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THE TRANSPORT OKA-GRAUERT PRINCIPLE FOR

SIMPLE SURFACES

by Jan Bohr & Gabriel P. Paternain

Abstract. — This article considers the attenuated transport equation on Riemannian surfaces
in the light of a novel twistor correspondence under which matrix attenuations correspond to
holomorphic vector bundles on a complex surface. The main result is a transport version of the
classical Oka-Grauert principle and states that the twistor space of a simple surface supports no
nontrivial holomorphic vector bundles. This solves an open problem on the existence of matrix
holomorphic integrating factors on simple surfaces and is applied to give a range characterisation
for the non-Abelian X-ray transform. The main theorem is proved using the inverse function
theorem of Nash and Moser and the required tame estimates are obtained from recent results on
the injectivity of attenuated X-ray transforms and microlocal analysis of the associated normal
operators.

Résumé (Le principe de transport d’Oka-Grauert pour les surfaces simples)
Cet article étudie l’équation de transport atténuée sur les surfaces riemanniennes à la lu-

mière d’une nouvelle correspondance de twisteurs dans laquelle les atténuations de matrice
correspondent à des fibrés vectoriels holomorphes sur une surface complexe. Le résultat prin-
cipal est une version de transport du principe classique d’Oka-Grauert et stipule que l’espace
des twisteurs d’une surface simple ne supporte aucun fibré vectoriel holomorphe non trivial.
Ceci résout un problème ouvert sur l’existence de facteurs intégrants holomorphes matriciels
sur des surfaces simples et est appliqué pour donner une caractérisation du domaine pour la
transformation en rayons X non abélienne. Le théorème principal est démontré en utilisant le
théorème d’inversion locale de Nash et Moser, et les estimations nécessaires sont obtenues à
partir de résultats récents sur l’injectivité des transformées en rayons X atténuées et l’analyse
microlocale des opérateurs normaux associés.
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728 J. Bohr & G. P. Paternain

1. Introduction

Inverse problems play a central role in different parts of analysis and geometry.
In these problems, there is often an underlying PDE of transport type involving the
geodesic vector field of a Riemannian manifold that drives the behaviour of various
X-ray transforms. In recent years, a series of papers has culminated in general in-
jectivity results (modulo gauge transformations) for a fundamental class of nonlinear
X-ray transforms on simple Riemannian surfaces. One goal of this paper is to give
a characterisation of the range for this class of transforms via a theory of ‘holomor-
phic integrating factors’. The result is reminiscent of the Ward correspondence for
anti-self-dual Yang-Mills fields, but without solitonic degrees of freedom. The range
characterisation turns out to be equivalent, via a novel twistor correspondence, to a
non-existence theorem for holomorphic vector bundles on certain complex surfaces,
resembling the classical Oka-Grauert theorem. Remarkably, the proof of this complex
geometric result uses essentially both the theory of transport equations and microlocal
analysis.

We now describe the setting of the paper in more detail. Let (M, g) be a compact
Riemannian surface with smooth boundary ∂M . Let SM = {(x, v)∈TM : g(v, v)=1}
be the unit tangent bundle and X the geodesic vector field on SM . This paper ad-
dresses three aspects related to the transport equation

(1.1) (X + A)R = 0 on SM

with matrix attenuations A ∈ C∞(SM,Cn×n): (1) The existence of special solutions
to (1.1), called (matrix-)holomorphic integrating factors. (2) A twistor correspon-
dence between attenuations A and holomorphic vector bundles on a complex surface.
(3) A range characterisation for the non-Abelian X-ray transform, which arises from
boundary measurements of solutions to (1.1).

These considerations are closely related and are motivated by an inverse problem
that we now describe. Assume that ∂M is strictly convex and that M is non-trapping,
i.e., all geodesics in M reach ∂M in finite time. We denote with ν the inward pointing
unit normal to ∂M and partition the boundary of SM into ∂SM = ∂+SM ∪ ∂−SM ,
where

∂±SM = {(x, v) ∈ SM : x ∈ ∂M, ±g(ν(x), v) ⩾ 0}.
Then, by standard ODE theory, equation (1.1) admits a unique continuous solution
R = R0 : SM → GL(n,C), differentiable along the geodesic flow, with R0 = Id on
∂−SM and we define the scattering data of A ∈ C∞(SM,Cn×n) by

CA := R0|∂+SM ∈ C∞(∂+SM,GL(n,C)).

The nonlinear map A 7→ CA is called the non-Abelian X-ray transform. The inverse
problem of recovering an attenuation A from measurements of its scattering data CA
has been subject of a number of recent papers [34, 33, 28] (with earlier in work
[50, 46, 12, 30, 10]) and the question of injectivity is now well understood in the
following setting: Let G ⊂ GL(n,C) be a Lie group with Lie algebra g and suppose
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The TOG-principle for simple surfaces 729

that A is given in terms of a 1-form A ∈ Ω1(M, g) and a matrix field Φ ∈ C∞(M, g) as

A(x, v) = Ax(v) + Φ(x).

We then write A = (A,Φ) (referred to as g-pair) and CA = CA,Φ and note that the
scattering data of a g-pair is a G-valued function. Two special cases are of particular
importance: If Φ = 0, then CA = CA,0 describes parallel transport of the connection
that A induces on the trivial bundle M ×Cn. If A = 0 and g = so(3), then CΦ = C0,Φ

arises as measurement data in a novel imaging method called Polarimetric Neutron
Tomography [7, 28, 42, 17].

A surface (M, g) is called simple, if ∂M is strictly convex and M is non-trapping
and free of conjugate points.

Theorem 1.1 (Paternain, Salo, Uhlmann – 2012 & 2020). — Let (M, g) be a simple
surface and G = U(n) [34] or G = GL(n,C) [33]. Suppose that two g-pairs (A,Φ) and
(B,Ψ) have the same scattering data, CA,Φ = CB,Φ ∈ C∞(∂+SM,G). Then

(B,Ψ) = (A,Φ) ◁ φ := (φ−1dφ+ φ−1Aφ,φ−1Φφ)

for some gauge φ ∈ C∞(M,G) with φ = Id on ∂M . □

Here U(n) is the unitary group, with Lie algebra u(n) = {T ∈ Cn×n : T ∗ = −T}
consisting of skew-Hermitian matrices. On manifolds of dimension ⩾ 3 a similar result
was obtained in [37], using the groundbreaking techniques of Uhlmann and Vasy [49]
that also underpin the recent solution of the boundary rigidity problem [48]. For
a more detailed account on the history and applications of the non-Abelian X-ray
transform we refer to [33, 31] as well as the recent monograph [36].

1.1. Holomorphic integrating factors. — Our first contribution concerns (matrix-)
holomorphic integrating factors (HIF), which were initially sought after as a tool to
prove Theorem 1.1 and are now used to obtain the range characterisations in Sec-
tion 1.3.

To define holomorphic integrating factors we use the fact that every smooth func-
tion F : SM → Cn×n has a unique decomposition F =

∑
k∈Z Fk in terms of its

vertical Fourier modes (see Section 2 for more details). Then F is called fibrewise
holomorphic iff Fk = 0 for k < 0 and we define

(1.2) G = {F ∈ C∞(SM,GL(n,C)) : F and F−1 are fibrewise holomorphic}.

Definition 1.2. — A function F ∈ G is called a holomorphic integrating factor for
the attenuation A ∈ C∞(SM,Cn×n), if it satisfies the equation (X+A)F = 0 on SM .

If an attenuation A admits holomorphic integrating factors, then necessarily its
Fourier modes vanish for k < −1, which is to say that A is a member of the set

(1.3) ℧ = {A ∈ C∞(SM,Cn×n) : Ak = 0 for k < −1}.

Note that ℧ in particular contains all gl(n,C)-pairs A = (A,Φ), which have nonzero
Fourier modes only for |k| ⩽ 1. We prove the following result:
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730 J. Bohr & G. P. Paternain

Theorem 1.3. — On a simple surface (M, g) every attenuation A ∈ ℧ admits holo-
morphic integrating factors.

In the Abelian case (n = 1) this theorem was established in [43] and has since
become an indispensable tool in the treatment of attenuated and tensor tomography.
The non-Abelian case is much harder and has so far only been addressed in a Euclidean
setting. There a weak form of HIF (with F only being continuous) was constructed by
Novikov [30] for A sufficiently small and, without smallness assumption, by Eskin and
Ralston [11]. The question of whether smooth matrix HIF exist on simple surfaces
has since been open and we can now give an affirmative answer.

The idea behind the proof of Theorem 1.3 is conceptually quite simple. The set G
from (1.2) forms a group and acts on ℧ from the right by

(1.4) A ◁ F = F−1XF + F−1AF,

such that the orbit of 0 ∈ ℧ contains precisely those attenuations A that admit
holomorphic integrating factors. Theorem 1.3 can thus be reformulated as transitivity
of this group action. Using results on the attenuated X-ray transform from [34, 33] and
microlocal analysis of the associated normals operators, we show that the derivative
of F 7→ A ◁ F at Id ∈ G is surjective for all A ∈ ℧. After establishing appropriate
tame estimates, we use this together with the inverse function theorem of Nash and
Moser to show that all orbits of G are open. As ℧ is connected, the action must be
transitive.

