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HYPERBOLA METHOD ON TORIC VARIETIES

BY MAaRTA PrErOPAN & DAMARIS SCHINDLER

Asstract. — We develop a very general version of the hyperbola method which extends the
known method by Blomer and Briidern for products of projective spaces to complete smooth
split toric varieties. We use it to count Campana points of bounded log-anticanonical height
on complete smooth split toric Q-varieties with torus invariant boundary. We apply the strong
duality principle in linear programming to show the compatibility of our results with the con-
jectured asymptotic.

Résumic (Méthode de 'hyperbole sur les variétés toriques). — Nous développons une version
trés générale de la méthode de ’hyperbole qui étend la méthode connue de Blomer et Briidern
pour les produits d’espaces projectifs & des variétés toriques complétes, lisses et scindées. Nous
I'utilisons pour compter les points de Campana de hauteur log-anticanonique bornée sur des
Q-variétés toriques complétes, lisses et scindées avec un bord invariant sous l’action du tore.
Nous appliquons le principe de dualité forte en programmation linéaire pour montrer la com-
patibilité de nos résultats avec ’asymptotique conjecturée.
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1. INnTRODUCTION

This paper stems from an investigation of the universal torsor method [Sal98, FP16]
in relation to the problem of counting Campana points of bounded height on log Fano
varieties in the framework of [PSTVA21, Conj. 1.1]. Campana points are a notion of
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Keyworps. — Hyperbola method, m-full numbers, Campana points, toric varieties.
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108 M. Pieroran &« D. SciminpLER

points that interpolate between rational points and integral points on certain log
smooth pairs, or orbifolds, introduced and first studied by Campana [Cam04, Cam11,
Caml15]. The study of the distribution of Campana points over number fields was
initiated only quite recently and the literature on this topic is still sparse [BVV12,
VV12, BY21, Shu21, PSTVA21, Shu22, Str22, Xia22, BBK*23]. In this paper we deal
with toric varieties, which constitute a fundamental family of examples for the study
of the distribution of rational points [BT95b, BT95a, BT96, BT98, Sal98, dIB01a],
via a combination of the universal torsor method with a very general version of the
hyperbola method, which we develop.

We use the universal torsor method, instead of exploiting the toric group structure,
because we hope to extend our approach to a larger class of log Fano varieties in
the future. Indeed, the hyperbola method is well suited to deal with subvarieties
[Sch14, Sch16, BB17, BB18, Migl5, Migl6, Migl8, BH19], and all log Fano varieties
admit neat embeddings in toric varieties [ADHL15, GOST15] which can be exploited
for the universal torsor method.

One of the key technical innovations in this article is the development of a very
general form of the hyperbola method, which is motivated by work of Blomer and
Briidern in the case of products of projective spaces [BB18]. Mignot [Migl8] has
adjusted these ideas to complete smooth split toric varieties with simplicial effective
cone. With our approach we extend the work of Blomer and Briidern to complete
smooth split toric varieties with additional flexibility to change the height function.

Let f : N® — Ry( be an arithmetic function for which one has asymptotics for
summing the function f over boxes, see Property I in Section 4. Let B be a large
real parameter, X a finite index set and ;) > 0 for 1 < i < s and £ € X. Let
a = (i k)1<i<s, kex and set

D(B,o) ={(y1,...,ys) EN*: [, y;"* < BVk € X}.

i
The goal is then to use this information from sums over boxes to deduce an asymptotic
formula for sums of the form

SIB) = > [f)

yeD(B,x)
We define the polyhedron fPSC R?® given by
Y aipm <1, keX
and = t>0, 1<i<s.
Here the parameters w;, 1 < i < s are defined in Property I for the function f.

The linear function Y ;_, ¢; takes its maximal value on a face of P which we call F.
We write a for its maximal value.

Tueorem 1.1. Let f : N° — Ry be a function that satisfies Property 1 from
Section 4. Assume that P is bounded and non-degenerate, and that F' is not contained
in a coordinate hyperplane of R®. Let k = dim F'. Then we have

ST(B) = (s —1—k)!Cy pep(log B)F B + O (Cy,p(loglog B)*(log B)F~'B*),

JE.P — M., 2024, tome 11
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where Cy ar and Cy g are the constants in Property 1 and cp is the constant in equa-

tion (4.3).

In comparison to earlier versions of the hyperbola method in work of Blomer and
Briidern [BB18] or Mignot [Migl8], we only obtain a saving of a power of a log B,
but we can work with the weaker assumption of using only Property I. In contrast to
[BB18] and [Migl8] we no longer need to assume that we can evaluate the function f
on lower-dimensional boxes after fixing a number of variables, called Property II in
their work.

The case treated in [BB18] would in our notation correspond to an index set XK
with one element where all the o;, = o for all 1 < 7 < s and some a > 0, and
k = s— 1. Our attack to evaluate the sum S/ starts in a similar way as in [BB18]. We
cover the region given by the conditions [];_, yza “* < B, k € X with boxes of different
side lengths on which we can evaluate the function f. One important ingredient in
the hyperbola method in [BB18] is a combinatorial identity for the generating series

S e

Jittis<J
Jiz20, 1<i<s

which needs to be evaluated for J going to infinity. By induction the authors give
a closed expression. For us this part of the argument breaks down, as we have in
general more complicated polytopes that arise in the summation condition for S/
and are not aware of comparable combinatorial identities for the tuples (j1,...,js)
lying in general convex polytopes. Instead, we approximate the number of integer
points in certain intersections of hyperplanes with a convex polytope by lattice point
counting arguments and then use asymptotic evaluations for sums of the form
Z méem
0<m<M

for0 <6 <1and ¢, M €N.

In comparison to Mignot’s work [Migl8], we can deal with polytopes for which
|X| > 1, and where k is no longer restricted to the case k = s — 1.

Our main application of Theorem 1.1 is a proof of [PSTVA21, Conj. 1.1] for smooth
split toric varieties over Q with the log-anticanonical height.

Turorem 1.2. — Let X be the fan of a complete smooth split toric variety X over Q.
Let {p1,...,ps} be the set of rays of . For eachi € {1,...,s} fix a positive integer m;
and denote by D; the torus invariant divisor corresponding to p;. Assume that L :=
Sy m%Di is ample. Let Hy, be the height defined by L as in Section 6.3. Let 2" be
the toric scheme defined by ¥ over Z, and for eachi € {1,...,s}, let 9; be the closure
of D; in Z . For every B > 0, let N(B) be the number of Campana Z-points on
the Campana orbifold (Z°,> 5_,(1—1/m;)%;) (in the sense of [PSTVA21, Def. 3.4])
that have height Hy, at most B and do not lie in | J;_, D;. Then for sufficiently large

B >0,
(1.1) N(B) = cB(log B)"~' 4+ O(B(log B)"?(log log B)*),

JEP — M., 2024, lome 11
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where r is the rank of the Picard group of X, and c is a positive constant compatible

with the prediction in [PSTVA21, §3.3].

Our application of the hyperbola method recovers Salberger’s result [Sal98] and
improves on the error term by saving a factor (log B)!~¢ where [Sal98] saves only a
factor (log B)lfl/ f=¢ where f > 2 is an integer that depends on the toric variety.

Theorem 1.2 could also be deduced from work of de la Bretéche [dIB01b], [dIB01a],
who developed a multi-dimensional Dirichlet series approach to count rational points
of bounded height on toric varieties, or from work of Santens [San23]. Another ap-
proach could be via harmonic analysis of the height zeta function, even though such
a proof would probably be more involved than the case of compactifications of vector
groups [PSTVA21]. Our proof proceeds via the universal torsor method introduced by
Salberger in [Sal98] in combination with Theorem 1.1. One of our main motivations
for this approach is that it opens a path to counting Campana points on subvarieties
of toric varieties.

When we apply Theorem 1.1 to prove Theorem 1.2, we need to verify that both the
exponent of B as well as the power of log B match the prediction in [PSTVA21]. The
exponent a in Theorem 1.1 is the result of a linear optimization problem. Similarly, the
construction of the height function leading to the exponent one of B in Theorem 1.2
involves another linear optimization problem. We use the strong duality property
in linear programming [Dan98, Ch.6] to recognize that the exponents are indeed
compatible, and that this holds heuristically also in the more general setting where
the height is not necessarily log-anticanonical. For the compatibility of the exponents
of log B we exploit a different duality setup, which involves the Picard group of X.

In upcoming work, we show how Theorem 1.1 can be used to count rational points
and Campana points of bounded height on certain subvarieties of toric varieties.

The paper is organized as follows. In Section 2 we provide some auxiliary estimates
on variants of geometric sums which are used later in Section 4. In Section 3 we study
volumes of slices of polytopes under small deformations. In Section 4 we develop the
hyperbola method and give a proof of Theorem 1.1. Sections 5 and 6 are dedicated to
the application of the hyperbola method to prove Theorem 1.2. In Section 5 we study
estimates for m-full numbers of bounded size subject to certain divisibility condi-
tions, and we produce the estimates in boxes for the function f associated to the
counting problem in Theorem 1.2. In Section 6 we describe the heights associated
to semiample Q-divisors on toric varieties over number fields, we study some combi-
natorial properties of the polytopes that play a prominent role in the application of
the hyperbola method, and we show that the heuristic expectations coming from the
hyperbola method agree with the prediction in [PSTVA21, Conj.1.1] on split toric
varieties for Campana points of bounded height, where the height does not need to
be anticanonical. We conclude the section with the proof of Theorem 1.2.

This article subsumes our previous work on the hyperbola method, which had
appeared on arxiv.org under arXiv:2001.09815v2, and which proved Theorems 1.1
and 1.2 under additional technical assumptions on the corresponding polytopes.

JE.P — M., 2024, tome 11
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1.1. Norarion. We denote by N the set of positive integers. We use £5 or |S| to
indicate the cardinality of a finite set S. Bold letters denote s-tuples of real numbers,
and for given © € R® we denote by z1,...,2s; € R the elements such that x =
(21,...,xs). For any subset S C R* we denote by cone(S) the cone generated by S.

We denote by F,, the finite field with p elements and by F, an algebraic closure.
For a number field K, we denote by Ok the ring of integers, and by 91(a) the norm
of an ideal a of Og. We denote by €k the set of places of K, by € the set of finite
places, and by 2., the set of infinite places. For every place v of K, we denote by K,
the completion of K at v, and we define | - |, = [Nk, /q, ()5, where ¥ is the place of Q
below v and | - |7 is the usual real or p-adic absolute value on Qz. We denote by | - |
the usual absolute value on R.

We denote the Picard group and the effective cone of a smooth variety X by Pic(X)
and Eff(X), respectively. For a divisor D on X we denote by [D] its class in Pic(X).
We say that a Q-divisor D on X is semiample if there exists a positive integer ¢ such
that tD has integer coefficients and is base point free.

Acknowledgements. — We thank for their hospitality the organizers of the trimester
program “Reinventing Rational Points” at the Institut Henri Poincaré and the orga-
nizers of the workshops “Rational Points” 2022 and 2023 at Schney, where we made
significant progress on this project. We thank the referees for their comments, that
improved the exposition of this article.

2. PRELIMINARIES

In the hyperbola method in the next section we need good approximations for finite
sums of the form

ge(M,0) := Z mtom,

o<m<M
for some 0 < 6 < 1 and natural numbers ¢, M > 0 (here and in the following we
understand 0° := 1). In this subsection we also write g,(M) for g,(M, ).
We will use the following result.

Lemva 2.1. — For an integer £ > 0 and 0 < 6 < 1 and a real number M > £ we have
(0 — 1) gy (M) = (=)0 + 0p(1 — 0) + O (M M*).
Lemma 2.1 can be deduced from the following statement.
Lemma 2.2, — Assume that M > ¢ >0 and 0 > 0. Then we have
O -1 g )= > o i <€ 2 1) (—1) 1" (1 — h)?

o<m<e+1  h=0
0+1

WAYNDY (42 1) (—1)‘f+1h§ (f;) MF(m — hyi=.

o<m<e+1 h=m

JEP — M., 2024, lome 11



112 M. Pieroran &« D. SciminpLER

For the proof of Lemma 2.2 and Lemma 2.1 we need the following identity. For an
integer 0 < a < £ we have

041
(2.1) Z <€7]: 1> (—1)F1=hpe =g

h=0

To see this consider the identity

+1
(t— 1)+ = Z (5 J}Z 1) th(—1)t+1—h,

h=0

Now take derivatives with respect to ¢ and then set ¢ = 1.

Lemma 2.2 implies Lemma 2.1. — We start in observing that

m

(9 _ 1)£+1gg(M) — Z om Z <£ + 1) 1 l+1— h(m _ h)[ + Og(@MME)

os<m<e+1 h=0
- Z(”1> 1)1 (m — h)! + 0n(16 — 1]) + On(6" M?).
o<m<L h=0

We further compute

(0 - 1) 1ge(M) =

gg Z<£+1) D ()
i

( ) DR 41— h) 4+ 0u(10 — 1]) + Og (6™ MY,

Note that the first term in the second line is equal to zero by equation (2.1). Hence
we have

O—1)g(d)= Z(“l) DR (m — h)E + 04 (10 — 1)) + O (0™ MY).
o<m<l+1 h=

We now switch the summation of m and h to obtain
(60— 1) ge(M)

= > (“FH)eut X e wtouo - 1+ 0o ar)

0<h<O+1 h<m<e+1
(+1 f+1-h ¢ M st
= Y . D S 4010 - 1)) + 0 (0M M),
0<h<l+1 0<t<+1~h
By the Faulhaber formulas Zogtguph t* is a polynomial in h with leading term

([_’_ 1— h)€+1 _ (_1)Z+1

_ h€+1
{41 {41

+ lower order terms in h.

