X on X and C respectively. By Corollary 3.14, EL,X
is stable. Repeating word by word the argument at the end of the proof of Proposi-
tion 5.5 in [2], we get that EL,X is stable as well and represents a smooth point of
Mv(X). Since v2 = 0, we can conclude that Mv(X) is a surface with isolated sin-
gularities. A singular point p of Mv(X) corresponds to a polystable sheaf F1 ⊕ F2

with F1 6∼= F2, as v is primitive. Set vi = v(Fi), we necessarily have v2
i = −2 and

v1 · v2 = 2. Following [4] the quadratic cone at p to Mv(X) is given by an equation of
type z2 = xy. This proves the Claim. �

Over ∆ r {t0} we then have two families of smooth K3 surfaces which, by The-
orem 4.1, are fiberwise isomorphic over the dense subset A ∩ (∆ r {t0}). By the
“Principal Lemma” of Burns-Rapoport (see e.g. [5, Exp. IX]) the two families are iso-
morphic over ∆ r {t0}. But now, σ is a degenerating family of K3 surfaces whose
semistable model has a smooth K3 surface in the central fiber, while τ is a degenerat-
ing family of K3 surfaces whose semistable model has, as central fiber, the union of two
smooth rational surfaces meeting on an elliptic curve. By Kulikov’s theorem [12] (see
also [17], [14]) the two families have different monodromy and can not be isomorphic
over ∆ r {t0}. A contradiction. �

Proof of Theorem 4.2. — Let U be a 2-dimensional subspace of the cokernel of the
Gauss-Wahl map ν containing the point which correspond to S. From [3, Th. 3] and
[19, Th. 7.1] there exists a flat family

f : X −→ (T, t0), Xt = f−1(t), Xt0 = S

whose fibers are surfaces having C as hyperplane section and where T is a finite cover
of P(U). In view of Theorem 4.2, we may assume that, for general t ∈ T , the surfaceXt

is a singular surface with canonical hyperplane sections. Since it degenerates to S,
the surface Xt has only one elliptic singularity. The family f has a section given by
the singular point of each fiber. Since the singularity of the central fiber is resolved
by the blow-up of the elliptic singularity, the blow-up of such a section is a family

f ′ : X ′ −→ T
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whose general fiber is a smooth surface degenerating to S. Up to removing finitely
many points from T , the exceptional divisor J of such a blow-up is a Cartier divisor;
then we have J 2 · f ′−1(t) = −1. Since S is rational, all the fibers of f ′ are rational
and we can consider them as blow-ups of the plane. Such a datum defines a family
of g2

d’s on C which are birationally ample. Since J 2 · f ′−1(t) = −1, this defines a
family of plane curves of degree d which have the same geometric genus and at most
10 singular points: in fact, from Epema’s classification, the singular locus of the plane
model of C for t ∈ T lies on the plane cubic Jt = J|f ′−1(t) and J2

t = −1. This means
that multiplicities of the singular points must be constant on the family. Let us write
the central fiber of such a family as

C = d`′ −m1E
′
1 − · · · −m10E

′
10.

By hypothesis, there exists a birational transformation P2 φ← –→ P2 whose graph
is dominated by S which transforms the central fiber into a curve

C = 3g`− gE1 − · · · − gE8 − (g − 1)E9 − E10.

Such a birational transformation is induced by a birationally ample linear system of
plane curves

F = r`′ − n1E
′
1 − · · · − n10E

′
10.

For t ∈ T consider the linear system

Ft = r`′t − n1E
′
1,t − · · · − n10E

′
10,t.

We have F 2
t = 1 and |Ft| is base-point-free showing that Ct is a birational du Val

curve. Since all surfaces Xt of the family have C as hyperplane section and since C is
not Brill-Noether general, from Theorem 3.2 of [1], each surface Xt must be Halphen
of some index m 6 2s+ 1. But, since the central fiber is Halphen of index s+ 1, the
integer m must be greater or equal than s+1, but also a multiple of s+1. This means
that all fibers of the family f are polarized Halphen surfaces of index (s + 1). Then
Corollary 3.21 applies to them and we get that such surfaces are all isomorphic as
polarized Halphen surfaces of genus 2s+ 1. Since these surfaces have a discrete group
of automorphisms (see [6]) they must be generically obtained one from the other by
a projectivity and this is a contradiction. �

Proof of Theorem 1.3. — The Theorem follows from Theorem 4.2, by semicontinuity
and from the irreducibility of the space of du Val curves. �

Proof of Corollary 1.4. — This follows immediately from Theorem 1.3 and from Corol-
lary 3.12 in [20] with E = C and X = S. In that Corollary, (a) is trivially satisfied,
(b) follows from the fact that

H0(C, TS|C ⊗ OC(−C)) = Ker{H0(C,NC/S ⊗ TC)
α−−→ H1(C, T 2

C)}

(and α is injective), and (c) follows from the BNP property of C. �
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