1.2. Twistor correspondence. — The second purpose of this article is to promote a
novel viewpoint on transport equations as in (1.1) by relating them to holomorphic
vector bundles on a twistor space Z associated to (M, g). This is inspired by Penrose’s
twistor programme [38] and the paradigm that solutions to integrable systems should
be parametrised by complex geometric objects [3, 19, 18, 25].

The twistor space Z can be constructed for any oriented surface (M, g) and, as a
smooth manifold, equals the unit disk bundle

Z = {(x, v) ∈ TM : g(v, v) ⩽ 1}.

We equip Z with a complex structure that turns Z int into a classical complex surface,
and that degenerates at SM ⊂ ∂Z. Postponing precise definitions to Section 4, we
note that standard constructions from complex geometry can be carried out ‘smooth
up to the boundary’, in particular there is a natural moduli space

M = Mn(Z) = {Holomorphic rank n vector bundles on Z}/ ∼,

where ∼ denotes isomorphism of holomorphic vector bundles. We establish several
correspondence principles (see Propositions 4.4 and 4.12) which relate the complex
geometry on Z to transport problems on SM . In particular, we prove that there is
an isomorphism

(1.5) M ∼= ℧/G,
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The TOG-principle for simple surfaces 731

where the right hand side is the quotient space under the action defined in (1.4). In
light of (1.5), we may reformulate Theorem 1.3 as follows (see also Theorem 4.13
where the result is stated in context):

Theorem 1.4 (Transport Oka-Grauert principle). — Let Z be the twistor space of a
simple surface (M, g). Then Mn(Z) = 0, that is, Z supports no nontrivial holomorphic
vector bundles.

This result is reminiscent of the Oka-Grauert principle in complex geometry
(cf. [14, 13]), which states that on a Stein manifold the classification of continuous
and holomorphic vector bundles coincide. This, amongst other similarities elaborated
on in Section 4, suggests the following slogan:

Twistor spaces of simple surfaces behave like (contractible) Stein surfaces.
It is tempting to try and prove Theorem 1.4 by complex geometric methods, thus
deriving Theorem 1.3 as corollary. However, there are several obstacles to this: First
one would need to show that Z int is indeed a Stein surface – this is easily seen if
(M, g) is flat (see Lemma 4.10), but remains challenging for other geometries. Second,
one has to deal with the degeneracy of the complex structure at ∂Z, which is a
highly nontrivial task. The work of Eskin and Ralston [11] can be interpreted as such
a ‘desingularisation’, similar to the one performed, albeit in a different setting, by
LeBrun and Mason in [20]. We discuss this approach in more detail in Section 4.4.

For general simple surfaces it seems to be preferable to prove Theorem 1.4 using
transport techniques, requiring however, the injectivity result in [34] a priori. It is
curious to note that the techniques in [34] were in turn inspired by the Kodaira
vanishing theorem from complex geometry.

In [5], we investigate the behaviour of holomorphic vector bundles in a non-simple
setting, specifically for the twistor space Z of a closed Anosov surface of genus g. There
we demonstrate that M1(Z,Z

int), the moduli space of holomorphic line bundles on Z
up to equivalence in the interior, is isomorphic to Cg/Z2g × C.

1.3. Range characterisation. — Finally, we provide a characterisation of the range
of the non-Abelian X-ray transform A 7→ CA in terms of boundary objects. This is
inspired by the range characterisations for the linear X-ray transform by Pestov and
Uhlmann [39] and the subsequent work for attenuated X-ray transforms in [35, 2].

Our main result concerns the range of (A,Φ) 7→ CA,Φ for u(n)-pairs and is formu-
lated in terms of a ‘boundary operator’

P : C∞
α (∂+SM,Her+n ) −→ C∞(∂+SM,U(n)),

where Her+n ⊂ Cn×n denotes Hermitian positive definite matrices. Postponing precise
definitions to Section 5, we note that the domain of P and the operator P itself are
defined in terms of the following objects:

– The scattering relation α : ∂+SM → ∂−SM of (M, g), sending starting point
and direction of a geodesic to end point and direction.

J.É.P. — M., 2023, tome 10



732 J. Bohr & G. P. Paternain

– A nonlinear type of Hilbert transform

H+ : C∞(∂SM,Her+n ) −→ C∞(∂SM,GL(n,C)),

defined in terms of the Birkhoff factorisation in loop groups [41], see Section 5.1.

Theorem 1.5 (Range characterisation for u(n)-pairs). — Suppose that (M, g) is a sim-
ple surface (or more generally, that M = 0). Then an element q ∈ C∞(∂+SM,U(n))

lies in the range of {u(n)-pairs} ∋ (A,Φ) 7→ CA,Φ if and only if

q = h · Pw · (h−1 ◦ α)

for some w ∈ C∞
α (∂+SM,Her+n ) and a contractible map h ∈ C∞(∂M,U(n)) (i.e., the

element induced in π1(U(n)) is trivial.)

Together with Theorem 1.1, we now have a complete understanding of injectivity
and range properties of the (nonlinear) non-Abelian X-ray transform (A,Φ) 7→ CA,Φ
on simple surfaces.

The theorem is restated as Theorem 5.8, where it is complemented by a number of
further characterisations concerning in particular the range of Φ 7→ CΦ and A 7→ CA,
as well as the case of gl(n,C)-valued attenuations. Also a characterisation in the
non-simple case is discussed. For precise statements we refer to Section 5.

Let us illustrate the idea behind our range characterisations with the case of the
transform C∞(M, u(n)) ∋ Φ 7→ CΦ (cf. Theorem 5.11 below). To produce an ele-
ment in the range, we start with some function w ∈ C∞

α (∂+SM,Her+n ). This can be
extended to a smooth first integral w♯ : SM → Her+n , constant along the geodesic
flow. By Birkhoff’s factorisation theorem, w♯ = F ∗F for some F ∈ G. We now make
the assumption that the 0th Fourier mode of F satisfies F0 = Id, in which case the
factorisation is unique. Consider q := F (F−1 ◦ α)|∂+SM ∈ C∞(∂+SM,U(n)). Then q
is given solely in terms of boundary data and in fact equals q = CΦ, the scattering
data of the matrix field

(1.6) Φ = −(XF )F−1 ∈ C∞(M, u(n)).

In particular, q lies in the range of Φ 7→ CΦ. We prove that on a simple surface all
elements in the range arise in this way by showing that every matrix field Φ is of the
form (1.6). This in turn is a consequence of Theorem 1.3.

Theorem 1.5 bears a striking resemblance with the Ward correspondence for the
anti-self-dual Yang-Mills (ASDYM) equation by Mason in [24]: there a one-to-one
correspondence is set up between solutions to the ASDYM equation on M̃ = S2 × S2

(with split signature) on the one hand and pairs (E,H) on the other hand, where E
is a holomorphic vector bundle on a complex twistor space associated with M̃ and H
is a Hermitian metric on E, restricted to a real subspace. The two ‘parameters’ E
and H are also referred to as solitonic and radiative/dispersive degrees of freedom,
respectively. Back to Theorem 1.5, and ignoring the gauge h, we see that the range of
the non-Abelian X-ray transform is also parametrised by a Hermitian metric, given
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The TOG-principle for simple surfaces 733

by w ∈ C∞
α (∂+SM,Her+n ). Notably, there are no solitonic degrees of freedom, which

is in line with the Transport Oka-Grauert principle in Theorem 1.4.
At last, let us mention a potential application of our range characterisations. In the

context of Polarimetric Neutron Tomography, it has been of recent interest to rigor-
ously study statistical algorithms for recovering a matrix field Φ from noisy measure-
ments of CΦ [28, 29]. In particular it was shown in [6], that if M is the Euclidean unit
disk, then Φ can be recovered by a statistical algorithm in polynomial time, provided
there is a suitable initialiser. Knowing the range of Φ 7→ CΦ is a possible starting
point to construct a computable initialiser – we hope to address this in future work.

Acknowledgements. — We would like to thank Maciej Dunajski, Claude LeBrun,
Thomas Mettler, François Monard, Richard Nickl and Ivan Smith for their helpful
comments. We are also very grateful to the referee for corrections and suggestions
that improved the presentation.

2. Preliminaries

Here we provide some well-known background material which may be found in
[15, 47]; for a recent presentation and its relevance to geometric inverse problems
in two dimensions we refer to [36]. Throughout, (M, g) is a compact, oriented two
dimensional Riemannian manifold with smooth and possibly empty boundary ∂M .

The unit sphere bundle SM is a compact 3-manifold with boundary ∂SM =

{(x, v) ∈ SM : x ∈ ∂M}, containing ∂0SM := ∂+SM ∩ ∂−SM as submanifold.
The geodesic vector field X is the infinitesimal generator of the geodesic flow φt on
SM and for (x, v) ∈ SM we denote with τ(x, v) ∈ [0,∞] the first time t 7→ φt(x, v)

exits SM . The vertical vector field V is defined as the infinitesimal generator of the
circle action that the orientation of M induces on the fibres of SM . The pair X,V can
be completed to a global frame of T (SM) by considering the vector field X⊥ := [X,V ].
There are two further structure equations given by [V,X⊥] = X and [X,X⊥] = −KV ,
where K is the Gaussian curvature of M . The Sasaki metric on SM is the unique
Riemannian metric for which {X,X⊥, V } is an orthonormal frame and the volume for
for this metric is denoted by dΣ3. The induced area form on ∂SM is denoted by dΣ2.