JE.P — M., 2024, tome 11
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Using equation (2.1) we hence obtain

(9_1)€+194(M) _ Z <£ + 1) (_1>€+1—h%h€+1 +O (la 1|)+O (GMMK)
0<h<l+1

1 {41

T Z ( —']; >(—1)hhé+1 + 0010 — 1)) + O (M M.
<h<i+1

By equation (1.13) in [Gou72] we have

0<h<l+1

Hence we get
(0 — 1) Flge(M) = (1) + 04 (10 — 1]) + O (6™ MY). O
We finish this section with a proof of Lemma 2.2.

Proofof Lemma 2.2. — We compute

(0 _ 1)Z+192(M) _ (0 _ 1)€+1 Z mto

o<m<M
041
£+1) h(_q)tH-
QRIS W
( o<m<M
0+1
£+1) ¢
_Z _q)tri=h Z mblom+h
< o<m<M
41
41
_Z(+) I SN S L
h<m<M+h

We split the last summation into three ranges depending on the size of m and get

£+1
= 1)€+1ge(M) _ Z (ﬁ—; 1) (_1)e+1_h Z (m— h)é@m

h=0 L+1<mE<M
1
+Z(£+ ) 1)t+i-h Z (m — h)o™
h<m<l+1
0+1
1
+ Z (f + ) €+1 h Z (m _ h)fem
M<m<M+h

JEP — M., 2024, lome 11



14 M. Pieroran &« D. SciminpLER

241
(+1<m<M k=0 h=0
m

+ Yty (“1) —1)“ 1= (m — n)".
-M

M<m<M+0+1  h=m

We now use the identity (2.1) for the third last line and deduce that

(0 — 1) gy (M) = Z gm i <€—&f; 1) (—1)+1 = (m — B!

o<m<e+1  h=0

RN
+ Z 9M+mz ( ) 1@+1 h(M—i—m h)
0<m<e+1
Now, the lemma follows in expanding each of the terms (M + m — h)t. O

3. VOLUMES OF CERTAIN SECTIONS OF POLYTOPES

In this section we provide some estimates on the volumes of intersections of convex
polytopes with certain hyperplanes. These will be used in the next section in the
development of our generalized form of the hyperbola method. The vector space R®
is endowed with a fixed inner product that is used to define orthogonality and the
Lebesgue measures.

Prorosition 3.1. — Let P C R® be an s-dimensional convex polytope with s > 1. Let F
be a proper face of P. Let H C R® be a hyperplane such that HNP =F. Let w € R®
such that P C H + Ryow. For § > 0, let Hs := H 4+ dw. Let k := dim3JF. We denote
by meas; the j-dimensional measure induced by the Lebesgue measure on R®. Then

(i) for 6 > 0 sufficiently small,
meas,_1(Hs NP) = c6* 1% 4 O(557%),

where ¢ is a positive constant that depends on P, F and H;
(i) if s = 2, for 6 > 0 sufficiently small we have

Aok L O R, ifk<s—2,

meass_2(0(Hs NP)) = {c, +0(05) ifk=s—1

where ¢’ is a positive constant that depends on P, F and H.

Let T C R® be a hyperplane such that T NP is a face of P. Let d := dimP NT.
Let u € R® be a vector such that P C T + Ryou. For & > 0, let T, = T + sku and
T<., =T+ [0,k]u. Then

JE.P — M., 2024, tome 11
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(iii) for ¢ and k sufficiently small and positive,

KGSTITE ifF LT,

meas, 1 (Hs NP NTg,) <K
i <) {min{n, §}952k fFCT,

where the implicit constant is independent of k and §;
(iv) for ¢ and k sufficiently small and positive,

§s—1-k fFLT,
meas;s_o(Hs NPNT,) < ¢ 6 F tmin{s,k}*~9t ifFCT and k< s—2,
1 ifk=s—1,

where the implicit constant is independent of k and §;
(v) if s = 2, for § and k sufficiently small and positive,

romax{s—2—k,0} + §s—1-k if F Z T,

_ HsNPNT.
meass—2 8( sMPn <'L€) < {6max{s2k¢,0} ngf C T’

where the implicit constant is independent of k and §.

Let V- C R® be an affine space of dimension m with k < m < s — 1. We denote by
py : R™ = V the orthogonal projection onto V. Then

(vi) for & and k sufficiently small and positive such that § < k,

kK™ f FET and dimpy (F) > 1,

measy, py (Hs NP NTg,) K
mpv( «) gm—k otherwise,

where the implicit constant is independent of k and §.

Proof. — It FNT = @, then for § and k small enough we have Hs NP N T, = .
Hence we can assume that FNT # @.

Step 1. — We first prove the case where P is a simplex. We denote by wp, ..., v
the vertices of ¥ and by wvi41,...,vs the vertices of P not contained in F. Since
FNT # &, we can assume that vy € T. Up to a translation, which is a volume
preserving automorphism of R?, we can assume that v is the origin of R®. We observe
that v1,...,vs form a basis of the vector space R®. Let C' be the cone (with vertex vg)
generated by vgi1,...,vs. We observe that C N H = {vp} as HNP = F and C is
contained in the cone (with vertex vg) generated by P. Let @ := F+ C. Then P C Q
and HNQ =7.

We prove (i) by induction on k. If k = 0, for ¢ small enough, HsNP = HsNC =
§(H; N C). Thus meass_1(Hs NP) = §* L meas,_1(Hy NC). Assume now that k > 1,
and hence s > 2. Let L C R® be the hyperplane that contains vy,...,vs. Then
Lt = L+Rgouv; is the half space with boundary L that contains vy, and P = QN L*.
Let L= =L+ R)()’Ul. Then

meas;_1(Hs N P) = meas,_1(Hs N Q) —meass_1(HsNQNL™).

JEP — M., 2024, lome 11



16 M. Pieroran &« D. SciminpLER

Let H1+ = H; + Rgow be the half space with boundary H; that contains F. Then
H{ NQ is bounded, and for ¢ small enough, HsNQN L~ = HsN(H{  NQNL~) and
Hfr NQNL~ is an s-dimensional polytope that intersects H in the (k— 1)-dimensional
face with vertices vy, ..., v;. By induction hypothesis we have

meas,_1 (HsNQNL™)=0(5F).
We observe that meas,_1(Hs N Q) = meas,_1((Hs N Q) — Jw), and
(HsNQ)—dw=HN(F+C—-6éw)=F+ (HN(C—dw))

as ¥ C H. Hence, there is a positive constant a (which is the determinant of the
matrix of a suitable linear change of variables in H) such that

meass_1(Hs N Q) = ameasy (F) meas,_,_1(H N (C — dw)).
We conclude the proof of (i) for P simplex as
meass_g—1(H N (C — dw)) = meass_p_1(Hs NC) = §s—k—1 meass_;—1(H1 NC).
For part (iii), we observe that
meas,_1(Hs NP NTg,) < meass_1(Hs NQ NTky),
as P C Q. Now
QNTe, =(F+C)NT<,, C(FNT<,) + (CNTgy).

Indeed, for f € F and ¢ € C such that f + c € T, since F,C C T + Rypu we can
write f =t + au and ¢ = ¢ + o’u with ¢,#' € T and a,a’ > 0. Since a + o’ < k,
we get a, o < K, thus f € FNTg, and c € CNTg,. Thus
. HsNnQNT<, CHsN((FNT<k) +(CNT<y))
(3-1) =(TNTg) +(HsNCNTgy)
as F C H. Thus

meas,_1(Hs N Q N Tg,) < measy(F N Tg,) meass_1-x(Hs NC NTgy),

where the implicit constant is independent of k and §. Since P C T+Rsouand P ¢ T,
there is j € {1,...,s} such that (Rxgv;) N T, is bounded, i.e., (Rxov;) N Tg, =
[0,1])kajv; for some a; > 0 independent of k. Let

S
Tgn,j = {Z)\Z’UZ :0 < >‘j < naj}.
i=1
If F ¢ T, we can choose j < k. Then FNTg,, € FN Ty ;. Since F is a simplex
(it is a face of a simplex),
measy (F N Tg,) < ka; meas,_1(F;) < K,
where Fj is the maximal face of I that does not contain v;. Moreover,
meass_1—(Hs NC NT<,) <meass_1_;(Hs N C) <K §s =k

where the implicit constant is independent of x and §.

JE.P — M., 2024, tome 11
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If FCT,thenj>k+1,and CNTg, € CNTg ;. Hence,
meass_1_(Hs NC N Tgy)
<& P meas,_y ,(HiNO N0 Teny)) < 652  min{4, x},

and (iii) for P simplex follows.
For part (iv), we observe that

meas;_o(Hs NP NT,) <meass_o(HsNQNT,),

as P C Q. We have HsNQNT, = HsN(F+C)NT,.

IfFCT,and d > k. Let C' = CNT. Up to rearranging the indices {k+1,..., s},
we can assume that C” is the cone (with vertex vg) generated by vgi1,...,vq. Let C”
be the cone (with vertex vg) generated by vgi1,...,vs. Then C = C’' + C”, and

HsNnQNT, =5+ (HsN(C"+ (C"NTy))).
Thus
meass_o(Hs NQNT,) < meass_,_o(Hs N (C" + (C"NTy)))
< 0 k2 meas,_j_o(H, N (C'+ (C" N Ty./5)))
< 6% " 2 meas,__2(p(C" N Ty /s)) <84 F T min{s, s},
where p is the projection onto H; along vy, as
(HiN(C"+(C"NTy5))) CC'NHy +p(C" N T, 5)-

The bound holds also if d = k, as 6 "' min{6, x}* %! < min{§, k}*~F2.

HF LT, let F/=3FNT. Up to rearranging the indices {1,...,k} we can assume
that the vertices of the simplex F’ are vg,...,v,, where a = dim F’. Let C’ be the
cone (with vertex vg) generated by vg41,...,vx. Then F C F/ + C’ C H, and hence

HsNnQNT, C(F'+C' +(HsNC)NT, CF' +(C'"+ (HsNC)) N Ty,
as F' C T. Note that C' N T} is bounded as vgy1,...,v; ¢ T. Thus
meas;_o(Hs NQNT,) < meass o o((C'+ (HsNC))NTy).
Then
meass_o_o((C' + (Hs N C)) NTyx) < k52 “meas,_9_q4 ((C" + (Hs/ N C)) N Tl)
< gS-2-a meas,__1(p(Hs/x N C)) < ph—a—lgs—k=1

where p is the projection onto T3 along v441, as

(C"+ (HsyoNC))NTy CC'NTy + p(Hs s, N O).

Now we turn to part (vi). Up to translating V' along an orthogonal direction, we
can assume that vy € V. We denote by V' the affine space through vy orthogo-
nal to V. If py|g, is not surjective, then dimpy (Hs NP NTg.) < m and hence
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meas,, py (Hs NP NTg,) =0. Thus we can assume without loss of generality that
pvlms : Hs — V is surjective, i.e., V+ ¢ H. By (3.1)
HsNPNT¢, C(FNTgy)+ (HsNCO).

If F ¢ V2L, there exists j € {1,...,k} such that v; ¢ VL. Without loss of gener-
ality we can assume that j = 1. If F ¢ T there exists j/ € {1,...,k} such that
R>ovjs N T, is bounded. Then vi + avyy ¢ T U VL for some a € R positive, and
hence Rxo(v1 + avyr) N T, = [0, 1]kbv for some b € Ry and pV|R(vl+bvj/) is injec-
tive. Let

U1 fFCTorFCVL,
Then v, vs,...,vs is a basis of R®. Let A4, ... Ak € R be positive constants such that

{n(vl +avy) HFETand FL VL,
v =

FNTe, C AL, A uxH [— A, AgJv

Forie{k+1,...,s}, let a;€R5q such that Rv; N Hy = a;v;. Let Agiq,..., 41 €R
be positive constants such that H;NC C Hl k+1[ A, A;l(av;—asvs). Since HsNC' =
6(Hy N C) we have
s—1
HsnC < [] [-04i,0Ai(aiv; — asvy).
i=k+1

If C ¢ V, we can assume without loss of generality that e, ¢ V. Then there is
e € V1 such that v, vs,...,vs_1, e is a basis of R®. Let A, € R be a positive constant
such that

s—1
(FNTg,)+(Hs;NC) C [—Ay, Aj]u x H [—Ai, AJvix ][04, 6Ai]vi x [~ As, Adle.
i=k-+1

Let €41, ..., es beabasis of V+ with e;=e. Then thereisaset I C {k+1,...,s — 1}
of cardinality at least

dim(Hs N C) — (dimV+ —1) =m — k
such that {v; : i € I} U {em+1,.--,€s} is a set of linearly independent vectors, and
{vi i€ I}U{v,emi1,...,es} is a set of linearly independent vectors if F ¢ V+.
Without loss of generality we can assume that I O {k+ 1,...,m}. Let e; = py(v;)

fori € {k+1,...,m} and complete to a basis ej,... ey, of V with e; = py(v) if
F¢ V. Then there are positive constants By, ..., B,, € R such that

pV(Hm:PmT@)gH —Bi, Bile; x H —0B;,0Bile
i=1 i=k+1

Recalling the definition of v, we conclude that if C ¢ V

k™K FZ T and FELVE,

(3.2) meas,, (pv (Hs NP NTg,)) < {5mk

otherwise.
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If C CV,thenm > s—kand py(HsNC) = HsNC. Fori € {2,...,s — k}, let
€; = Qs—i+1Vs—i+1 — AsVs, and complete to a basis ey, ..., e, of V, with e; = py(v)
if F Q VL. Then there are positive constants By, ..., B,, € R such that

s—k m
pv(H5 ﬁTﬂTgn) - [—Bi,Bi]el X 1_‘[[—53“(532]6Z X H [—Bi,Bi]ei.
i=2 i=s—k+1

Since m < s — 1, we have that m — k < s — k — 1. Thus, recalling the definition of v,
we conclude that for § < 1 the bounds (3.2) hold also if C C V.
Thus we proved (i), (iii), (iv), and (vi) for P a simplex.