If x = (x1, x2) are isothermal coordinates in (M, g) so that the metric has the form
g = e2λ(x) dx2 and if θ is the angle between v and ∂x1

, then in the (x, θ) coordinates
in SM the vector fields have the following explicit formulas:

X = e−λ
(
cos θ

∂

∂x1
+ sin θ

∂

∂x2
+

(
− ∂λ

∂x1
sin θ +

∂λ

∂x2
cos θ

) ∂

∂θ

)
,(2.1)

X⊥ = −e−λ
(
− sin θ

∂

∂x1
+ cos θ

∂

∂x2
−

( ∂λ
∂x1

cos θ +
∂λ

∂x2
sin θ

) ∂

∂θ

)
,

V =
∂

∂θ
.

The space L2(SM,Cn) is defined in terms of the measure dΣ3 and the standard
Hermitian inner product on Cn. There is an orthogonal decomposition L2(SM,Cn) =
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734 J. Bohr & G. P. Paternain

⊕
k∈ZHk, where Hk is the eigenspace of −iV corresponding to the eigenvalue k.

A function u ∈ L2(SM,Cn) has a Fourier series expansion

u =

∞∑
k=−∞

uk,

where uk ∈ Hk. For k ∈ Z and I ⊂ Z we define

(2.2) Ωk = C∞(SM,Cn) ∩Hk and
⊕
k∈I

Ωk = C∞(SM,Cn) ∩
(⊕
k∈I

Hk

)
.

Definition 2.1. — Let u ∈ L2(SM,Cn).
(i) u is called fibrewise holomorphic, iff uk = 0 for k < 0. Similarly, u is called

fibrewise anti-holomorphic, iff uk = 0 for k > 0.
(ii) u is called even iff uk = 0 for k ∈ 2Z+ 1, or equivalently iff u(x,−v) = u(x, v)

for all (x, v) ∈ SM . Similarly, u is called odd iff uk = 0 for k ∈ 2Z, or equivalently iff
u(x,−v) = −u(x, v) for all (x, v) ∈ SM .

We tacitly use these definitions also on ∂SM , noting that u ∈ L2(∂SM,Cn) has
an analogous decomposition u =

∑
k∈Z uk into Fourier modes.

As in [15] we introduce the first order operators

η+, η− : C∞(SM,Cn) −→ C∞(SM,Cn),(2.3)
η+ := (X + iX⊥)/2, η− := (X − iX⊥)/2.

Clearly X = η+ + η−. We have

η+ : Ωm −→ Ωm+1, η− : Ωm −→ Ωm−1, (η+)
∗ = −η−, [η±, V ] = ∓iη±.

In particular, X has the following important mapping property

X :
⊕
k⩾0

Ωk −→
⊕
k⩾−1

Ωk.

We will often use all of the above for smooth functions taking values in complex n×n
matrices, which we indistinctly denote by Cn×n or gl(n,C), if we wish to think of
them as Lie algebra of GL(n,C). (We also use the notation Ωk in the matrix valued
case.)

2.1. Factorisation theorems. — For the range characterisations below it will be im-
portant to factor GL(n,C)-valued maps on SM in terms of the group G from (1.2).
This requires a bundle-version of two well-known factorisation theorems for loop
groups that we now recall, following the notation and presentation in [41, §8].

Let us denote by LGLn(C) the set of all smooth maps γ : S1 → GL(n,C). The set
has a natural structure of an infinite dimensional Lie group as explained in [41, §3.2].
This group contains several subgroups which are relevant for us. We shall denote by
L+GLn(C) the subgroup consisting of those loops γ which are boundary values of
holomorphic maps

γ : {z ∈ C : |z| < 1} −→ GL(n,C).
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The TOG-principle for simple surfaces 735

We let ΩUn denote the set of smooth loops γ : S1 → U(n) such that γ(1) = Id. The
first result we shall use is Theorems 8.1.1 in [41]:

Theorem 2.2. — Any loop γ ∈ LGLn(C) can be factored uniquely as γ = γu ·γ+, with
γu ∈ ΩUn and γ+ ∈ L+GLn(C). In fact, the product map

ΩUn × L+GLn(C) −→ LGLn(C)

is a diffeomorphism.

The second result we shall need is the celebrated Birkhoff factorisation theorem
(cf. [41, Th. 8.1.1]), stating that loops γ ∈ LGLn(C) can be factored as γ = γ− ·∆ ·γ+,
where γ∗−, γ+ ∈ L+GLn(C) and ∆ is a group homomorphism from S1 into the diagonal
matrices in GL(n,C). In fact, we require only a version for loops with values in the
space of positive definite Hermitian matrices, denoted

Her+n = {H ∈ Cn×n : ξ∗Hξ > 0 for all ξ ∈ Cn\0}.

In this case, ∆ always equals Id and the statement is equivalent to the preceding
theorem. We postpone a precise formulation to Theorem 2.3 below.

Consider now a compact non-trapping surface (M, g) with strictly convex bound-
ary. It is well known that such surfaces are diffeomorphic to a disc (cf. [36]) and thus
there exists a section 1 :M → SM which trivialises the bundle SM to M × S1. One
can then perform loop group factorisations fibrewise to obtain:

Theorem 2.3. — Let (M, g) be a non-trapping surface with strictly convex boundary.
(i) Any R ∈ C∞(SM,GL(n,C)) can be factored as R = UF (or R = FU) where

F ∈ G and U ∈ C∞(SM,U(n)). If R is even, then also U and F are even. Moreover,
F is unique up to left (or right) multiplication by a function in C∞(M,U(n)).

(ii) Any H ∈ C∞(SM,Her+n ) can be factored as H = F ∗F with F ∈ G. If H is
even, then also F is even. Moreover, F is unique up to left multiplication by a function
in C∞(M,U(n)).

Proof. — Part (i), modulo the statement on even functions, follows from Theorem 2.2,
applied to the loop R(x, ·) for each x ∈ M . Normalising such that U(x,1(x)) = Id,
the resulting factors U and F are smooth on SM – we refer to Theorem 4.2 in
[33] and its proof for more details. Now suppose that R = UF is even. Denoting
a : SM → SM the antipodal map, defined by a(x, v) = (x,−v), we then have
UF = R = R ◦ a = (U ◦ a)(F ◦ a). As the factorisation is unique up to gauge,
there exists a function h ∈ C∞(M,U(n)) with U = (U ◦ a)h and F = h∗(F ◦ a).
Consequently U and F must be even.

For (ii) note that any H ∈ C∞(SM,Her+n ) admits a square root, i.e., there exists
an R ∈ C∞(SM,GL(n,C)) with H = R∗R. Using (i), we may decompose R = UF ,
with U unitary and F ∈ G and thus H = F ∗U∗UF = F ∗F , as desired. The uniqueness
claim follows from the observation that if we had two factorisations F ∗F = F̃ ∗F̃ ,
then (F̃ ∗)−1F ∗ = F̃F−1. It follows that F̃F−1 is both fibrewise holomorphic and
antiholomorphic and thus equal to h ∈ C∞(M,U(n)). □
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Remark 2.4. — There is a boundary version of the theorem in terms of the group

H = {f = F |∂SM : F ∈G} = {f ∈C∞
Id (∂SM,GL(n,C)) : f is fibrewise holomorphic}.

Here and below the subscript Id refers to maps that are homotopic to Id. Indeed, all
of the following maps are surjective and injective up to a gauge in C∞

Id (∂M,U(n)):

C∞
• (∂SM,U(n))×H −→ C∞

• (∂SM,GL(n,C)), (u, f) 7−→ uf,(2.4)
H× C∞

• (∂SM,U(n)) −→ C∞
• (∂SM,GL(n,C)), (u, f) 7−→ fu,(2.5)

H −→ C∞(∂SM,Hern+), f 7−→ f∗f,(2.6)

Here C∞
• stands for smooth maps r which have a GL(n,C)-valued extension to all

of SM , or equivalently for which the induced homomorphism r∗ : Z × Z → Z
between fundamental groups satisfies r∗(1, 0) = 0. (Since ∂SM = ∂M × S1 is a
torus and GL(n,C) has fundamental group Z, the map r induces a homomorphism
r∗ : Z× Z → Z.) To show (2.4)–(2.6), we extend r ∈ C∞

• (∂SM,GL(n,C)) to a func-
tion R ∈ C∞(SM,GL(n,C)) and apply Theorem 2.3 to R in order to find appropriate
factors for r. We emphasise however, that the factors u and f in the previous display
can be found pointwise for every x ∈ ∂M by solving a Birkhoff factorisation problem
in the fibre SxM .