Step 2. — We complete the proof of (i), (iii), (iv) and (vi). If P is not a simplex, let

P1,..., Py C R® be simplices of dimension s such that P = Uf\il P; is a triangulation
of . Then
N
meass_1(Hs N P) = Z meass_1(Hs N P;),
i=1

N
meass_1(HsNPNTg,) = Z meass_1(Hs N P; NTgy),
i=1

N
meas;_o(Hs NP NT,) = Z meas;_o(Hs N P; NTy),
i=1
N
meas,, (py (Hs NP NTg,)) < Z meas,, (py (Hs N P; N Tg)).
i=1
Since Ui]\;l(?i NJF) = F, there is at least one index ¢ € {1,...,N} such that
dim(P; N F) = k. For § small enough, we have Hs N P; # @ if and only if P, NF # 2.
Therefore, parts (i), (iii) and (iv) follow from Step 1. If § < &, (vi) follows from Step 1.

Step 3. — It remains to prove (ii) and (v). Let F1,...,Fa be the faces of P. Then

M
OH;NP)=|J HsNF),

=1

M

OH;sNPNT¢)= UHsNFNT,) UHsNPNT)U (Hs NP N (Tx)).

i=1

If £ = 0, then ¥ is a vertex of P. Up to a translation, which is a volume preserving
automorphism of R* we can assume that F is the origin of R°. We denote by C' the
cone with vertex F generated by P. Then, for ¢ small enough, 0(HsN?P) = §0(H1NQ),
and meas;_2(d(Hs NP)) = 6° 2 meass_2(0(Hy NQ)). If s = 2, part (ii) holds. Hence,
it remains to prove it for s > 3 and k > 1. Let Fy,...,F; be the faces of P, then
O(HsNP) = Ui]\i1(H6 N F;). For § small enough, we have Hs N F; # @ if and only if
F:NTF # @ and F; € F. Moreover, for § small enough we can assume that Hs does not
contain any vertex of P. Since meass_o(Hs NF;) = 0 whenever Hs NF; has dimension
strictly smaller than s — 2, we have meas;_2(0(Hs NP)) = Ef\il meas;_o(Hs N F;),
where the sum actually runs over the maximal faces of P that intersect F. Let F be an
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(s—1)-dimensional face of P that intersects F such that F # F, and let k = dim(FNF).
By part (i) applied replacing P by F, we have meas,_o(Hs;NF) = 558_2_%4—0(55_1_%).
If £ < s —2, there is an (s — 1)-dimensional face F of P that contains F, hence k= k,
and we conclude. If K = s — 1, then there is an (s — 1)-dimensional face F of P such
that k = s — 2, hence meas,_»(0(Hs N P)) =c+ O(9).

For § and s small enough, we have Hs NF; NT¢,, # Sonly if HNF,NT # &
and F; ¢ F. Moreover, for § and « small enough we can assume that Hs does not
contain any vertex of P and T, does not contain any vertex of P not in PN7T". Since
meass_o(Hs N F; N T<,) = 0 whenever Hs N F; N Tg,, has dimension strictly smaller
than s — 2, we have

M
meass_2(0(Hs NP NTg,)) = Z meass_o(Hs N F; NTg,) +meass_o(Hs NP NT,),
i=1
where the sum actually runs over the maximal faces of P that intersect F N T.
Let JF be an (s — 1)-dimensional face of P that intersects F N T such that F # F,
and let k = dim(F N F). By part (iii) and (i) applied replacing P by F, we have

P fFNF LT,
meas;_o(Hs N TN Ten) < min{n,é}éS*S’% fFNFCTand F ZT,
552k ifFC T

If k < s — 2, there is an (s — 1)-dimensional face F of P that contains F, hence k = k
and we get

meass_s O(Hgs N Fn Ten) € P
whenever FNF ¢ T, which is the case if F ¢ T. Then part (v) follows by part (iv). O
In the next section we apply the proposition above to the polytope P in Theorem 1.1

with H ={3";_,t; =a}, Hy = {3 ;_ ti = a—6}, T = {t;, = 0}, T, = {0 < t, < K}
for given ig € {1, ..., s}, and P;, , = PN Tg,. Since P is a full dimensional polytope,

meas;_1(Hs N P) = cpd® 17k 4 0(6‘9*’“)

for § sufficiently small, where cp is a positive constant depending only on P and H.
Since the face ' = HNP is not contained in any coordinate hyperplane of R®, we have
F ¢ T and hence

meas,_1(Hs NP NTg,) < kGSTIR,
and for V' any coordinate subspace of dimension m > k,

meas,, py (Hs NP NTg,) € K™k,

Notice that if m = k, then the volume of the projection is independent of the choice
of 4, hence holds also for § = 0.
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4. HYPERBOLA METHOD

We consider a function f: N® — R( with the following property.

Prorerty I. — There exist non-negative real constants Cy p < Cy g and A > 0 and
w; >0, 1 < i< ssuch that for all By,...,Bs € Ry, we have
S S
_ Wi i : X -4
> Jw=Cuu]]Br 0 (Cf,E 1157 (min 5:) ) )
1<y < By, 1<i<s i=1 =1

where the implied constant is independent of f.

Let B be a large real parameter, X a finite index set and s € N. Let «; > 0 for
1<i<sand k € X.Set D(B,a) = {(v1,...,ys) € N* : [[I_, y;"" < BVk € X}
Our goal is to evaluate the sum (if finite)

siB) =Y fy.

yeD(B,a)

We start with a heuristic for the expected growth of the sum S7(B). Consider the
contribution to the sum SY(B) from a dyadic box where, for each 4, y; ~ Bt say
for real parameters ¢; > 0 (for example we could think of %Btiwi_l <y < Btiwi_l,
1 <7< s). Such a box is expected to contribute about

> fly)~ BEi=t

tyw L
y;~B T
1<i<s

to the sum S/ (B). In order for such a box to lie in the summation range we roughly
speaking need

(4.1) Y aipm <1, keX,
=1

(4.2) t;>0, 1<i<s.

The system of equations (4.1) and (4.2) defines a polyhedron P C R®. We make the
following two assumptions on P.

Assumption 4.1. — We assume that P is bounded and non-degenerate in the sense
that it is not contained in a s — 1 dimensional subspace of R?.

Assumprion 4.2. — The face F' on which the function Y ._,; ¢; takes its maximum
on P is not contained in a coordinate hyperplane of R* (with coordinates ;).

The linear function
S
>t
i=1

takes its maximum on a face of P. We call the maximal value a¢ and assume that this
maximum is obtained on a k-dimensional face of P.
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Let Hs be the hypersurface given by

S

Ztiza—é.

i=1
It comes equipped with an s — 1 dimensional measure which is obtained from the
pull-back of the standard Lebesgue measure to any of its coordinate plane projections.
In the following we write meas for this measure. Note that Proposition 3.1(i) shows
that Assumption 4.1 implies that the following holds.

There is a constant cp such that for § > 0 sufficiently small (in terms of P) we have
(4.3) |meas, 1 (Hs NP) — cpd® 7% < C55F,

for a sufficiently large constant C', depending only on P.

Let £ € Z3, and 6 € (1,2] a parameter to be chosen later. Set 0; = 0= for
1<i<sand B(£,60) =[[_,[0,0 ). We define box counting functions

1?7

Bp(e,0)= > fly),

yEB(L,0)

Assume that f satisfies Property I. Then by inclusion-exclusion we evaluate

By(£,0) = Cy H(efimﬂ) g o+ O(Cf,E H 6% (min in)A)

i=1 =1

=Cru(@—1)°J]0" +0 (Cf,E IT0" (min efi)A) :

i=1 i=1
We deduce that

By(£,0) = Cpar(0 = 105515 4 O(Cy ™t (min o= ) 7).
Recall that we assumed in Property I that
Cirm < Cy k.
Hence we have
(4.4) Bi(£,0) < Cpph>=i—1 ",
We set D(B,a,a) = {y € D(B,a) : [[}_, y7** > B*}. We note that the sum
El= > fy

y€D(B,x,a)

is is zero, as the set D(B, «,a) is empty. Let Abe a large natural number, which we
view as a parameter to be specified later. We set

(B, o, A) = {y € D(B, ) : yi > (log B) Vi with 1 <i < s}
and Si,f:i= Z fy),

yeD'(B,a,A)
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and note that
Sup= ) )
yeD'(B,ca, A)\D(B,cx,a)
In the following, we use the notation
__logB
~ logf’
We now cover the sum S; ¢ with boxes of the form By(£,6). Let LT be the set of
£ € Z%, such that the following inequalities hold

L(B,0)

> iww; < L(B,O), keX,
=1

wiglog log B

bi+1>
+ log 6

) IR S.

Similarly, let £~ be the set of £ € L%, such that the following inequalities hold
> i M +1) < L(B,O), kEX,
i=1

0> w;Aloglog B

1S

log 60

Let Cs be a positive constant such that
Zai7kw;1 <05, keX.
i=1
We define £ to be the set of £ € Z%, such that the following inequalities hold
> ik, i < L(B,0) ~Cs, kX,
i=1

wiglog log B

P = 1< <s.

log 6

Then we have
> Brl,0) =S;, <S1p< S, =Y B(e,0),
Lel— LeLt

where we read the last line as a definition for S7 7 and Sf: - Note that the coverings
into boxes do not depend on the function f but only on the summation conditions on
the variables y;, 1 < i < s.

Let r*(€) (vesp. 7~ (£)) be the set of £ € LT (resp. £7) such that

> =t
=1
We recall that
Br(£,0) = Crar(0—1)%0Z= 5 40 (Cf,EGZf:I % (min ewflfi)’A).
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This leads to
> Bi(£,0)=Crar Y =20 -1)" + 0<Cf,E > 2= ti(log B)M)

LelL— LelL— Lel—
= (97 1)SCf7M Z T‘(f)QZJrO(CﬁE Z GZflfi(logB)Ag).
¢<a L(B,0) LeL—

Every vector £ € £~ satisfies the bound
S
> 4 <aL(B,9),
i=1

and hence
6 <alL(B,0), 1<i<s.
This leads to the bound
> =it < I(B,6)° B*.
LelL—

We deduce that

3 Bi,6)=(0-1)Crar Y. (08 + O(Cy.p L(B,6) B%(log B)~24).

Ll ¢<a L(B,0)

Let 7(¢) be the number of £ € Z%, such that 37, ¢; = ¢ and the following
inequalities hold

> aixw; i < L(B,0)—C5, keX.
=1

Note that 7(¢) is the number of lattice points in the polytope given by

Z?:l tz = &
Yo @igw; i < L(B,0) =Cs, keX,
t:>0, 1<i<s.
Finally, for 1 < ip < s let 73, (£) be the number of £ € Z%, such that b=t

and _
< w;Aloglog B

Eio S

log 6
and

Zai7kw;1& < L(B,H), ke X.
=1

Note that we have
r(0) = 7(0) + o( > i (E)).
1<io<s
We now stop a moment to introduce some more auxiliary polytopes. We recall that
P C R® is the polytope given by the system of equations (4.1) and (4.2).
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For 1 < ip < s and £ > 0 we introduce the polytope P;, . given by the system of
equations

S i <1, keX,
t; >0, 1<i<s,

tin < K.

i
Le., P;,  is obtained from intersecting P with the half space t;, < x. Let Hs be
defined as before, i.e., the hyperplane given by

iti:af&
=1

By Proposition 3.1(iii) and under Assumptions 4.1 and 4.2 we have the following
property.

Let 0 < k < s — 1. Assume that x > 0 and § > 0 are sufficiently small in terms of
the data describing P. Then we have

(4.5) meas(H; N Py, ) < k6°17F,

Remark 4.3. Note that in the case k = 0 and where the maximal face F' is not
contained in a coordinate hyperplane, the intersection HsN®P;, , is empty for € and §
sufficiently small.

In our applications it will take x of size k < (loglog B)/log B. We next evaluate
the function 7~ (¢) asymptotically.