3. Matrix holomorphic integrating factors

In this section we prove Theorem 1.3 on the existence of matrix holomorphic inte-
grating factors on simple surfaces. Recall from the discussion below the theorem that
this is equivalent to proving that the group G from (1.2) acts transitively on ℧ from
(1.3) via the rule (1.4). To show transitivity, we use the Nash-Moser inverse function
theorem in the form of Theorem 2.4.1 in [16, §III], which requires that:

(a) G is a tame Fréchet Lie group, ℧ is a connected, tame Fréchet manifold and
the action of G on ℧ is smooth tame;

(b) for all A ∈ ℧, the derivative of F 7→ A ◁ F at Id has a tame right inverse.
Here tameness is understood with respect to the grading (∥ · ∥Hs : s = 0, 1, . . . ) by

Sobolev norms and condition (a) is satisfied in view of standard estimates; for more
details we refer to Appendix Section 6.1. The key condition is (b) and we claim that
the derivative in question is given by

(3.1) TA : TIdG −→ ℧, TA(H) = XH + [A, H],

with TIdG = {G ∈ C∞(SM,Cn×n) : G fibrewise holomorphic} and [·, ·] denoting the
commutator. To see this, fix A ∈ ℧ and consider Ft = Id+ tH ∈ G for H ∈ TIdG and
small t ∈ R. Let s ⩾ 0, then for |t| sufficiently small, the Neumann series

∑
k⩾0(−tH)k

converges in the Sobolev space Hs(SM) and one computes that

A ◁ Ft = tXH + A+ tAH − tHA+ o∥·∥Hs (1) as t −→ 0,

which yields the formula in (3.1).
The proof of Theorem 1.3 is complete, if we show that in the simple case the

map TA in (3.1) has a tame right inverse for all A ∈ ℧. This is implied by the following
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proposition, which is formulated in terms of Cn-valued functions – the required right
inverse for TA is obtained by going ‘one level higher’, i.e., viewing Â = [A, ·] as
attenuation with values in End(Cn×n) ∼= Cn2×n2 , acting on Cn2 -valued functions.

Proposition 3.1. — Let (M, g) be a simple surface and A ∈ ℧. Then the map

(X + A) :
⊕
k⩾0

Ωk −→
⊕
k⩾−1

Ωk

is onto and admits a right inverse LA :
⊕

k⩾−1 Ωk →
⊕

k⩾0 Ωk obeying the tame
estimate

∥LAf∥Hs ≲ ∥f∥Hs+1 , f ∈
⊕
k⩾−1

Ωk, s ⩾ 0,

where ≲ means up to a constant that depends only on (M, g), A and s.

The proposition relies on a number of lemmas that we will discuss first. The first
lemma, modulo the tame estimates, appears as Proposition 4.5 in [1] and relies on
the fact that the attenuated X-ray transform IA,Φ is injective on Ω0 ⊕ Ω1. Recall
that IA = IA,Φ : C∞(SM,Cn) → C∞(∂+SM,Cn) (for a u(n)-pair A = (A,Φ)) is
defined by IAf = uf |∂+SM , where uf : SM → Cn is the unique continuous solution
(differentiable along the geodesic flow) of (X + A)uf = −f on SM and uf = 0

on ∂−SM . The tame estimates can be traced back to mapping properties of the
associated normal operator.

Lemma 3.2. — Let (M, g) be simple and A = (A,Φ) a skew-Hermitian pair. Then for
any fm + fm+1 ∈ Ωm ⊕ Ωm+1 there is a solution u ∈ C∞(SM,Cn) to

(3.2) (X + A)u = 0 and um = fm, um+1 = fm+1.

The solution operator Sm,A : Ωm ⊕ Ωm+1 → C∞(SM,Cn), sending fm + fm+1 to
u = Sm,A(fm + fm+1), may be chosen to satisfy the tame estimates

(3.3) ∥Sm,A(fm+ fm+1)∥Hs ≲ ∥fm+ fm+1∥Hs+1 , fm+ fm+1 ∈ Ωm⊕Ωm+1, s ⩾ 0,

where ≲ means up to a constant that depends only on (M, g), A,m and s.

Proof. — First consider the case m = 0. Write I0,1A : Ω0 ⊕ Ω1 → C∞(∂+SM,Cn) for
the attenuated X-ray transform, restricted to Ω0 ⊕ Ω1. This transform is injective,
as the natural gauge from [34, Th. 1.3] is fixed on Ω0 ⊕ Ω1. Indeed, if I0,1A (f) = 0

for f ∈ Ω0 ⊕ Ω1, then there is a smooth p : M → Cn with p|∂M = 0 such that
f = Φ p+ (X +A)p. Since f−1 = 0 we see that (η− +A−1)p = 0 and this gives p = 0

via Lemma 6.2 since any holomorphic function that vanishes on the boundary must
be identically zero.

By means of Santaló’s formula the L2-adjoint (I0,1A )∗ with respect to the measure
⟨ν(x), v⟩dΣ2(x, v) on ∂+SM can be characterised by the equivalence

(3.4) f0 + f1 = (I0,1A )∗h ⇐⇒ f0 = (h♯)0, f1 = (h♯)1.

This is valid for all h ∈ S∞A (∂+SM,Cn), the set of functions h ∈ C∞(∂+SM,Cn)
for which the solution h♯ to (X + A)h♯ = 0 with h♯|∂+SM = h is smooth on all
of SM (cf. [35, §5], adding a matrix field is unproblematic). The first statement of the
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lemma is then the assertion that (I0,1A )∗ : S∞A (∂+SM,Cn) → Ω0 ⊕Ω1 is onto. Indeed,
if f0 + f1 = (I0,1A )∗h, then u = h♯ solves (3.2).

This assertion, together with the tame estimates, is proved with help of the associ-
ated normal operator, which was shown to be elliptic in [1]. More precisely, if we make
the identification Ω0 ⊕ Ω1

∼= C∞(M,C2n) (which is possible after trivialising SM),
then

(I0,1A )∗I0,1A : C∞
c (M int,C2n) −→ C∞(M int,C2n)

is an elliptic pseudodifferential operator of order −1 [1, §4.2]. To proceed, embed M

into a closed surface (N, g) and coverN by open subsets U1, . . . , Um such thatM ⊂ U1,
and Mj = U j is a simple surface for all j. Let ψ1, . . . , ψm ∈ C∞(N,R) be such that
ψ1 ≡ 1 on M , suppψj ⊂ Mj and

∑m
j=1 ψ

2
j = 1 on N . Further, extend A = (A,Φ) to

a pair A1 = (A1,Φ1) with compact support in SM int
1 and set A2 = · · · = Am = 0.

Following the template from [36, §8.2], we see that

P =

m∑
j=1

ψj(I
0,1
Aj

)∗I0,1Aj
ψj : C

∞(N,C2n) −→ C∞(N,C2n)

is an elliptic pseudodifferential operator of order −1 on N , which is self-adjoint and
thus has Fredholm index zero. As each of the operators I0,1Aj

is injective, also P is
injective and thus it defines a homeomorphism P : C∞(N,C2n) → C∞(N,C2n). For
f = f0 + f1 ∈ Ω0 ⊕ Ω1

∼= C∞(M,C2n) we can now define

(3.5) S0,A(f0 + f1) = (I0,1A1
ψ1P

−1(Ef))♯1 |SM ,

where E : C∞(M,C2n) → C∞(N,C2n) is an extension operator and the map (·)♯1 :

S∞A1
(∂+SM1,Cn) → C∞(SM1,Cn) is defined similar as above, this time with respect

to A1. First note that u = S0,A(f0+f1) indeed solves (3.2): Write h1 = I0,1A1
ψ1P

−1(Ef)

and h = u|∂+SM , then h♯11 |SM = h♯ and thus

(I0,1A )∗h = (I0,1A1
)∗h1 = ψ1(I

0,1
A1

)∗I0,1A1
ψ1

(
P−1(Ef)

)
= f on M,

where we used the characterisation (3.4) and the fact that ψ1 ≡ 1 on M , while all
other ψ′

js vanish. Consequently, S0,A is the desired solution operator and it remains
to check the tame estimates.

We check tameness of the operators in (3.5) separately. First note that the exten-
sion E, multiplication by ψ1 and application of I0,1A satisfy the appropriate tame
estimates in a Sobolev scale without loss of derivatives. For E this is the content
of Seeley’s classical article [44] and for I0,1A this is a standard forward estimate [45,
Th. 4.2.1]. Further we have

∥P−1g∥Hs(N) ≲ ∥g∥Hs+1(N), g ∈ C∞(N,C2n), s ⩾ 0,

which follows from P : Hs(N,C2n) → Hs+1(N,C2n) being injective with closed range.
Next, note that supp I0,1A1

(ψ1g) ⊂ K for all g ∈ C∞(M1,C2n) and a fixed compact set
K ⊂ ∂+SM1 with K ∩ ∂0SM1 = ∅. In order to obtain the tame estimates for S0,A,
it thus remains to show

(3.6) ∥h♯1∥Hs(SM1) ≲ ∥h∥Hs(∂+SM1) h ∈ C∞
K (∂+SM1), s ⩾ 0,
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where the subscript indicates that supph ⊂ K. Let R : SM1 → U(n) be a smooth
solution to (X+A1)R = 0 withR = Id on ∂+SM1 (this exists, because A1 has compact
support). Further, write ψ : SM1 → ∂+SM1 for the foot-point projection, sending
(x, v) to the unique point on ∂+SM1 on the same geodesic. Then h♯1 = R ·ψ∗h and we
conclude (3.6) from the following mapping properties: Multiplication by R is bounded
Hs(SM1,Cn) → Hs(SM1,Cn) and pull-back by ψ is bounded Hs

K(∂+SM1,Cn) →
Hs(SM1,Cn) (again subscript K indicates a support restriction). This concludes the
Lemma for m = 0.