Levwva 4.4. Assume that 0 < k < s — 1. Assume that Assumptions 4.1 and 4.2
hold. Let £ be an integer with

(a—08)(L(B,0) —Cs) < € < a(L(B,0) —C5),

for & sufficiently small, depending only on P, as in Proposition 3.1(i), (iii). Then we
have

r(0) = ey I(B.0)" (a—¢/L(B.0)) "

—%()(L(B,Hf‘QAkL(B,Gf‘J(a——E/L(B,G»Sik)

10g10gB s—1 s—1—k

Here we read 0° = 1. If
0> a(L(B,0) —Cs),
then we have r~(£) = 0.
Remark 4.5. Note that exactly the same asymptotic also holds for r*(£), but then

in the range
(a—0)L(B,0) << alL(B,0).
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Proof. We recall that 7(¢) counts lattice points in the polytope P(¢, B, ) given by

25:1 ti = &
S ik 't < L(B,0)—Cs, keX,
t >0, 1<i<s.

We observe that P(¢, B,6) is equal to the polytope (L(B,8)—Cs) P, i.e., the poly-
tope P blown up by a factor of L(B,0)—Cs, intersected with the hyperplane
(L(B,0) —Cs) Hsr given by

> ti = (L(B,0)—Cs)(a - 0'),
i=1

where §’ > 0 is chosen such that
{ = (L(B, 0) —05)(a —&.

Le. our task is to count lattice points in the polytope (L(B,0)—C5) (P N Hs/),
which is the same as counting integer lattice points in the projection of this polytope
to one of the coordinate hyperplanes. Here we can apply Davenport’s lemma [Dav51].

By equation (4.3) we have
meas P(£, B,0) = cp (L(B,0) —C5)° " (a— (L(B,0) —C5) '0)" ' F
+0(L(B,0) (a— (L(B,0)~C5) ') ™).

We can rewrite this as
meas P(¢, B,0) = cp L(B,0)" " (a — ¢/L(B,0))" """
+0(L(B,0) (a— t/L(B,0))" ™" + L(B,0)" ).

The measure of the projection of PN Hs to various coordinate spaces is bounded.
Hence the measure of the projections of dimension at most s — 2 of the blown-up
polytope (L(B,0) —C5) (P N Hy:) is bounded by

< L(B,§)* 2.
By Davenport’s lemma [Dav51] and for ¢ sufficiently small we find that

() = cp L(B,6) " (a— £/L(B,0))" "

+ O(L(B, 0+ L(B,0)* “(a— t/L(B, 9))8"“).

Finally, by the same arguments as before and equation (4.5) we have, for any ig
satisfying 1 < ig < s, that
loglog B s—1—k

g b LB (a— U/ L(B,9))

i, (0 <g + L(B,0)° 2.

Here we use again that all volumes of projections of the corresponding polytope are
bounded. O
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Let dg > 0 be a parameter. We set
L(B,0,C5)={l€Z:(a—00)(L(B,0)—C5) <L <a(L(B,0)—Cs)},
L/(B,0,C5) ={teZ:0< (a—3)(L(B,0)—Cs)}.

We write
Sip=Mp+Eyp+ By
with
L =0=1)Crar Y (006"
(eL(B,0,C5)
Ej ; < Cjp L(B,6)* B*(log B) ™24,
By, < (0-1)7°Crar > (00"
(€L’ (B,0,C5)

First we bound the error term Ej . For this we observe that if £ < (a — do) L(B, 0),
then

0* < B,
Moreover, as each of the ¢; in the counting function r~(¢) is bounded by < L(B, 6)
we have

> () < L(B,H)".
£<a L(B,0)
This gives the estimate
B3, < (0 —1)*Cyn L(B,6)" B*~%.
We conclude that
Sty = My +0(Crp L(B,6)" B*(log B)~24),
as long as
(4.6) AAloglog B < by log B.

We now use Lemma 4.4 to first evaluate the main term M, Iz For B sufficiently
large and J, sufficiently small, we have

p=0-1Crn Y ()0
0€L(B,0,Cs)
=(0-1°Crar Y. e L(B,0) ' (a—£/L(B,6))" " "6’

0eL(B,0,C5)

+ O(Ova(e - 1)8 Z L(B7 9)5_2 9Z>

(<a L(B,0)
+0(Cru@-1* > LB (a—t/L(B.60)""0)
(<a L(B,0)
loglog B s s—1/ s—1—k ¢
+O<W(0 1) cf,MKg(:B . L(B,6) (a— ¢/L(B,6))" " ""6").

JEP — M., 2024, lome 11



128

M. Pieroran &« D. SciminpLER

We can also write M, 7 as

0 —1°Crar Y. e L(B,6)" (aL(B,6)—0)""¢"
LeL(B,0,Cs)

+0(cf,M(9—1)S 3 L(B,@)S*“'ef)

(<a L(B,0)

+O( > L(B.O (aL(B,0)-0)" ’“94)
£<a L(B,0)
1oglogB s i
+O( log B —1)Crn Y. L(B,0)*(aL(B,0) ) 9@)
(<a L(B,0)
or
61\ s—k s—1—k ¢
C’f,MC?(logB)k(@) 6-1) Z (a L(B,0) ) 0
£€4(B,6,C5)
+ (Cpar(0 = 1) L(B,0)* BY)

0 —1\k-1 s—k
log B! (1) (01 L(B,0)a~0)""0")
+0(Crutiog B (3 5) @ -1) > (L(B.O)a~1)
0<¢<a L(B,0)
loglog B 0 — 1\ & s—1—k pp
g 1 B( )9—15 L(B,0) — 9).
+O< log B Cy,m(log B) oz 0 ( ) > (aL(B,0) )
0<¢<a L(B,6)
In the second line we computed the geometric series. In the following we assume

that for B large we choose 6 in a way such that a L(B, ) is an integer. Under this
assumption M, f becomes

0 —1\Fk B toa o
CfJV[C(P(lOgB)k(lOgG) (0_ 1)5 k Z m 1 k9 L(B,6)

aCs<m<(a—60)Cs5+60 L(B,0)
+ O(Cf,M(o 1)t (B, 0)* 2 B“)
6 — 1\k-1
k—1 _ 1\s—k+1 s—kpa L(B,0) —m
+0(Cpulog B) (1og9) - 1) S mhe )
0<m<a L(B,0)

log log B k(0 —1\* —k —1-kpa L(B,0) —
————(log B (7) 0—1)° m’® 6“(’)7").
+0(OfM log 1 (log B) og 0 0—1) >
0<m<a L(B,0)
We further rewrite this as

i} 01Nk
M; ;= Cyucep(log B)*B (

i (9 _ 1)8716 ms—1—kg—m
lOgQ) angmg(a—%Cg,-l-tso L(B,0)
+ O(CﬁM(e —1)*"1L(B,0)*? B“)
+ o(cf a(log B)F~ 1B“<? _;)H(e ) A N m)
08 0<m<a L(B,0)
loglog B 0 —1\F
+ O(CfMiolg goi (lo gB)’“B“(w) (S mS*I*’Ca*m).

o<m<a L(B,0)
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We recall the notation

Z mo

0<m<M
With this notation M, 7 equals
k pa 6 —1\*k s—k -1
Cymcyp(log B)"B (@) (0 —1)""gs—1-x((a — 00)C5 + b0 L(B,0),07")

+ O(nyM(log B)*Ba ((fo;g;)k(a - 1)8*’6)

+ o(cf,M(e — 1)1 (B, 0)* 2 B“)

0—-1

o @ )H(a —1)skHlg (o L(B, ), 9*1))

+O(C'fM(logB)k 1B“<

loglog B o0 —1\F ok 1
0O 0w BB (T3 ) (0= 1) gua(a L(B.0),07).
We now apply Lemma 2.1 and obtain

-1 k
s— 1 — |
1Og9) 05k (s —1— k)l

+0(Crar(0— 1)1 L(B,0)*" 2Ba)

M, = Cyarep(log B) Ba(

2 (log B)F~ 13“)

(
+o(
(CfMBa log B)* (0 — 1))
+o(cy

C 1B % (log B)* (3,9)3—1—k+cf,M(1ogB)k—1L(B,e)s—’“)

loglog B 1
+0(Cra 2222 (log B) B + B~ (log B)* L(B,0)"™")).
log B
Next we need to choose 0. We assume that
1 1
4.7 14+ — <0<+ —
il P logmma <1 g pya

where A > s is a fixed parameter. Then we have
0—1 1
95— k _ Oof——
(logﬂ) 1+ ((logB)A)’

and (971)(%)‘9_2 :O(®>'

Moreover we assume that we now take &g sufficiently small such that Lemma 4.4

holds. Note that for B sufficiently large, we automatically have
20s(A + 1) loglog B < d¢ log B.
We deduce that

My ;= (s —1—k)!Cymep(log B)*B* + O (CjaB*(log B)* " loglog B) .
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We now turn to the treatment of the error term. Recall that we have
Sy, =M, + O(nyE L(B,0)° B (log B)*M).
We now observe under the assumption of equation (4.7) that we have

1
1 B 10A
log 6 < (log B)™,

and
Sl_,f =M+ O(CﬁE(log B)SHOASB“(log B)*A‘Z)
Let AT be a positive real parameter. If we take A sufficiently large depending on A,
AT, s and A, then we get
Cy.p(log B)* 1045 Ba(log B)~44 « O} pB*(log B)™'.

Observe that the same calculations are also valid for Si’: 7 in place of 51_, 2 We deduce
that
Syt =(s—1—k)Csrcp(log B)*B®

+0 (Cj,m(loglog B)(log B)*"'B®) + O(Cj,zB"(log B)™").

We recall that we have made the assumption that
a L(B,0)

is integral. Hence we need to show that for every B sufficiently large there is a 6 in
the range (4.7) such that this expression is integral. Note that the conditions on 6
in (4.7) translate into saying that
log B
a
log(1 + (log B)=4)

log B
a .
log(1 + (log B)—104)

<alL(B,0) <

or
log B(log B)* < a L(B, ) < (log B)***(log B),

which for B growing certainly contains an integer.
More generally, let W; > 0, 1 < ¢ < s be parameters such that there exists N > 0
with

(logB)A <W; < (logB)N7 1<i<s.

Set
B(B,a, i, W)=D(B,a)N{yeN°:y; 2W}, 1<i<s,
B(B,a, W) = _(S]IB(B,a,i,WZ-),
and )

S (W,B):= > f(y)

yEB(B,a,W)
We rephrase our findings in the following lemma.
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Lemwva 4.6. Let f: N* — Ry be a function satisfying Property 1. Assume that
Assumptions 4.1 and 4.2 hold. Then, for any A sufficiently large in terms of s and A,
we have

S1,$(W,B) = (s — 1 — k)ICy pmep(log B)*B* + O(C},p(loglog B)(log B)*~' B?),
where the implied constants may depend on N, A and the polytope P.

Next we turn to the treatment of the contributions where some variables in the sum
S7(B) can be small. Let N > 0 be a parameter as above and consider W < (log B)".
For ip € {1,...,s} set

Sio(I/V? B) = Z f(y)
yeD(B,a)\B(B,o,io,W)
We cover the region of summation by dyadic boxes, i.e., we set § = 2 above. Note
that for any value of £ we have

Bf(£,0) < Cpph>i=it,

We define the set £;, to be the set of lattice points £ € Z%, which lie in the
polytope given by
/. w@;, log W _ @iy log W
= logf log B

L(B,0),

and

Zai7kw;1& < L(B,H), ke X.
=1

Let rw,i,(£) be the number of £ € 23, in Ly, with 77, £; = £. With this notation
we find that

Siy(W,B) < Y Bi(£,0) <Crr Y 1w (0)6".
LeLy, ¢<a L(B,9)

We observe that ry,,(¢) is the number of lattice points in the intersection of the
polytope L(B,0) P;, ., where k = w;, log W /log B, intersected with the hyperplane
L(B,0) Hs with § = a — £/L(B,6). Let 6; > 0 be a parameter to be chosen later.
As above, we observe that

> rw.i, ()8 < (log B)*B*™01.
(<(a—61) L(B,0)
Hence, if we assume that
(4.8) (s+1)loglog B < 61 log B,
then we have, setting £"”(B,0,a) ={{ € Z: (a — 61) L(B,0) < { < a L(B,0)},
SiyW,B) < Crr Y. rwi(0)6°+Cyp(logB)"' B
€L (B,9,a)

If £ = 0, then for x and ¢ sufficiently small the intersection of Hs and P;, . is
empty and there is nothing to bound. Hence in the following we may assume k > 1.
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132 M. Pieroran &« D. SciminpLER

By enlarging B by at most a constant factor depending on a, we may assume that
a L(B, 0) is integral. If ¢ = L(B, 0) a, then § = 0 and the dimension of the intersection
of P;, » N Hy is at most k. If the dimension of the intersection of P;, . N Hy is at most
k — 1, then we observe that all projections of this intersection to coordinate spaces
are bounded, and hence we obtain the bound

TW,io (f) < L(B,Q)k_l .

Finally, assume that the dimension of the intersection P;, , N Hy is equal to k.
Consider the projection of P;, . N Hy to a k-dimensional coordinate subspace V. Then
we aim to bound the number of integer lattice points which are contained in the pro-
jection of L(B,0)(P;, . N Hp) to V. By Proposition 3.1(vi) the k-dimensional volume
of the projection of P;, . N Hy to V is bounded by <« « and the lower dimensional
volumes of projections to coordinate spaces of dimension at most £ — 1 are bounded.

Then, by Davenport’s lemma [Dav51] we have

klOgW k—1
L(B,0 .
B T (B,0)

rw.i, (£) < L(B,8)

Next we consider the case £ € L”(B,6,a), i.e.,0 < § < §;. As we are only interested in
an upper bound for S;, (W, B), we may enlarge W to W = (log B)" with N sufficiently
large, such that we have

loglog B Nw;, loglog B
(s 1)ogog < @i, loglog B
log B log B

Then we can choose d; such that (4.8) is satisfied and such that ¢; < .
By Proposition 3.1(vi) the polytope P;, . N Hs has the following properties if & is
sufficiently small and § < «:

(i) If we project P;, .. N Hs to coordinate spaces of dimension k& — 1 or smaller, then
the volume is bounded by an absolute constant.

(ii) Let Kk —1 < m < s — 1. Then the m-dimensional volume of the projection of
Piy.x N Hs to any m-dimensional coordinate space is bounded by

< KOk,

Then by Davenport’s lemma [Dav51] we obtain

TW,iO(E) < L(B,e)k_l + sz_: L(B7 e)m H(Smik
m=k
s—1
< LB,0)" "+ D L(B.0)" (a—t/L(B,0))

m=k

m—p loglog B
log B
s—1
< LB,O) '+ L(B,0) N (aL(B,6) —0)

m=k

m—k loglog B
logh

JE.P — M., 2024, tome 11



HYPERBOLA METHOD ON TORIC VARIETIES 133

Recall that § = 2. With this we obtain
Siy(W, B) < Cy p(log B)*'(loglog B)B* + Cr.p Y rwi,(0)6°
€L (B,0,a)
< Oy p(log B)*"!(loglog B)B*

s—1
_ m—k (loglog B
+Cre LB, Y Y (aL(B.0) 0" " (%)94
m=k ¢<a L(B,0) &

Again using that 6 = 2 we obtain.
Sio (W, B) < Cj p(log B)*~*(log log B) B*

s—1

+Cr.p(log B)*'(loglog B) > > (aL(B.O)—0)" " ¢*
m=k {<a L(B,0)

< O p(log B)*~!(loglog B)B*
s—1

+Cpp(log B)F(loglog B)B* Y~ > (aL(B,0) )" * o=@ LEH =
m=k £<a L(B,0)

< Cf p(log B)*"!(loglog B)B*

JrC’f,E(IOgB)k*l(loglogB)Ba Z wke—u
u<a L(B,0)

By Lemma 2.1 or in observing that the last sum is absolutely convergent, we find that
Si, (W, B) < C¢ p(log B)*~!(loglog B) B*.
This completes the proof of Theorem 1.1.

5. M-FULL NUMBERS

Let m > 1 be a natural number. We recall that an integer y is called m-full if for
each prime divisor p of y, we have that p™ divides y. We introduce the function that
counts the number of m-full natural numbers less than B

Fr(B) := {1 <y < B, vy(y) € {0} UZxp, Vp}
=t#{1 <y < B, y is m-full}.
Lenvwa 5.1 ([ES34, BG58]). — For each m > 1 and B > 0 we have
(5.1) Fp(B) = Cp, BY™ + 0,,(B"™),

where C1 =1, k1 =0, and form > 2,

2m—1

(5.2) Cn = H(1 + Y pj/m> Fom = %H

Jj=m+1
For a square-free positive integer d, we define

(5.3) F.(B,d) =t{1 <y < B,d|y, yis m-full}.

JEP — M., 2024, tome 11



134 M. Preroran & D. SciinprLer

In this section we prove an asymptotic formula for the function F,,(B,d). We will
first do it for the case that d is a prime. We will then inductively on the number of
prime factors of d provide a general asymptotic formula. First we provide a form of
inclusion-exclusion lemma, which expresses F,, (B, p) for a prime number p in terms
of sums of the function F,(B). Before we state the lemma, we introduce a convenient
piece of notation. For r > 1 and k € Z let

pm(k,r) =8{1< k..., <(m—-1): k=ki+---+k}.

Note that p,(k,r) is zero, unless r < k < r(m — 1).

Lemma 5.2, — Form > 2 one has

oo 2r(m—1)

Fp(B,p) = Fu(Bp™™) 4> Y pm(k,2r)Fy (Bp~ Criim=F)
r=1 k=2r
oo (2r—1)(m—1)

+ Z Z pm(k,2r — 1)F,, (Bp—(zr—l)m_k)

Note that the summations in Lemma 5.2 are in fact finite, as F,,(P) = 0if P < 1.

Proof. We start the proof in reinterpreting terms of the shape F,, (Bp_K ) for
some K > 0 as

F. (Bp_K) =f {1 <pKe < B, lis m-full}.
Then the right hand side in the identity in Lemma 5.2 becomes
RHS = jj{l <p™ LB, lis m—full}

oo 2r(m—1)
+3° 3 pm(R20)8{1 < pPrtImtRe < B¢ s meofull}
r=1 k=2r
oo (2r—1)(m—1)
+ Z Z Pm(k, 2r — l)ﬁ{l < p(27'_1)m+kﬁ <B,/is m—full}
(54) r=1 k=2r—1
oo (2r—1)(m—1)
-3 prm (k. 2r — 1)8{1 < p*™ ¢ < B, ¢ is m-full }
r=1 k=2r—1
oo 2r(m—1)
— Z Z pm(k,2r)ﬁ{1 < p2””+k€ <B,/is m—full}.
r=1 k=2r
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For any K > 0 we use the identity

${1 <p"0 < B, tis m-full} = §{1 < p"¢ < B, Lis m-tull,p{ £}
+ {1 <P B, £ is m-full}

m—1
4 Z ﬁ{l < pKtmtky < B, Cis m—full,pfé}.
k=1

(5.5)

We use this identity for the terms in the third line in (5.4). We observe that the terms
counting 1 < p>rmtEy < B with ¢ m-full identically cancel with the fourth line in
(5.4). Hence we obtain

RHS = ﬁ{l <p™ < B, lis m—full}

oo 2r(m—1)

+3° 3 p(k20)3{1 < pP MR < B¢ is mefull}
r=1 k=2r
o (2r—1)(m-1)

+Y pm (b, 2r — 1){1 < pEr=Vm+hy < B ¢ is m-full, pt £}
r=1 k=2r—1
0o (2r—=1)(m—1) m—1

+ Z Z Z om(k, 2r — 1)1:1{1 L pPrmtktRe g < B Cis m-full, p{ﬁ}
r=1 k=2r—1 k,=1

oo 2r(m—1)

= > pmlk20)#{1 <P B, s mofull}.
r=1 k=2r

Recalling the definition of the functions p,,(k,r) we can further rewrite this as
RHS = ﬁ{l <p™ LB, lis m—full}

oo 2r(m—1)

+ Z Z pm (k,2r)8{1 < pBrtmtky < B 1 s m-full}

r=1 k=2r
oo (2r—1)(m—1)
(5.6) + Z Z pm(k,2r — D)E{1 < pBr—mtky < B¢ is m-full, pte}

r=1 k=2r—1
oo 2r(m—1)
+3° > pm(k20)#{1 <p* RO < B, Cis mefull, pt £}
r=1 k=2r
oo 2r(m—1)
= > pmlk20)#{1 <p* RO < B, s mofull}.

r=1 k=2r

We now use the identity (5.5) for the terms in the last line in equation (5.6). The
resulting terms with p?>" ™+ ¢ < B and p { ¢ cancel with the terms in the fourth line.
Moreover, the terms with 1 < p2"tUm+k¢ < B and ¢ m-full identically cancel with
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the terms in the second line in (5.6). Hence we obtain

RHS—]i{l < B, Elsmfull}
o0 27‘ 1 )
+ Z Z (K, 2r — 1)E{1 < p@=VmHRp < B¢ is m-full, pt £}
r=1 k=2r—1

0o 2r(m—1) m—1

— Z Z me(k, 2r){1 < pBritmththatiy < B 0 is m-full, ptl}.

r=1 k=2r k?gr,-+1:1
Again using the definition of the functions p,,(k,2r) we can rewrite this as

RHS = ﬁ{l <p™ LB, lis m—full}
o (2r—1)(m-—1)
(5.7) + Z Z pm(k,2r — 1){1 < pBr—Umtky < B 0 is m-full, pte}
r=1 k=2r—1
oo (2r4+1)(m—1)
— Z Z pm (K, 2r + l)ﬁ{l < plPrHmtky < B0 is m-full, p)[ﬁ}.
r=1 k=2r+1
The last two sums in (5.7) cancel except for the terms with » = 1 in the second line.
Hence we get
m—1
RHS = {1 <p™{ < B, Lis m-full} + Y {1 <p™ ™ < B, £ is m-full, pt £}
k=1
Similarly as in (5.5) we now observe that on the right hand side we count exactly all
1 < £ < B such that p | £ and ¢ is m-full, which completes the proof of the lemma. O

Lemma 5.2 now allows us to deduce an asymptotic formula for F,, (B, p) given that
we know (5.1). We recall that the sums in Lemma 5.2 are all finite and hence we can
first reorder them to take into account cancellation between different sums and then
complete the resulting series to infinity. First we rewrite the expression for F,, (B, p)
in Lemma 5.2 as

oo

(5.8) Fu(B.p) = Fu(Bp™ + 3. am(u)Fn(Bp "),
p=m-+1

with coefficients a,, (1) that are given by

oo 2r(m—1)

=3 > ok 2) L 2ryme)

r=1 k=2r
0o (2r—1)(m-—1)

+> 0 > palk2r = 1) Ljpmar 1yming

r=1 k=2r—1

oo (2r—1)(m—1) oo 2r(m—1)
- Z Z pm k 2r — 1) 1[;4 2rm—+k] Z Z pm k 2T [u=2rm+kK]-
= k=2r—1 r=1 k=2r
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Note that all the appearing sums are in fact finite and hence we can reorder them
freely. Our next goal is to get more understanding on the coefficients a,, (1) (in par-
ticular their size) and hence we group them in a generating series. Define

oo

Gp(z) = Z G ().

p=m-+1

A first rough bound on the coefficients a,, () can be obtained via the estimate

t(m—1)
<2 Y Y puk=2 Y (m-1).
1<t<p/m k=t 1<t<p/m

For m > 3 we obtain
am(p) < 2(m — 1)W/MFL

whereas for m = 2 we have the estimate

am (1) < 2p/m.

In particular we deduce that there is some constant R,, only depending on m such
that the power series G, (x) is absolutely convergent for |z| < R,,. Moreover, in
choosing R,, sufficiently small we can also assume that the sum

o0 t(m—l)
> pm(k,t)zmrE
t=1 k=t

is absolutely convergent. Our next goal is to write the generating series G,,(z) as
a fractional function and in this way realize that it has a larger radius of absolute
convergence than the bound that is obtained from the very rough estimate on a,, ().
For this we observe that for |x| < R, we can express G, (z) as

oo 2r(m—1)
G (z) = Z Z pm (k, 2r)grHlm+k
r=1 k=2r
o (2r—1)(m-1)
+ pm (k, 2r — 1)g(r—1m+k
r=1 k=2r—1
0o (2r—1)(m-—1) oo 2r(m—1)
- Z Z pm (K, 2r — 1)z?rmtk _ Z Z pm (K, 2r) 22 mEk,
r=1 k=2r—1 r=1 k=2r

We can now compute the generating function G,,(z) as

= moloNT X m—1  \ 2r-1
Gm(z) = Z 2 2r+m (Z xk) + Z x(?r—l)m(Z xk)
r=1 k=1 r—=1 =1

m—1

00 2r—1 e’} m—1 2r
_ E JC27’m ( E I‘k) _ E x2rm< § 1'k> )
r=1 r=1

k=1 k=1
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In the area of absolute convergence one may reorder the sums as

Gm(2) = i(—l)tfﬂ(t“)m (3:1 x’“)t + i(_l)tﬂxtm <m§:1 xk>t

- . k=1

i | a1\ -1
=(1— m\,.m (1 m—+1 )
( ™)z xix — +x 1

m—1
m+1T -1

=(1-a™z (x—1)(z — 142" (@™ 1))

-1

z—1
= (1 —z™)z™ (™ 1) (:c —14amH(gm = 1))
=1 -2z (@™ =1) (z -1+ 2> — ac"”‘l)fl :

We observe that

2 gt e =@ - D@+ 1) 2™ 1) = (™ - 1)@ -z +1).

Hence we obtain

Gm(z) = =™ @™ 1 =1) @ —2z+1)"".

In the interval = € (0,1) the function ™ — x takes its minimum at z = m~/(m=1),
and at this point 2™ — 2 = m~ YD (m~1 — 1). In particular we observe that the
Taylor series for G,,(z) is absolutely convergent in the interval = € (0, 1).

We can now deduce an asymptotic for Fy, (B, p).

Lemma 5.3, Let m > 2. Let p be a prime number. Then we have
Fon(B,p) = Cp BY™(p™! + Gu(p™'/™)) + Oy (B p~™5m).
Here the implicit constant is independent of p.