For general m ∈ Z the operator Sm,A is obtained by conjugation with eimθ, where
the angle θ is chosen with respect to a trivialisation of SM . Indeed, given fm+fm+1 ∈
Ωm ⊕ Ωm+1, let f̃0 = e−imθfm, f̃1 = e−imθf̃m+1 and Ã = A + e−imθX(eimθ). Put
ũ = S0,Ã(f̃0 + f̃1), then Sm,A(fm + fm+1) := u = eimθũ satisfies

Xu = (Xeimθ)ũ− eimθ(Ãũ) = −Au,

um = eimθũ0 = fm, and um+1 = ei(m+1)θũ1 = fm+1,

as desired. The tame estimates follow immediately from the case m = 0 and the proof
is complete. □

The next lemma is essentially a result in complex analysis:

Lemma 3.3. — Let (M, g) be non-trapping with strictly convex boundary and A ∈
Ω1(M, gl(n,C)) a matrix valued 1-form. Then µ± = η± +A±1 : Ωm → Ωm±1 is onto
and admits a right inverse TA,±,m : Ωm±1 → Ωm obeying the tame estimates

∥TA,±,mq∥Hs+1 ≲ ∥q∥Hs , q ∈ Ωm, s ⩾ 0,

where ≲ means up to a constant that depends only on (M, g), A,m and s.

Proof. — We only consider µ−, the result for µ+ follows by a similar method. Fix
global isothermal coordinates, such that elements in Ωm are given by heimθ for a
function h ∈ C∞(D,Cn) (in particular A±1 = e±iθa±) and the metric is g = e2λgEucl.

for some conformal factor λ(z). Here D ⊂ C is the closed unit disk. Define α ∈
C∞(D,Cn×n) by α(z) = eλ(z)a−(z). Then a computation similar to [36, Lem. 6.1.8]
yields

(3.7) µ−
(
heimθ

)
= e−(m+1)λ∂α(he

mλ) · ei(m−1)θ, h ∈ C∞(D),

where ∂α : C∞(D,Cn) → C∞(D,Cn) is defined by ∂αu = ∂zu+αu. As multiplication
operators are tame (without loss of derivatives), it suffices to construct a tame right
inverse for ∂α. By Lemma 6.2 there is a solution R ∈ C∞(D,GL(n,C)) to ∂αR = 0.
Then R−1∂α(Ru) = ∂0u for all u ∈ C∞(D) and we have reduced the problem to
finding a tame right inverse for ∂0 ≡ ∂z.

It is a basic result in complex analysis that the equation ∂zu = h over C, given
some h ∈ C∞

c (C,Cn), is solved by

u(z) = Ph(z) = − 1

2πi

∫
C

h(ζ)

ζ − z
dζ ∧ dζ, z ∈ C.

J.É.P. — M., 2023, tome 10



740 J. Bohr & G. P. Paternain

A right inverse for ∂0 on D is thus given by

T : C∞(D,Cn) −→ C∞(D,Cn), T f = P (Ef)|D,

where E : C∞(D,Cn) → C∞(C,Cn) is a Seeley extension operator, say chosen such
that suppEf ⊂ 2D for all f ∈ C∞(D,Cn). Let χ ∈ C∞

c (C,R) with χ ≡ 1 on D, then
for all s ⩾ 0 we have

∥Tf∥Hs+1(D) ⩽ ∥χP (Ef)∥Hs+1(C) ≲ ∥Ef∥Hs(2D) ≲ ∥f∥Hs(D),

where we have used that P is a pseudodifferential operator of order −1 and thus it
has the mapping property Hs

c (C) → Hs+1
loc (C).

The right-inverse TA,−,m of µ− : Ωm → Ωm−1 is obtained from T by conjugating
with R and multiplying with scalar factors as indicated in (3.7). In particular, the
tame estimate (3.7) follows from to the previous display and the proof is complete. □

The final ingredient is a non-holomorphic version of Proposition 3.1 and follows
from well-known solvability results and estimates concerning the attenuated transport
equation over smooth functions.

Lemma 3.4. — Let (M, g) be non-trapping with strictly convex boundary and sup-
pose A ∈ C∞(SM, u(n)). Then X + A : C∞(SM,Cn) → C∞(SM,Cn) has a right
inverse UA that obeys the tame estimates

∥UAf∥Hs(SM) ≲ ∥f∥Hs(SM) s ⩾ 0, f ∈ C∞(SM,Cn),

where ≲ means that the inequality holds up to a multiplicative constant that depends
only on (M, g), A and s.

Proof. — First assume that both A and f have compact support in SM int. Then the
unique continuous solution g : SM → Cn to

(X + A)g = f on SM and g = 0 on ∂−SM

vanishes near the glancing region ∂0SM and consequently is smooth on SM . Following
[28, Lem. 5.12], we have

(3.8) ∥g∥L2 ⩽ τ∞ · ∥f∥L2 ,

where τ∞ = supSM τ . Let P be a differential operator on SM of order m ⩾ 0 and
with constant coefficients with respect to the commuting frame {X,PT , PV } from [28,
Lem. 5.1]. Then g̃ = Pg is the unique solution of

(X + A)g̃ = Pf + [A, P ]g on SM and g̃ = 0 on ∂−SM,

where [·, ·] denotes the commutator. As f̃ = Pf + [A, P ]g has compact support, we
may apply (3.8) to obtain

∥Pg∥L2 ⩽ τ∞ (∥Pf∥L2 + ∥[A, P ]g∥L2) ≲ ∥f∥Hm + ∥g∥Hm−1 ,

where we used that [A, P ] is a differential operator of order m−1. The Hm-norm of g
can be bounded in terms of ∥Pg∥L2 , if P is taken uniformly elliptic. By induction
(and an interpolation argument to pass to non-integral regularities) it then follows
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that ∥g∥Hs ≲ ∥f∥Hs for all s ⩾ 0, with implicit constant only depending on τ∞, s
and A.

The right inverse UA for general A and f can be obtained by a standard extension
trick: Embed M in the interior of a slightly large manifold (M1, g) which is also non-
trapping and has strictly convex boundary and extend A to a smooth attenuation A1 :

SM1 → u(n) with compact support in SM int
1 . Let E : C∞(SM,Cn) → C∞(SM,Cn)

be a Seeley extension operator and define UAf = g1|SM , where g1 : SM1 → Cn is the
unique solution to (X + A1)g1 = Ef on SM1 with g1 = 0 on ∂−SM1. Then by the
previous considerations we have

∥UAf∥Hs(SM) ⩽ ∥g1∥Hs(SM1) ≲ ∥Ef∥Hs(SM1) ≲ ∥f∥Hs(SM),

which proves the Lemma. □

Proof of Proposition 3.1. — We first give the proof for a skew-Hermitian pair A =

(A,Φ). Given f ∈
⊕

k⩾−1 Ωk, we use Lemma 3.4 to obtain a smooth solution u to
(X + A)u = f and consider ũ = u0 + u1 + · · · ∈

⊕
k⩾0 Ωk. Then

(X + A)ũ = f − µ+u−1 − (Φu−1 + µ+u−2) =: f − q0 − q−1.

By Lemma 3.3 we may solve the equations µ−g0=q−1 and µ+g−1=−q0 with gm∈Ωm
(m = −1, 0) and by Lemma 3.2 there exists a smooth solution v to (X + A)v = 0

with v−1 = g−1 and v0 = g0. Let ṽ = v0 + v1 + · · · ∈
⊕

k⩾0 Ωk, then

(X + A)ṽ = µ−v0 − µ+v−1 = q−1 + q0.

In particular LAf := ũ + ṽ ∈
⊕

k⩾0 Ωk defines a preimage of f ∈
⊕

k⩾−1 Ωk under
(X + A), which implies surjectivity. For the tame estimates note that

ũ = P⩾0 ◦ UAf,

ṽ = P⩾0 ◦ SA,−1 ◦ (TA,−,0,−TA,+,−1) ◦Q ◦ UAf,

where S, T, U are as in the lemmas above, P⩾0 : C∞(SM,Cn×n) →
⊕

k⩾0 Ωk is the
L2-orthogonal projection and Q : C∞(SM,Cm×m) → Ω−1 ⊕ Ω0 is defined by

Qu = (Φu−1 + µ+u−2)⊕ µ+u−1.

Each of these linear operators was shown to satisfy a tame estimate ∥•·∥Hs ≲ ∥·∥Hs+d

of degree d ∈ R, which can be read off the preceding lemmas and Lemma 6.1. Com-
bined, we see that LA is tame of degree 1, as desired.

Next assume that A ∈ ℧ is a general attenuation. By Lemma 5.2 in [33] there
exists F ∈ G such that B = A ◁F ∈ ℧ defines a skew-Hermitian pair B = (B,Ψ). Our
previous considerations thus yields a tame right inverse LB to X + B. It is easy to
check that LA = FLBF

−1 gives a right inverse for X+A, which inherits the tameness
from LB. This concludes the proof. □

By the same methods we obtain the following variant of Theorem 1.3:

Proposition 3.5. — Let (M, g) be a simple surface. Then any odd attenuation A ∈ ℧
admits even holomorphic integrating factors.
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Proof. — As for Theorem 1.3, the proposition is equivalent to Gev={F ∈G : F even}
acting transitively on ℧odd = {A ∈ ℧ : A odd}. Using Nash-Moser’s theorem, it suf-
fices to prove that for all A ∈ ℧odd also the map (X+A) :

⊕
k⩾0 Ω2k →

⊕
k⩾−1 Ω2k+1

has a tame right inverse. In terms of LA from Proposition 3.1 and the projection P ev :⊕
k⩾0 Ωk →

⊕
k⩾0 Ω2k onto even parts we define Lev

A :
⊕

k⩾−1 Ω2k+1 →
⊕

k⩾0 Ω2k

by Lev
A f = P evLAf . This is a tame map, as LA and P ev are tame (see Lemma 6.1)

and provides the desired right inverse. □

4. Twistor correspondence

Let (M, g) be an oriented Riemannian surface with smooth, possibly empty bound-
ary ∂M . We construct a twistor space Z associated to M , which provides a natural
habitat to complexify transport problems on SM .

4.1. A complex surface. — The twistor space of (M, g) is a degenerate complex
surface with underlying smooth manifold Z = {(x, v) ∈ TM : g(v, v) ⩽ 1}. The
complex structure on Z is described in terms of a complex distribution

D ⊂ TCZ ≡ TZ ⊗ C,

to be thought of as the (0, 1)-bundle; the structure degenerates on SM ⊂ ∂Z in the
sense that there D ∩ D ̸= 0. The construction of D is carried out in the follow-
ing lemma, precisely in equation (4.1); we then review some standard notions from
complex geometry in the degenerate context.

It is most convenient to describe the geometry of Z in terms of the fibration

p : SM × D −→ Z, (x, v, ω) 7−→ (x, vω),

where D = {ω ∈ C : |ω| ⩽ 1} is the complex unit disk and the product vω ∈ TxM

is explained by the complex structure that g and the orientation induce on M . Note
that p is a principal S1-bundle for the diagonal action (x, v, ω) ◁ eit = (x, veit, e−itω),
which has infinitesimal generator

V(x, v, ω) = V (x, v) + i(ω∂ω − ω∂ω), (x, v, ω) ∈ SM × D.

In particular, SM × D/S1 ∼= Z as smooth manifolds with corners, with boundary
hypersurfaces p(SM × ∂D) ≡ SM and p(∂SM × D). We equip TC(SM × D) with
the natural Hermitian structure given in terms of the Sasaki metric on SM and the
Euclidean metric on D.

Lemma 4.1 (Complex structure on Z)
(i) The following commutator relations hold on SM × D:

[ω2η+ + η−,V] = i(ω2η+ + η−) and [∂ω,V] = i∂ω.

In particular, the complex distribution D̃ = spanC{ω2η+ + η−, ∂ω} on SM × D is
S1-invariant and descends to a distribution on Z, denoted

(4.1) D = p∗(D̃).
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(ii) The Gram matrix of {ω2η+ + η−, ω
2η− + η+,V, ∂ω, ∂ω} at (x, v, ω) ∈ SM ×D,

denoted G(x, v, ω) ∈ C5×5, satisfies

(4.2) detG(x, v, ω) = (1− |ω|4)2/4.

(iii) The distribution D from (4.1) is involutive and satisfies

D ∩ D =

{
0 on Z\SM,

spanCX on SM.

In particular, Z int has a complex structure for which D = T 0,1Z int.

Proof. — For (i) we use the structure equation [η±, V ] = ∓iη± to the effect that

[ω2η+ + η−,V] = ω2[η+, V ] + [η−, V ] + [ω2η+,−iω∂ω] = −iω2η+ + iη− + 2iω2η+,

which gives the first relation; the second one is obvious. To check S1-invariance, denote
by ξ either of the two vector fields ω2η+ + η− or ∂ω and define, for t ∈ R,

ξt(x, v, ω) = dφV
−t
(
ξ(φV

t (x, v, ω))
)
.

The Lie derivative of ξ along V equals LVξ = −[ξ,V] = −iξ. Hence (d/dt)ξt = −iξt
for all t ∈ R, which means that ξt = exp(−it)ξ0 and thus the complex line bundle
spanned by ξ is S1-invariant.

For (ii) one checks, e.g., that

⟨ω2η+ + η−, ω
2η+ + η−⟩ = |ω|4 · ⟨η+, η+⟩+ ⟨η−, η−⟩ =

(
|ω|4 + 1

)
/2,

where we used that
√
2η+ and

√
2η− are orthonormal. Proceeding similarly with the

other combinations, one sees that G(x, v, ω) is a block matrix with blocks

(4.3)
[
(1 + |ω|4)/2 ω2

ω2 (1 + |ω|4)/2

]
and

1 + 2|ω|2 iω −iω
−iω 1 0

iω 0 1

 ,
and the expression for detG(x, v, ω) follows by a simple computation.

For (iii), note that ω2η+ + η− and ∂ω commute on SM × D, hence D̃ and conse-
quently D are involutive. On p−1(Z\SM) = {|ω| < 1} we have D̃ ∩ D̃ = 0 due to (ii),
which implies that D ∩ D = 0 away from SM . Further,

X = η+ + η− ∈ D̃ ∩ D̃ on {ω = 1}

and as p|{ω=1} : SM × {1} → SM is the identity, this implies X ∈ D ∩ D on SM .
The dimension of D ∩ D at [(x, v, ω)] equals the deficiency of G(x, v, ω), which is 1

by (4.3), hence D ∩ D is indeed spanned by X on SM . Finally, note that in the
interior of Z we have TCZ = D ⊕D and this induces a unique complex structure J as
follows: for (x, v) ∈ Z int define J(x,v) : (TCZ)(x,v) → (TCZ)(x,v) by J(x,v)(w1 ⊕ w2) =

−iw1 + iw2, where w1 ⊕ w2 is the unique decomposition into D and D–components.
It is straightforward to verify that J preserves the real tangent space TZ int and by
construction it is an almost complex structure with T 0,1Z int = D . Involutivity of D is
equivalent to the formal integrability of J and thus the Newlander-Nirenberg theorem
implies that J is a complex structure. □
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The preceding lemma shows that Z int is a complex surface in the classical sense,
but with complex structure degenerating at SM . Nevertheless the ∂-complex of Z int

can be extended to all of Z in a way that is smooth up the boundary. We will built
this extended ∂-complex from scratch and show a posteriori that it coincides with the
standard one in the interior. On an open set U ⊂ Z, we define

(4.4) Ω0(U)
∂−−→ Ω0,1(U)

∂−−→ Ω0,2(U)

as follows: note that the spaces C∞(U) and C∞(p−1(U)) are well defined also when
U ∩ ∂Z ̸= ∅, and contain C-valued functions, smooth up to the boundary. Then

Ω0(U) := {h ∈ C∞(p−1(U)) : Vh = 0} ∼= C∞(U),

Ω0,1(U) := {(h1, h2) ∈ C∞(p−1(U))2 : Vhj + ihj = 0 (j = 1, 2)},

Ω0,2(U) := {h ∈ C∞(p−1(U)) : Vh+ 2ih = 0},

and we define

(4.5) ∂h :=
(
(ω2η+ + η−)h, ∂ωh

)
and ∂(h1, h2) := (ω2η+ + η−)h2 − ∂ωh1,

noting that ∂ has the mapping properties indicated in (4.4) in view of part (i) of the
preceding lemma. See Lemma 4.9 for a description of ∂ in coordinates. If U ∩∂Z = ∅,
then we recover the usual ∂-complex of the complex surface Z int, via isomorphisms

(4.6) Ω0,q(U) ∼= {α ∈ Ωq(U) : α|D = 0}, q = 1, 2,

exhibited in the following lemma.

Lemma 4.2 (Comparison with standard ∂-complex). — Let U ⊂ Z int be open and
consider on p−1(U) ⊂ {|ω| < 1} the complex 1-forms

τ =
1

1− |ω|4
(
η∨− − ω2η∨+

)
and γ = dω − iωV ∨,

where {η∨+, η∨−, V ∨} is the coframe on SM that is dual to {η+, η−, V }. Then:
(i) The following duality relations hold true:

τ(ω2η+ + η−) = γ(∂ω) ≡ 1,

τ(∂ω) = γ(ω2η+ + η−) ≡ 0,
and τ, γ = 0 on D̃ ⊕ spanV

(ii) For (h1, h2) ∈ Ω0,1(U) and h ∈ Ω0,2(U) the differential forms h1τ + h2γ and
hτ ∧ γ are S1-invariant and the maps

(4.7) (h1, h2) 7−→ p∗(h1τ + h2γ) and h 7−→ p∗(hτ ∧ γ)

yield isomorphisms as in (4.6) for q = 1 and q = 2, respectively.
(iii) The isomorphisms from (ii) intertwine the ∂-operators from (4.5) with the

standard ∂-operators of the complex surface U .

Proof. — The proof of (i) is a simple computation that we omit. As a consequence,
τ(ξ) is constant for ξ ∈ {ω2η++η−, ω

2η−+η+,V, ∂ω, ∂ω} and, taking Lie derivatives,
we see that

0 = LV(τ(ξ)) = LVτ(ξ) + τ(LVξ) = (LVτ − iτ)(ξ),

J.É.P. — M., 2023, tome 10



The TOG-principle for simple surfaces 745

where in the last step we used Lemma 4.1(i), noting that while e.g., LV(∂ω) = +i∂ω,
the equality still holds true as τ(∂ω) = 0. By Lemma 4.1(ii) such ξ’s form a frame over
p−1(U) and thus LVτ = iτ . Arguing similarly, also LVγ = iγ follows. This implies,
e.g., that

(4.8) LV(h1τ) = Vh1τ + h1LVτ = −ih1τ + ih1τ = 0

and overall we obtain the desired S1-invariance. Hence α = p∗(h1τ + h2γ) and α′ =

p∗(hτ ∧γ) are well defined differential forms on U . Using part (i) we see that α, α′ = 0

on D such that (4.7) indeed defines a map as in (4.6).
We obtain inverse maps as follows: Given α ∈ Ω1(U), we can express its lift p∗α in

terms of the 1-forms {τ, γ, τ , γ,V∨} (with V∨ defined similarly to V ∨), which frame
T ∗
C(p

−1(U)) by part (i). If α|D = 0, then only the τ - and γ-coefficients of p∗α are
nonzero, which is to say that p∗α = h1τ + h2γ for some h1, h2 ∈ C∞(p−1(U)). One
computes that

0 = LV(p
∗α) = (Vh1 + ih1)τ + (Vh2 + ih2)γ,

hence (h1, h2) ∈ Ω0,1(U) and we have found the desired preimage of α. The argument
for q = 2 is completely analogous.