Proof. — We start in recalling equation (5.8)

oo

Fu(B,p) =Fn(Bp™™) 4+ > am(u)Fm(Bp™").
p=m-+1

From the asymptotic formula in (5.1) we deduce that

Fm(B,p) — Cm(Bp—m)l/m + Cm Z am<u)(Bp—u)1/m

p=m-+1
+0m<<Bpm>“m+ S |am<u>|<Bpﬂ>“m)
p=m-+1

= CpBY™(p7! + G(p™ ™))

+0,, (Bnmp—mmm + Bnmp—mnm Z |am (M)|2(_,u+m)f€7n) )
p=m-+1

JEP — M., 2024, tome 11



HYPERBOLA METHOD ON TORIC VARIETIES 13()

The last sum is absolutely convergent (consider the generating function =G, ()
at the point z = 27%m) and hence we have established the asymptotic

F(B.p) = CuBY™ (57" + Gou(p™1/™)) + O (BErp™ ). 0

Next we aim to generalize Lemma 5.3 to obtain an asymptotic formula for
F,,(B,d) for a general square-free number d. For this we start with a generalization
of Lemma 5.2.

Lemwva 5.4. Let d > 0 be a square-free integer and p a prime with p | d. Write
d' =d/p. For m > 2 one has

oo 2r(m—1)
Fu(B,d) = Fpn(Bp™™,d)+ Y > pm(k,2r)Fp(Bp~Crim=F d')
r=1 k=2r
oo (2r—1)(m-—1)
+3 " (k20 — 1), (Bp UMk )
r=1 k=2r—1
co (2r—1)(m—1)

— Z pm(k,2r — 1) Fy, (Bp_%m_k, d/)
r=1 k=2r—1
oo 2r(m—1)

=Y pmlk20)F (Bp2rm R ).
r=1 k=2r

The proof of Lemma 5.4 is exactly the same as the proof of Lemma 5.2 where the
condition ¢ is m-full is replaced by the condition that ¢ is m-full and d’ | £. Moreover,
as in equation (5.8) one can rewrite the identity from Lemma 5.4 as

oo

(5.9) Fp(B,d) = Fpu(Bp™™,d') + > am(u)Fn(Bp ™, d').
p=m-+1

Via induction on the number of prime factors of d we now establish the following
lemma.

Lemva 5.5. — Let d > 0 be a square-free integer. Write w(d) for the number of prime
divisors of d. Then for each integer m > 2 there exists a positive constant K,, such
that we have
Fu(B,d) = Co B [T(07 ! + Gu(p™™)) + O (K5 D B d =),
pld
Here the implicit constant is independent of d and
1
-1 —1/my __
(5.10) P~ 4+ Gun(p )= 1+ p_pm—D/m’
For m =1 the asymptotic holds with C1 =1, K1 =1, k1 =0 (and G1 =0).

Proof. — For m = 1 the statement is immediate. Let us assume that m > 2. If d is
prime, then the statement follows from Lemma 5.3 (or note that if d = 1 then the
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statement reduces to the assumption in (5.1)). Let d > 0 be squarefree and ¢ a prime
with ¢ | d. Assume that we have established the asymptotic

F, (B7d/) _ CmBl/m H(p—l + Gm(p—l/m)) +0,, (K';;ib(d’)Bmmd/—mfsm)7
pld’

with a constant K, given by

Kp=1+ Y lam(u)275mt=m,
p=m-1

Note that K,, is indeed a convergent sum. Then by Lemma 5.4 and equation (5.9)
we deduce that

Fr(B,d) = Fp (Bg™™d') + > am(u)F (Bg ", d')
p=m-+1
=CuBY" [0 + Gmlp™™)) (Q‘l + ) am(u)q‘“/m>

pld’ p=m+1

+ O, (K:‘:l(d/)BK:m,q—nll‘im,d/—ml‘im, (1 + Z ‘am (M)lq—nm(u—m)) ) .
p=m+1

By definition of K,, we obtain

Fr(B,d) = Co, BV T (07" + Grmlp™ /™))

pld
+ Oy, (K;i(d')B*“Mq—de’—mm (1 + > |am(u)|2—nm<u—m>)>
p=m-+1
= Co BV [T (07" + G (p™"™)) + O (Kl B (qd!) )
pld
= C’mBl/m H(p—l + Gm(p—l/m)) +0,, (K;%(d)BKmd_me’). 0
pld

Next we given an upper bounds for the leading constant in Lemma 5.5. For square-
free d we introduce the notation

(5.11) ema=Co [[(07" + Gulp™™)).
pld

We observe that ¢ 4 = 1/d and we recall that

1
1 —1/my _

For every fixed m > 1 there is a positive constant ca(m) < 1 such that

plm=b/m < c2(m)p,
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holds for all primes p > 2. Hence we deduce from equation (5.12) that there exists a
constant cs(m), only depending on m, such that

(5.13) 10" + Cul™/m) < esfm) .
pld

Hence, we get

1
(5.14) Cmad < cmcg,(m)w(d)g e A1,
Moreover, for m > 2 we have
m 1 2
(5.15) Sl m+1- 3
5.1. AN AUXILIARY COUNTING FUNCTION. — For any s-tuple of positive integers m =
(mq,...,ms) and any s-tuple of squarefree positive integers d = (dy,...,ds), let

fm,a : N = R be the function defined by

1 ifd; | y; and y; is my-full Vi € {1,..., s},
fm,d(y17"'7y8): .
0 otherwise.
Lemma 5.6. — Let m = (mq,...,ms) € N°. For every s-tuple of squarefree positive
integers d = (d,...,ds) and every € > 0 we have

Z fm,d(ylv"'ays)

1<y <B;, 1Ki<s
- > 1/m; s —(2/3)+e , s . y
= (H Cmi,,di> H Bi /m; + Om,e < (H dz) (H Bi /mz) (121121 Bi) )
i=1 =1 i=1 =1 RS

for all By,...,Bs >0, where § = min{1/3, min;<;<s 1/(m;(m; + 1))}.

Proof. — We observe that

S

Z fm,d(ylaays):Hle(B’Hdl)

1<y: <Bi,1<i<s i=1

For i € {1,...,s} such that m; > 2 apply Lemma 5.5, for ¢ € {1,...,s} such that
m; = 1 use the estimate Fy(B;,d;) = B;/d; + O((B;/d;)*/?). Then apply (5.14) and
(5.15) to estimate the error term. O

Lemma 5.6 implies that the function f,, q satisfies Property I with the constants

s s —(2/3)+e
Crm = Hcmi,dia Cre = (H di) ;
i=1

i=1
1
w; = —, 1 < 1 g S,
m;
A= min{1/3, min 1/(m(m; +1)}.
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6. CAMPANA POINTS ON TORIC VARIETIES

6.1. Toric VARIETIES OVER NUMBER FIELDS. — Let X be a complete smooth split toric
variety over a number field K. Let 7' C X be the dense torus. Let ¥ be the fan
that defines X. We denote by {p1,...,ps} the set of rays of ¥ and by X.x the
set of maximal cones of ¥. For every maximal cone o we define J, to be the set
of indices ¢ € {1,...,s} such that the ray p; belongs to the cone o, and we set
I, ={1,...,8}\ds. Then we have |J,| = n and |J,| = r for every maximal cone o of &,
where n is the dimension of X and r is the rank of the Picard group of X. In particular,
s=n+r. Foreach i € {1,...,s}, we denote by D; the prime toric invariant divisor
corresponding to the ray p;. We fix a canonical divisor Kx := — 5" | D;.

By [Cox95] the Cox ring of X is K[yi,...,ys] where the degree of the variable y;
is the class of the divisor D; in Pic(X). For every y = (y1,...,ys) € C® and every
D= Zle aiDi, let

S
y” = [Tu
i=1

Let Y — X be the universal torsor of X as in [Sal98, §8]. We recall that the variety Y’
is an open subset of Aj whose complement is defined by yPs = 0 for all maximal
cones o, where D, := Ziejo D; for all o0 € X ax.

The integral model m : & — 2 of the universal torsor ¥ — X as in [Sal98,
Rem. 8.6] gives a parameterization of the rational points on X via integral points
in O = A®(Ok) as follows. Let C be a set of ideals of Og that form a system of
representatives for the class group of K. We fix a basis of Pic(X), and for every
divisor D on X we write ¢ := [[/_, ¢ where [D] = (by,...,b,) with respect to the

i=1%
fixed basis of Pic(X). Then, as in [Piel6, §2],
X(K)=2(0g) = | | n°(Z(0x)),
ceCr
where 7¢ : #¢ — 2 is the twist of 7 defined in [FP16, Th.2.7]. The fibers of
7|« (0 are all isomorphic to (Og)", and #(Ox) € A®(Ox) is the subset of points
y € @;_, ¢ that satisfy

(6.1) Z yPoePr = Ok.

O0EX max
Let N be the lattice of cocharacters of X. Then ¥ C N ®z R. For every i €
{1,...,s}, let v; be the unique generator of p; N N. For every torus invariant divisor

D= Zle a;D; of X and for every 0 € Yax, let uy p be the character of N deter-
mined by u, p(v;) = a; for all j € J,, and define D(o) := D — >°7_, u, p(v;)D;.
Then D and D(o) are linearly equivalent. For every i,5 € {1,...,s}, let B5,; =
—Ug,p, (v;). Then, for every i,j € {1,...,s}, we have f,;; = 0 whenever j € J,, and
whenever ¢ # j are both in J,. Hence,

D. itjed,,
(6.2) Dj(o) =14 o
Ziejg ﬁa,'é,jDi lf] S 3(7-
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Lemwva 6.1, For everyi,j € {i,...,s} and 0,0’ € Lyax we have
50,1’,]’ - — Z 50’,i,£60,67j~
EESU/

Proof. — From the equality D;(co’) = (D;(0))(c’) we get

O—ZUUD VE DZ ZUUD VZ (Dé Zua’ Dy Vz z)

=1
S
= Z (ug,Dj (Vi) — Z Uo,p; (Ve) o', D, (Vi)) D;. O
i=1 =1
6.2. Poryrores. — In this section, we fix a semiample Q-divisor L = Y"7_, a;D;, and

we study a number of polytopes associated to L. The content of this section is purely
combinatorial, in particular, it does not depend on the base field K where X is defined.

For each 0 € ¥ax, we write L(o) = Zle o oD;. Then o; » =0 for all i € J, by
construction.

Remark 6.2. — Since L is semiample, L(o) is effective for all o € E,,,x by [CLS11,
Prop.6.1.1]; that is, a; » > 0 for all ¢ € {1,...,s} and all o € E,,ax. If, moreover, L is
ample, then «; , > 0 for all ¢ € J, and all o € 3.« by [CLS11, Th.6.1.14].

Assumprion 6.3. — We assume that for every ¢ € {1,...,s} there exists 0 € Yax
such that o, > 0.

We observe that Assumption 6.3 is satisfied if L is ample by Remark 6.2, or if L is
linearly equivalent to an effective divisor >_°_; b;D; with b; > 0 for all i € {1,...,s}
by Lemma 6.4 below.

6.2.1. The polytope Pr,.. — We describe a classical polytope associated to L that we
use in Section 6.3 to study the height function defined by L

We denote by M the lattice of characters of T', dual to N, and by Mg the vector
space M ®z R. Similarly, we set Pic(X)g := Pic(X) ®z R. We recall that there is an
exact sequence (e.g. [CLS11, Th.4.2.1])

0 — Mg — @ RD; —2= Pic(X)r — 0,
=1

such that the effective cone Eff(X) of X is the image under ¢ of the cone generated
by the effective torus invariant divisors

C {ZaiDi:al,...,aS>O} CEHRD
=1 i=1

Since L is semiample,

Pr:={meMg:m(v;)+a, 20Vie{l,...,s}}.
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is a polytope with vertices {—uy, : 0 € Zmax} by [CLS11, Prop.4.3.8, Th.6.1.7].
In particular,

(6.3) P, = { > Aotor: Ao)oesnm ERTG™, D A, = 1}.

0E€EX max 0E€EX max

Lemma 6.4. — For every t € Ry,

D AL(0) : o)oesnm € Rzo)™™, Y A(,:t}.

0EXmax o€ max

(tL—FM]R)ﬁC:{

Proof. — By (6.3) L + Pr, is the polytope with vertices {L(c) : 0 € Ypax}. Since
(tL + Mr) N C = tL + P;;, = t(L + Pr) by [CLS11, Exer.4.3.2], the statement
follows. O

Remark 6.5. — If L is ample, then there exists a positive integer ¢ such that [t~1L] =
[Z;l miDz} with mq,...,ms; € N. Indeed, [L] has at least one representative of

the form »;_, b;D; with by,...,bs € Q59 by Lemma 6.4 and Remark 6.2. Hence,
it suffices to choose any positive integer ¢ such that tbi_l €Zforallie{l,...,s}.

6.2.2. The polytope P.  We investigate some polytopes associated to [L] that we
use for the application of the hyperbola method in Sections 6.5-6.6.

We identify R* with the space of linear functions on @@;_; RD; by defining ¢(D;) =t;
for all i € {1,...,s} and all ¢ = (¢1,...,ts) € R®. Under this identification, the dual
of Pic(X) is the linear subspace H of R* defined by

(6.4) lj = Z Boijti Vi€ dos

i€,
for one, or equivalently all, o € ¥p,,x (cf. Lemma 6.1).
Let P C R® be the polyhedron defined by

(6.5) ti>0vie{l,...;s} and > aiot; <1VY0 € Sy
i=1

Then P is a full dimensional convex polytope by Remark 6.2 and Assumption 6.3.

Moreover, cone(P) is dual to the cone C' defined above. For every o € Xy, let

]30 =PnN cone(]gﬁ {Z Qi ot = 1}),
i=1
so that

(6.6) U B =P

0E€EX max

We observe that the polytopes P and 13,7 depend only on the class of L in Pic(X) and
not on the chosen representative Zle a;D;.
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Lemma 6.6
(i) For every 0,0’ € Ymax,
130. M 150/ = ﬁa’ M {tj = Z Bo’,i,jti V] S {‘€ S ga Oy o 7& 0}}
1€J,

(ii) Under Assumption 6.3 we have ()¢5 P,=PnNH.
(iii) If L is ample, then

P,=Pn {tj < Z Bo,iiti Vi€ 30}
i€d,
for every o € Yax- In particular, B, is the polytope in R® defined by
t1,...,ts 20, t; < Z Boyijti Vi€ o, Z a;ot; <1
i€d, i€d,

Proof. — By definition, P, is the set of elements ¢ € P such that ¢(L(c")) < t(L(0))
for all 0’ € ¥phax. By (6.2) we have

HL(o) - L(o")) = t@ 01 (D30) = D)) = 3 g (3 Bosst) =11 ).

Jj€Jo i€,

Hence, (i) and the inclusion D in (iii) follow. For the reverse inclusion in (iii) we fix
Jj € J-. By [Sal98, Lem. 8.9] there is 0/ € X,ax such that d, NJ,r = J» ~ {j}. Then

aj,a/< gﬁ“” >_t L(o’) = L(0)) < 0

for all t € P, and @jor > 0 by Remark 6.2. Part (ii) follows from (i), as (,cx, P, =

Pa N H for every o' € Ypax by (i) together with Assumption 6.3, and we conclude
by (6.6). O

Levya 6.7. —  Assume that L is ample. Let w = (w1,...,ws) € RY,. Let F be the
face of P where the mazimum value a(L,w) of Sl wit; is attained. Then
(i) a(L,w) >0 and F C H. N
(ii) If, additionally, L] = [>°;_, @;D;] in Pic(X)r, then a(L,w) = 1 and F =
Hn{Y]_,wt; = 1}. In particular, F N {t1,...,t; > 0} # @.

Proof. — Since s > 1 and P is full dimensional, we have a(L,w) > 0. For every
0 € Lmax, let Fy := FN P,. Fix 0 € Spay. Let t € P, ~ H. By (6.4) and Lemma 6.6
there exists j € J, such that ¢; < Ziejg Be,i,jti- Let t' =3, g, Bo.ijti- For each
i€ {l,...,s} ~{j} let t; :=t;. Then (t’h... ') € P,, and ZZ 1wzt >3 1w2 i
by construction. Hence ¢ ¢ F Thus F - H which implies F C Fg/ for all o’ €
Ymax- Since this proof works for every o € ¥,.x, we conclude that F = Fg/ for all
0,0" € Ymax- Now (i) follows, because F= Uaezmx F,.

For (ii) we recall that o; , = w; + Z cg. @iBo,j for all i € J,. Hence, we have
Zzeﬂa Q; ot = Zf Jwit; for all t € H and for all o € Yimax. Since H is the subspace
of R® dual to Pic(X)g, a torus invariant divisor D satisfies (D) = 0 for all t € H
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if and only if D is a principal divisor. Since D;,..., Dy are not principal divisors,
then H N {t1,...,ts >0} # . Let t € H with t1,...,ts > 0, up to rescaling t by a
positive real number we can assume that Zle w;t; = 1, and hence t € F. O
6.2.3. The geometric constant. — We compute certain volumes of polytopes that ap-

pear in the leading constant of the asymptotic formula (1.1).

Fix 0 € Ypax. Since X is smooth, we know that Pic(X) = @,y Z[D;]. We iden-
tify R" with the space of linear functions on B,.4 R[D;] by defining
Z(Z ai[Di}> = Z a;z;
i€, i€,

for all 2 = (2;)ie5, € R". Let A7) : R” — R be the evaluation at [L]; that is,
Ay (z) = Ziejg o 07 Fix i € 9, such that o, # 0. The change of variables
= ANp)(2z), do = o5 ,dz;, gives

/ngzi_/(/ ga{i H dzi)dx
R™eg, R\ zi=(2=Fica, it @0 #)/ 05, " i€, ikt

for all integrable functions g : R™ — R.
Lemvia 6.8. — The volume

a(l) =

l Nea H dZ?’

/ * —1
EfF(X)* AT (1) g

is positive and independent of the choice ofﬁzT and of the choice of 0.

Proof. — The transversal intersection Eff(X)* N )\[L]( ) is an (r — 1)-dimensional
polytope, hence the volume is positive. The independence of the choice of i is clear.

The independence of the choice of ¢ is a consequence of Lemma 6.1. ]

Lemma 6.9. — Assume that L is ample and (L] =[Y.]_, w;D;] with w1, ...,ws>0.
For 6 >0, let Hs be the hyperplane defined by >°:_, w;t;=1—0. Then for §>0 small
enough, meas,_1(Hs N P) = ¢0*~" + O(8° 1), where meas,_; is the (s — 1)-dimen-
sional measure on Hs given by ngig&#g(widti) for any choice of i € {1,...,s},

and
a(L)
627(8—7')' Z sz

’ 0E€EX max 1€J4
Proof. — Since L is ample, the decomposition (6.6) and Lemma 6.6 give

meass_1(Hs N P Z meas;_1(Hs N P )
0EXmax

Fix 0 € Ypax. Let Vs, 1= meas,_1(Hs N ]30) By the choice of L we have a; , =
w; + Zjegr, w; s, for all i € J,, and hence,

Zwlt - Z aza i Z w](Z 60’,i7jti _tj>

i€l Jj€Io i€l
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for every t € RS. Then HoNP, C H by Lemma 6.6(iii). Fix £ = (&1,...,&) € Hoﬂl—f’(,7
and fix ¢ € J,. Then V5, = meas;_1((Hs N P,) + 6¢) is the volume of the polytope
given by

ti20GVie{l,... sk t; <D Boijti Vi €d0r D ioti <140, szt—l

1€, i€,
with respect to the measure [], ., ; 7(ww;dt;).
For all i € J,, let u; = t;. For all j € 35, let uj = (3,cq. Boijti —t5) /0, ie.,

5
Z ﬁa— Z’j o’l’j (1 — Z wztz)_tj)
1€J, 1761 @i 1<i<s,i7§{

Let g(u) = 3 ¢y, wju; and h(w) = 1= 3", . 5a;ou;. Then 6" *Vs, is the
volume of the polytope given by

>0, Vj€ds, gu)<1,
wp =06, Vi€ o~ {i}, Y. aigu; < 1+ 0g(u),
i€3, i1
Baz Bo'ﬂiv’ .
S Boagui+ —Zh(w) > 8(u; + & - “2Lg(w)), Vjeds,
i€d, 7.761 1,0 1,0

. -1
with respect to the measure was [icics izi(midus), as

‘det ((6% /8t€)1gj,egs,j;é7,e¢7)

= 5 4B /550 )

5<1 + 50,7,]-@/@7;) =0" 05, [,

J€Is
where d;; = 0 if £ # j and §;; = 1. By dominated convergence we can compute
¢ =lims_,0 6" *V;,, as the volume of the polytope given by
U, >0, Vj € do, g(u) <1,
>0,Vi€ly, Y Boijui=0Vi€do, Y qigui=1,
i€, i€

. -1
with respect to the measure was [l <ics izi(m@idu;). We conclude as

J€ds

/uj>o Vji€ds,9(u)<1

6.3. Heieurs. — Now we study the height associated to a semiample Q-divisor L
on X. Let t be a positive integer such that ¢L has integer coefficients and is base
point free. By [CLS11, Prop. 4.3.3] we have H°(X,tL) = @, cp,, nas KX™, where Py,
and M are defined in Section 6.2 and x™ € K[T] is the character of T' corresponding
to m.

Let Hy, @ X(K) — Ry be the pullback of the exponential Weil height under
the morphism X — P(H%(X,tL)) defined by the basis of HY(X,tL) corresponding
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to Pyr, N M. We define Hy, := (HtL)l/t. We observe that this definition agrees with
[BT95a, §2.1].

Prorosirion 6.10. — For every y € % (K), we have

Hixw) = [ sw 5"

veQx 0E€X max

For every c € C" and y € #°(Ok), we have

Hy(w ) =n(c?) [ suwp [y".

ey OE€2max

Proof. By definition of Hy, and of 7 we have, for y € #(K),

HL(W<y)) _ H sup ’ytL-i-(Xm) 1/t.
veQx meP,,NM v
Let m € P,,NM. By (6.3) there are A, € Rx for 0 € E,,ax such that Zanmax Ao =1
and m = — Zaezmax Aol 11, SO that ytLt(xX™) = yZ«rez}max ActL(o) This proves the

first statement. For the second statement we argue as in the proof of [Piel6, Prop. 2].
Fix ¢ € C" and y € #(0k). For every prime ideal p of Ox we write v, for the
associated valuation. Then

min v, (yX) = min v, (yH ) 4oy (L) = vy (D),
0E€Xmax 0E€Xmax

where the first equality holds as [L(¢)] = [L] in Pic(X)g, and the second equality
follows from (6.1) as yL@) e L) for all 0 € Lpax. O

The following lemma will ensure the Northcott property for Hy,.

Lemva 6.11. If L satisfies Assumption 6.3, then there is a > 0 such that for every
¢ € C" and B > 0, every point y € @;_, P with

(6.7) H sup |yH 9|, <N(cH)B

vEQeo o€ max

and y1,...,ys # 0 satisfies
H |y1‘u < m(cDi)Ba
VEQ oo
forallie{1,...,s}.
Proof. — Lety € @;_, ¢P such that (6.7) holds and y1,...,ys # 0. Fixi € {1,...,s}

and choose 0 € ¥ax such that a; , > 0. Recall that Hueﬂm lyil, = 9(y;O0k) by the
product formula. Since y; € ¢Pi for all j € {1,...,s}, we have

N(y;Ox) > N(H 0o Py <Ny Dog) < [ sup ™), < N(H)B.

veQ,, o€ Smax

Hence, M(y,;0x) < N(cPr) B i O
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6.4. CAMPANA POINTS

From now on we assume that K = Q. For every i € {1,...,s}, we fix a positive
integer m; and we denote by %; the closure of D; in 2. Let m := (my,...,ms) and

A=Y (-7

The support of the restriction of A to the fibers over SpecZ is a strict normal crossing
divisor (see for example [CLT10, §5.1]), hence (2", A) is a Campana orbifold as in
[PSTVA21, Def.3.1]. We denote by (2", A)(Z) the set of Campana Z-points as in
[PSTVA21, Def. 3.4], and by #(Z).n the preimage of (2", A)(Z)NT(Q) under 7|a (7).
Then a point of #(Z) with coordinates (y1,...,ys) belongs to % (Z),, if and only
if y; is nonzero and m,-full for all ¢ € {1,...,s}.

For every semiample divisor L that satisfies Assumption 6.3 and every B > 0, let
Ny, 1,(B) be the number of points in (27, A)(Z)NT(Q) of height Hy, at most B. Since
m: % — Z is a Gj,-torsor, we have

Non1(B) = 5 Hy € ¥ (Z)m : Hu(r(y)) < B},

6.5. Heuristics. In this subsection we give a heuristic argument based on the
hyperbola method in support of [PSTVA21, Conj. 1.1] for split toric varieties.

We assume that —(Kx + A) is ample and that L is a big and semiample Q-divisor,
not necessarily equal to —[K x+A] in Pic(X)g, that satisfies Assumption 6.3. We recall
that [PSTVAZ21, Conj.1.1] for (£, A) predicts the asymptotic formula

(6.8) Npn.n.(B) ~ eB*P) (log B)* P~ B — 400,
where c is a positive constant,
(6.9) a(L) :=1inf{t e R: t[L] 4+ [Kx + A] € Eff(X)}

and b(L) is the codimension of the minimal face of Eff(X) that contains a(L)[L] +
[Kx + Al. In particular, b(L) is a positive integer, and a(L) is a positive real number,
as —[Kx + Al is ample. Since Eff(X) is closed in the euclidean topology, the infimum
in the definition of a(L) is actually a minimum.

6.5.1. Combinatorial description of a(L). Recall the notation introduced in Sec-
tion 6.2. We now give a characterization of a(L) as the solution of certain linear
programming problems.

Prorosrrion 6.12
(i) The number a(L) is the minimal value of the function > s A, subject to
the conditions

(610) Ao = 0, Vo € Ernaxa

1
6.11 AoCig > —, Vie{l,... s}
(6.11) > doa, — ie{ s}

0E€X max ‘
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(ii) Assume, additionally, that L is ample. Fix 0 € Ynax and define v :=
> jeg, Boig/mj. Then a(L) is the minimal value of the function Ao subject to the
conditions

(6.12) AosAj =20, Vj€Ed,,

1 .
(6.13) Ao o — éa Bayi N = p— + i, Vi€,
J o

Proof. — To prove part (i) we observe that for ¢ € R the condition
(6.14) tlL] + [Kx + A] € Eff(X)

is equivalent to ¢ (t[L] + [Kx + A]) N C # @. Now, ¢ Y(t[L] + [Kx + A]) =
tL+ Kx+ A+ Mg. It D e (tL+ Kx + A+ Mg)NC, then D — (Kx +A) € C as
—(Kx+A)=>", miiDi € C and C is a cone. Then (6.14) holds if and only if there
exists a divisor D’ € (tL + M) N C such that D'+ Kx + A € C. By Lemma 6.4 this
is equivalent to the existence of A, € Ry for all o € ¥ ax such that > Ao =t
and > v A L(o)+ Kx +AeC.