For (iii) consider f ∈ Ω0(U) with lift h = p∗f . Then ∂f ∈ Ω1(U) (in the classical
sense) is uniquely defined by ∂f = df on D and ∂f = 0 on D , hence

(4.9) p∗(∂f) =

{
p∗(df) on D̃ ,

0 on D̃ ⊕ spanV.

Thus p∗(∂f) = h1τ + h2γ, where h1 = (p∗df)(ω2η+ + η−) = (ω2η+ + η−)h and h2 =

p∗df(∂ω) = ∂ωh – this gives the desired intertwining property on Ω0(U). Similarly
one shows that if α ∈ Ω1(U) with α|D = 0 and lift p∗α = h1τ +h2γ, then ∂α ∈ Ω2(U)

(in the classical sense) satisfies p∗(∂α) = hτ ∧ γ with

h = p∗(dα)(ξ, ∂ω) = d(h1τ)(ξ, ∂ω) + d(h2γ)(ξ, ∂ω),

where ξ = ω2η+ + η−. The right hand side is easily computed in view of part (i) and
[ξ, ∂ω] = 0 and one obtains h = ξh2 − ∂ωh1, as desired. □

Definition 4.3. — A function f ∈ Ω0(U) on an open set U ⊂ Z is called holomorphic,
if ∂f = 0 ∈ Ω0,1(U). We then write f ∈ O(U).

We emphasise that holomorphic functions on Z are – by definition – smooth up
the boundary. We can now draw the first connection to transport problems on SM .

Proposition 4.4 (Twistor correspondence A). — There is a one-to-one correspon-
dence between holomorphic functions on Z and fibrewise holomorphic first integrals
on SM , implemented by the map

(4.10) O(Z)
∼−→

{
u ∈

⊕
k⩾0 Ωk : Xu = 0

}
⊂ C∞(SM), f 7−→ f |SM .
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Proof. — Given f ∈ O(Z), denote h = p∗f ∈ C∞(SM × D). For fixed (x, v) ∈ SM ,
the function h(x, v, ·) is holomorphic in {|ω| < 1} and thus expands as

(4.11) h(x, v, ω) =
∑
k⩾0

ωkuk(x, v),

with coefficients uk(x, v) ∈ C. By Cauchy’s integral formula and the V-invariance,

uk(x, v) =
1

2πi

∫
|ζ|=1

h(x, v, ζ)

ζk+1
dζ =

1

2π

∫ 2π

0

f(x, eiθ)e−ikθdθ.

This shows that uk(x, v) depends smoothly on (x, v) ∈ SM and moreover, that it is
the kth Fourier mode of the fibrewise holomorphic function u = f |SM ∈ C∞(SM).
Using the identity X = η+ + η− and, again, holomorphicity of f we see that

Xu = (ω2η+ + η−)h|ω=1 = 0,

which shows that the map in (4.10) is well defined. The map is clearly injective.
We construct an inverse map as follows: If u ∈

⊕
k⩾0 Ωk is a first integral, then its

Fourier modes uk are easily seen to satisfy ∥uk∥Cm(SM) = O(k−∞) (m ∈ N0), such
that (4.11) defines a function h ∈ C∞(SM × D). We compute that

(4.12) Vh(x, v, ω) =
∑
k⩾0

ωk(V uk(x, v)− ikuk(x, v)) = 0,

which means that it descends to a function f = p∗h∈Ω0(Z) with f |SM =u. It remains
to show that f is holomorphic, or equivalently that

g := (ω2η+ + η−)h = 0 and ∂ωh = 0.

The latter equation is satisfied in view of the expansion (4.11) and we know that
g(x, v, 1) = 0 for all (x, v) ∈ SM , as Xu = η+u + η−u = 0. To see that g indeed
vanishes for all ω ∈ D note that

∂ωg = 0 for |ω| ⩽ 1 and g = 0 for |ω| = 1,

which follows in view of the previous observations from [ω2η+ + η−, ∂ω] = 0 and the
S1-invariance of g, respectively. Thus g vanishes on all of SM × D by the maximum
modulus principle on D. This completes the proof. □

Remark 4.5. — By the same method of proof, we can associate to any u ∈
⊕

k⩾k0
Ωk

(k0 ∈ Z) a function h ∈ C∞(SM × D) with ∂ωh = 0 by setting

(4.13) h(x, v, ω) =
∑
k⩾k0

ωk−k0uk(x, v).

This is easily checked to satisfy (V − ik0)h = 0 such that for k0 = 0,−1,−2 we
can generate elements of Ω0(Z), Ω0,1(Z) and Ω0,2(Z), respectively. Vice versa,
if h ∈ C∞(SM × D) satisfies ∂ωh = 0 and (V − ik0)h = 0, then u(x, v) = h(x, v, 1)

defines an element in
⊕

k⩾k0
Ωk.
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For the next result we consider the embedding ι0 : M → Z, ι0(x) = (x, 0) as zero
section. If we equip M with the complex structure induced by g and the orientation,
then ι0 becomes a holomorphic map.

Lemma 4.6. — The embedding ι0 : M → Z as zero section is holomorphic.

Proof. — We have to show that for all (x, v) ∈ SM ,

(ι0)∗(T
0,1
x M) ⊂ D(x,0), where T 0,1

x M = spanC{v + iv⊥}.

To see this, pick a neighbourhood U ⊂M of x and let ι̃0 : U → SU ×D be a local lift
of ι0 with ι̃0(x) = (x, v, 0). Then modulo spanC V(x, v, 0) we have

(dι̃0)x(v + iv⊥) ≡ X(x, v)− iX⊥ ≡ η−(x, v) ∈ D̃(x,0),

which yields the desired inclusion after push-forward by p. □

As a consequence there is a well-defined map

ι∗0 : O(Z) −→ O(M),

where O(M) denotes the space of holomorphic functions on M that are smooth up to
the boundary. Under the identification C∞(M) ∼= Ω0 this is also given as

O(M) = {g ∈ Ω0 : η−g = 0}.

The following result is then a consequence of the characterisation in Proposition 4.4
and a classical result of Pestov and Uhlmann on the surjectivity of the adjoint X-ray
transform I∗0 .

Corollary 4.7 (Cartan extension – transport version). — Suppose Z is the twistor
space of a simple surface (M, g). Then the map ι∗0 : O(Z) → O(M) is onto.

Proof. — As explained above, any g ∈ O(M) may be viewed as element in Ω0 with
η−g = 0. By [40] (see also Theorem 8.2.2 in [36]) there exists a solution w ∈ C∞(SM)

to Xw = 0 with Fourier mode w0 = g. Then u = w0 + w2 + · · · is smooth, fibrewise
holomorphic and satisfies Xu = 0. By the preceding proposition (and equation (4.11)
in the proof) u gives rise to an element f ∈ O(Z) with

p∗f(x, v, ω) = w0(x) + ω2w2(x, v) + · · · ,

in particular, ι∗0f(x) = p∗f(x, v, 0) = w0(x) = g(x), as desired. □

The preceding result can be viewed as ‘Cartan extension theorem’ and implies
in particular that the twistor space Z of a simple surface admits an abundance of
holomorphic functions. This is first evidence for Z behaving like a Stein surface,
as claimed in Section 1.2. Further evidence is provided by Theorem 4.13 and its
corollaries.
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4.2. Coordinates and Euclidean case. — It is instructive to express the twistor
space Z in terms of isothermal coordinates on (M, g). Suppose that (x1, x2) are coor-
dinates on an open subset O ⊂ M , such that g|O = e2λdx2, with λ ∈ C∞(O,R).
Viewing O as subset of C with complex coordinate z = x1 + ix2, we define

(4.14) ZO = O × D, DO = span{Ξ, ∂µ} ⊂ TCZO,

where µ is the coordinate of the D-factor and the vector field Ξ is defined by

Ξ = e−λ
[
µ2∂z + ∂z +

(
µ2∂zλ− ∂zλ

)
(µ∂µ − µ∂µ)

]
.

On SM |O we have coordinates (x1, x2, θ), where θ ∈ R/(2πZ) is the (oriented) angle
of a unit vector with ∂x1

and there is an isomorphism

ϱO : SM |O
∼−→ O × S1, (x1, x2, θ) 7−→ (x1 + ix2, e

iθ),

which is made implicit below.
The next lemma shows that (ZO,DO) is a (degenerately) complex surface – its

proof is independent from the analogous Lemma 4.1 and the two constructions are
seen to be equivalent below. We use the following notation:

(4.15) Λ := e−λ
(
µ2∂zλ− ∂zλ

)
∈ C∞(ZO,C).

Lemma 4.8 (Complex structure in coordinates). —

(i) [Ξ, ∂µ] = −Λ∂µ, hence DO is involutive.
(ii) DO ∩ DO = 0 on ZO\(O × S1).
(iii) On O × S1 ∼= SM |O we have Ξ = µX.