Now we prove part (ii). Condition (6.14) is equivalent to the existence of D € C
such that t[L] + [Kx + A] = ¢(D) in Pic(X)r. Since X is proper and smooth, the
last equality is equivalent to tL(o) + (Kx + A)(o) = D(c). Write D = >"7_, \;D;.
Then D € C if and only if Aq,..., A s = 0. We have

0 Emax

tL(o) + (Kx + A)(0) — D(0)

1
(e — — = XNi =7 — ai'/\')Di~
Z ( Q;, ey v Z BoiiNi
1€J, J€Jo
Using the fact that A\; > 0 for all i € J, if D € C, we see that condition (6.14) is
equivalent to the existence of A\; € Ryq for all j € J, that satisfy the conditions in
the statement for Ay = ¢. O

6.5.2. Heuristic argument for a(L). Next we give a heuristic argument in support
of [PSTVA21, Conj. 1.1] (and [BM90, §3.3]) regarding the expected exponent a(L)
of B in the asymptotic formula (6.8) for split toric varieties over Q.

Up to a positive constant, Ny, 1,(B) is the cardinality S of the set of m;-full positive
integers y; for i € {1,...,s} that satisfy the conditions yL(9) < Bfor all 0 € Lpax.
We recall that y=(7) = [[;_, y;"”.

i=1Yi
One of the ideas of the hyperbola method is to dissect the region of summation for
the variables y1,...,ys, into different boxes. Assume that we consider a box where

say y; ~ B; (here we mean that for example B; < y; < 2B; for i € {1,...,s}), and
let B; = Bt'. What contribution do such vectors y = (y1,...,¥ys) give to computing
the cardinality S? First we note that the contribution from this box is

S
box contribution = H Bil/mi — BXi=iti/mi
i=1
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In order for this to be a box that we count by S, the parameters (¢1,...,ts) need to
satisfy
S
(6.15) D ticig <1, Vo € Simax
i=1
and
(6.16) th,... ts > 0.

In order to find the size of S we hence have the following linear programming prob-
lem P: Maximize the function

(6.17) Z ti/m;
i=1

under the conditions (6.15) and (6.16). The conditions (6.15) and (6.16) define a
polytope PinR® and by the theory of linear programming we know that the maximum
of the function Y.’_; ¢;/m; is obtained on at least one of its vertices.

The dual linear programming problem D is given by the following problem: Mini-

>

0EYmax

mize the function

under the conditions (6.10) and (6.11). By the strong duality property in linear pro-
gramming [Dan98, Ch. 6], both problems have a finite optimal solution and these
values are equal. Since a(L) is positive, by Proposition 6.12(i) it is the solution of the
dual linear programming problem D and also of P.

6.5.3. Heuristic argument for b(L). — Now we give a heuristic argument in support
of [PSTVA21, Conj.1.1] (and [BM90, §3.3]) regarding the expected exponent b(L)
of log B in the asymptotic formula (6.8) for split toric varieties over Q. We keep the
setting introduced above.

If we cover the region of summation y*(?) < B for all ¢ € Y. by dyadic boxes,
then the maximal value of the count is attained on boxes that are located at the
maximal face F of the polytope P where the function in (6.17) is maximized. Work-
ing with a dyadic dissection this suggests that the leading term should be of order
Ba(I) (log B)*, where k is equal to the dimension of the face F. The next proposi-
tion shows that k = b(L) — 1. Hence, the heuristic expectation we obtained from the
hyperbola method matches the prediction in [PSTVA21, Conj. 1.1].

We recall from Lemma 6.7 that F - H , where H is the space of linear functions
on Pic(X)g. With this identification, the cone generated by PN H is the space of
linear functions on Pic(X)g that are nonnegative on Eff(X) (i.e., the cone in H dual
to Eff (X)) by [CLS11, Prop.1.2.8].

Prorosrrionx 6.13. The cone generated by F is dual to the ‘minimal face of Eff (X)
that contains a(L)[L] + [Kx + A]. In particular, b(L) = dim F' + 1.
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Proof. — Fix 0 € Syax. Then PN H = P, N H. Let t = (t1,...,t,) € cone(P N H).
We recall that [L] =3,y aio[Di] and [Kx + Al = =3, (X - +73)[Ds], so that
t(a(L)[L] + [Kx + A]) i oti — — 4+ v )t
(a(L)[L] + [Kx g E;Wv)

If t € F, then t(a(L)[L] + [Kx + A]) = 0. Conversely, if t # 0 and t(a(L)[L] +
[Kx + A]) =0, then o := Zieﬂg oot >0 as mi +v >0and t; >0 forall i € .
So (aty,...,a"'t,) € F, and t € cone(F). Thus, cone(F) is the face of cone(PNH)

defined by

Ha(L)[L] + [Kx + A)) = 0
By [CLS11, Def. 1.2.5, Prop. 1.2.10] the face of Eff(X) dual to cone(F) is the smallest
face of Eff(X) that contains a(L)[L] + [Kx + A], and

b(L) = dim cone(F) = dim F + 1. O

6.6. Proor or Tarorem 1.2. From now on we work in the setting of Theorem 1.2.
In particular, L = —(Kx + A) = >7_, m; ' D;, and

1
N(B) = 5 tly € ¥ (Z)m : H(y) < B},
where H(y) := sup,ex |y“(?)|, by Section 6.4 and Proposition 6.10.

6.6.1. Mobius inversion. — For B > 0 and d € N*, let A(B,d) be the set of points
vy = (y1,...,Ys) € Z° such that H(y) < B, y; is nonzero and m;-full and d; | y; for
all i € {1,...,s}. We observe that A(B,d) is a finite set by Lemma 6.11. Then

(6.18) N(B) = 5 3" dA(B, d).

deNs
where p is the function introduced in [Sal98, Def. & Prop.11.9].

6.6.2. Theestimate. — Under the assumptions of Theorem 1.2, we can apply Theorem
1.1 to obtain an estimate for the cardinality of the sets A(B,d) as follows.

Prorosition 6.14. There is By > 0 such that for every s-tuple d = (dy,...,ds) of
squarefree positive integers, B > By and € > 0, we have

$A(B,d) = 2°a(L ( > II7n_1)<IIcm“1) (log B)"~

0EX max €74
s —(2/3)+e
—|—O€(<H di> B(logB)’“Q(loglogB)Sl>7

i=1
where a(L) is defined in Lemma 6.8 and ¢y, a4, 15 defined in (5.11).

Proof. — We write §A(B,d) = 2°4A’(B,d), where A'(B,d) is the set of positive
integers y1,...,ys that satisfy the conditions

di | yi, yiis mi-full Vi€ {1,...,s}
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and the inequalities
(6.19) Hgf“ “< B, Vo€ Tmax.

‘We observe that
ﬂA’(B,d): Z fm,d(y1,-..,ys),
Y1,,Ys EN:(6.19)

where f, q is the function defined in Subsection 5.1. The function f,, q satisfies
Property I by Lemma 5.6 and (5.14), see the remarks after Lemma 5.6. Assumption 4.1
is satisfied as (6.5) defines an s-dimensional polytope. Assumption 4.2 is satisfied by
Lemma 6.7(ii). Hence, we can combine Theorem 1.1 and Lemma 5.6 to compute

(6.20) tA'(B,d)=(s—1—k (Hcml 1)03“ log B)*

<<Hd> e B“(logB)kl(loglogB)51>7

where ¢ =1 and k =r — 1 by Lemma 6.7(11), and

oo 2 m?

JEZmdx i€,

by Lemma 6.9. |

We combine the proposition above with the Mébius inversion to obtain an estimate
for N(B).

Prorosition 6.15. —  For sufficiently large B > 0, we have
N(B) = cB(log B)"~! + O(B(log B)"?*(loglog B)*™ 1),

where
(6.21) c= QSTa(L)( > 11 m;1> > u(d) (H cmi,di).
0E€EXmax 1€J4 deNs i=1

Proof. — By (6.18) and Proposition 6.14 we have

) r— - ()l
[N(B) —eB(log B)" ™| / (B(log B)" (loglog B)*™") <& Y ———7/—.
aene Lliza &
For e = 1/12, the right hand side converges by [Sal98, Lem. 11.15]. O

Theorem 1.2 follows from Proposition 6.15 and the interpretation of the leading
constant that we carry out in the following section.
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6.6.3. The leading constant. Here we prove that the leading constant (6.21) can be

written as
S

(6.22) a(X, )7 (x, ) [ —

m;
i=1
where a(X,A) := a(—(Kx + A)) has been introduced in Lemma 6.8, and
r(X.8) = [ Hal@is(ors.
X (Z)

where 7x is the Tamagawa measure on the set of adelic points X (Ag) defined in
[CLT10, Def.2.8], Ha is the height function defined by the divisor A as in [BT95a,
§2.1], Z°(Z) is the closure of the set of rational points 2 (Z) inside the space of adelic
points on X, and da = Hpeﬂf
set of Campana points in 2 (Z,) for each finite place p.

We observe that by [BT95a, Prop.2.4.4], the product (6.22) agrees with the ex-
pectation formulated in [PSTVA21, §3.3] provided that the domains of integration in
the definitions of 7(X,A) (i.e., {x € Z(Z) : da(x) = 1}) coincide.

OA,p, where 0p ,, is the characteristic function of the

Prorosition 6.16. We have
(X, A) <25 D | my> > (u(d)Hcm,di> >0
0E€Smax J€J o deNs =1
Proof. — For every prime number p, we denote by Fr, the geometric Frobenius acting
on Pic(ﬁ&%p) ®z Q, and for ¢t € C we define Ly(t, Pic(Xg)) = det(1l — pt Frp)_1
Since X is split, and hence 2% is split, we have Ly(t,Pic(Xg)) = (1 —p~")~" for

every prime p. Let A, := L, (1, Pic(Xg)) = (1 - p~1)~", and define
)\—hmt—l HLtPlc 9)-
PENy
Then A = lim;,1(t — 1)"¢(¢¥)" = 1 by properties of the residue at 1 of the Riemann
zeta function. Let Ao := 1. By [CLT10, Rem. 2.9(b)], we have 7x = A[],cq,
where 7x ,, denotes the local measure on X (Q,) defined in [CLT10, §2.1.7].
Since split toric varieties satisfy weak approximation (e.g., [Har04, §2]) and 2" is

—1
A'u TX,P’

projective, we get
(X, A) / Ha (@) T] A / Hap(2)05 (5)7x
pegf %(ZP)
where Ha = [],cq, Haw as in [BT95a, §2.1]. We recall that the global metrization
used to define Hs in [BT95a, §2.1] is equivalent to the one determined by [Sal98,
Prop. & Def.9.2].
Since Tx o is the measure used in [Sa198 Prop. 9.16] for the real place, we have

Hpo0(%)Tx,00 = (25 " H/ (l/mj dxj)
0<z;<1

0€Xmax Jj€do

=25 Z Hmj.

0EXmax ]ega

X(R)
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Moreover, if we use the GJ,-torsor structure on m : #(Z,) — % (Z,) together with
[Sal98, Cor.2.23, Prop.9.7, 9.13 & 9.14] we get

—1
/ Ha p(@)0n p(2)7x p = (/ dZ) / Hap(m(y))0ap(m deu
2(2,) G, (Zp) Y (2,)

where dz and [[;_, dy; are the Haar measures on Q) and Q,, respectively, induced
by the Haar measure on @, normalized such that Z, has volume 1, and 6a , o 7 is
the characteristic function of the property

up(yi) >0 = vp(ys) = my, vie{l,..., s}

We have [, ) dz = (1—p~1)". Let x be the characteristic function of . By [Sal98,
Lem. 11.15] we have

/@(ZP) Ha p(7(y))a p(m dez —/ Y)0a p(m H il § (1/mi)—1 de

s

- Z 'u((pel""vpes))/ _ N C H|y‘l/m7) 1de
p°ily;, 1<i<s

(- / we Y [ il
Z;D( j=m; pJZ;,(

I
(]
=
=

ec{0,1}s i=1
= > u((pel,---,peS))H((l (et Y p_j/mf‘)).
ec{0,1}¢ i=1 j=m;

We observe that the product (1 —p~1!) (1 —e; + Z;’im p‘j/mf‘) equals

Ly me s pd/m if e, =0,

(1+ Z?m&_il A (1 4 p — plmi=D/mi) =1 if e = 1.

So, remembering (5.2) and (5.10), we get

T(X,A)<2H > Hmj>

0€Ymax J€J &
B (HC"%) ( I X we oo +Gmi<p”’”"'>>“>~
i=1 pEQ) ec{0,1}* i=1

We conclude by [Sal98, Lem.11.15(e)] as [[,, 4, (p™' + G, (p7V/™)) <. d; ' by
(5.14) for all ¢ € {1,...,s}.
To show that 7(X, A) is positive it suffices to observe that

Hay(7(y))0a.p(r dy; > / dys = (1—p ) >0,
/mp) D7) H Z)sH -1

as the integral on the right is the restriction of the integral on the left to the subset
(Zy)* € Y (Zy). O
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