Proof. — Parts (i) and (ii) follow from simple computations that we omit. For part (iii)
note that eiθ∂z = 1

2 (cos θ∂x1
+ sin θ∂x2

) + i
2 (sin θ∂x1

− cos θ∂x2
) , hence the coordi-

nate description of X from (2.1) is equivalent to

(4.16) X = e−λ
(
eiθ∂z + e−iθ∂z + (eiθ∂zλ− e−iθ∂zλ)(i∂θ)

)
.

Under the isomorphism ρO we have µ = eiθ such that µ∂µ − µ∂µ = i∂θ and hence
X = µ−1Ξ for |µ| = 1, as desired. □

Define a map κO : ZO → Z by κO(x, µ) = p(x, 0, µ) (where 0 stands for the angle
θ = 0) and note that κO(ZO) = {(x, v) ∈ Z : x ∈ O}.

Lemma 4.9 (Comparison with invariant twistor space)
(i) The map κO is a diffeomorphism onto its image and (κO)∗(DO) = D .
(ii) Let U ⊂ κO(ZO) be open, then pullback by κO induces isomorphisms that fit

into the commutative diagram

(4.17)
Ω0(U) Ω0,1(U) Ω0,2(U)

C∞(κ−1
O (U)) C∞(κ−1

O (U))2 C∞(κ−1
O (U)),

≀

∂

≀

∂

≀
∂ ∂
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where the ∂-operators on the bottom are given (with Λ as in (4.15)) by

∂f = (Ξf, ∂µf) and ∂(f1, f2) = (Ξ + Λ)f2 − ∂µf1.

Proof. — For (i) define q : SM |O×D → ZO by q(x, θ, ω) = (x, eiθω); then q is smooth,
S1-invariant and satisfies κO(q(x, θ, ω)) = [(x, 0, eiθω)] = p(x, θ, ω). In particular,
q descends to an inverse of κO, which is consequently a diffeomorphism. We claim
that q∗(D̃) ⊂ DO – this will complete the proof of part (i) by comparing ranks.
Indeed, one derives, similarly to (4.16), the coordinate expression

(4.18) (ω2η+ + η−) = e−iθe−λ
(
ω2e2iθ∂z + ∂z + (ω2e2iθ∂zλ− ∂zλ)(i∂θ)

)
and employs this to compute the push forwards

dq(x,θ,ω)(∂θ) = (∂t|t=0)q(x, θ + t, ω) = (∂t|t=0)q(x, θ, e
itω)

= ieiθω∂µ − ie−iθω∂µ = −i(µ∂µ − µ∂µ),

dq(x,θ,ω)(ω
2η+ + η−) = e−iθΞ(q(x, θ, ω)),

dq(x,θ,ω)(∂ω) = e−iθ∂µ,

from which the claim follows.
For part (ii) we first note that the vertical arrows in (4.17) are defined as ‘pull-backs’

by κO, understood as follows: Given a function h ∈ C∞(p−1(U)) (representing an
element in Ω0(U),Ω0,1(U) or Ω0,2(U)), we write κ∗Oh(x, µ) = h(x, 0, µ). Now consider
h ∈ Ω0(U), then as Vh = 0,

(4.19) ∂θh(x, 0, µ) = V h(x, 0, µ) = −i(ω∂ω − ω∂ω)h(x, 0, µ)

and together with (4.18) we obtain

κ∗O
(
(ω2η+ + η−)h

)
(x, µ) = Ξ(κ∗Oh)(x, µ).

Similarly, κ∗O(∂ω)h(x, µ) = ∂µ(κ
∗
Oh)(x, µ) and thus the left square in (4.17) commutes.

Next, if (h1, h2) ∈ Ω0,1(U), then Vhj = −ihj (j = 1, 2) and similarly to (4.19) we
have

∂θh2(x, 0, µ) = V h2(x, 0, µ) = −i(ω∂ω − ω∂ω)h2(x, 0, µ)− ih2(x, 0, µ),

such that κ∗O
(
(ω2η+ + η−)h2

)
(x, µ) = (Ξ +Λ)(κ∗Oh2)(x, µ). The computation for ∂ω

remains unchanged and thus also the right square in (4.17) commutes. □

We can gain more insight into the (degenerate) complex surface Z in the case that
(M, g) is a Euclidean domain. First suppose that M = R2, such that Z = C×D, with
Cauchy-Riemann equations given in terms of

Ξ = µ2∂z + ∂z and ∂µ.

Let W = C × D be equipped with the standard complex structure, given in terms
of ∂w and ∂µ for coordinates (w, µ) ∈ C× D. Then the map

(4.20) β : Z −→W, (z, µ) 7−→ (z − µ2z, µ)

J.É.P. — M., 2023, tome 10



750 J. Bohr & G. P. Paternain

is holomorphic (in the sense that β∗(D) ⊂ span{∂w, ∂µ}) and maps the interior of Z
diffeomorphically onto the interior of W , with inverse given by

β−1(w, µ) =
( w

1 + |µ|2
+

2µℜ(µw)
1− |µ|4

, µ
)
, (w, µ) ∈W int.

Thus Z int is biholomorphically equivalent to a polydisk in C2 and the degeneracy of
the complex structure is encoded in the ‘blow down’ map β. More generally:

Lemma 4.10. — Suppose M ⊂ R2 is a Euclidean domain. Then the interior of its
twistor space Z is a Stein surface that is biholomorphic to a domain in C2.

Proof. — The restriction of β from (4.20) to Z int = M × Dint gives the desired
embedding as domain in C2. In particular, the global holomorphic functions β1, β2 ∈
O(Z int) give a global coordinate system and separate points. To show that Z int is a
Stein surface, it thus remains to establish holomorphic convexity. To this end, define
for p = (z∗, µ∗) ∈ R2 × D\Z int a function fp ∈ O(Z int) by

fp(z, µ) =

{
(µ− µ∗)

−1, |µ∗| = 1,(
(z − z∗)− µ2(z − z∗)

)−1
, |µ∗| < 1, z∗ ∈ R2\M.

Let K ⊂ Z int be compact and consider the holomorphic hull K̂ = {(z, µ) ∈ Z int :

|f(z, µ)| ⩽ supK |f | for all f ∈ O(Z int)}. If K̂ was not compact, it would contain a
sequence (zn, µn) with limit point p as above, which leads to a contradiction, as fp
is unbounded along that sequence. Thus K̂ is compact and, as K was arbitrary, the
complex surface Z int is holomorphically convex. □

In fact, also the twistor space of a simple surface admits a natural, albeit less
tractable, holomorphic map β : Z → C2 as follows: Passing to global isothermal
coordinates and with Λ as in (4.15), we may find a solution u ∈ C∞(Z,C) to

Ξu = Λ and ∂µu = 0 on Z.

This follows from the existence of scalar holomorphic integrating factors on simple
surfaces and is also a consequence of the vanishing result H1(Z,O) ≡ H1

∂
(Z, [0]) = 0

from Corollary 4.15 below. Further, by Corollary 4.7 there exists a function β1 ∈ O(Z)

with β1(z, 0) = z for all z ∈M and one checks that

β(z, µ) =
(
β1(z, µ), e

u(z,µ)µ
)
∈ C2

indeed defines a holomorphic map of similar form as (4.20) in the Euclidean case.
While it would be interesting to know more about the behaviour of β (e.g., is it also
diffeomorphism on the interior of Z?), our approach to the transport Oka-Grauert
principle does not require any such blow-down.
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4.3. Transport Oka-Grauert principle. — We now define a ‘moduli space of holo-
morphic vector bundles’ over an open set U ⊂ Z. Noting that there are natural Cn
and Cn×n-valued versions of the ∂-complex (4.4), we consider partial connections
A0,1 ∈ Ω0,1(U,Cn×n) and maps

(4.21) Ω0(U,Cn) ∂ +A0,1

−−−−−−−−→ Ω0,1(U,Cn) ∂ +A0,1

−−−−−−−−→ Ω0,2(Z,Cn),

defined in the obvious way. If A0,1 = (a1, a2) ∈ C∞(p−1(U),Cn)2 with (V+ i)aj = 0

(j = 1, 2), a computation shows that the curvature of (4.21) equals

(4.22) (∂ +A0,1)2 = (ω2η+ + η−)a2 − ∂ωa1 + [a1, a2] ∈ Ω0,2(U,Cn×n).

Definition 4.11. — For U ⊂ Z open we define the moduli space

M(U) = Mn(U) = {A0,1 ∈ Ω0,1(U,Cn×n) : (∂ +A0,1)2 = 0}/ ∼,

where A0,1 ∼ B0,1 if and only if there exists φ ∈ C∞(U,GL(n,C)) with

B0,1 = φ−1∂φ+ φ−1A0,1φ.

If U ∩ ∂Z = ∅, such that U is a classical complex surface, then

(4.23) Mn(U) ∼=

{
(topologically trivial) holomorphic vector bundles
of rank n over U up to isomorphism.

Indeed, a representative A0,1 of a class in Mn(U) equips U×Cn with the structure of a
holomorphic vector bundle by declaring a local section f : V → Cn (for V ⊂ U open)
to be holomorphic, if (∂ + A0,1)f = 0; equivalent representatives yield isomorphic
vector bundles (cf. Chapter 2.1.5 in [8]).

Recall from (1.3) that ℧ consists of attenuations A ∈ C∞(SM,Cn×n) with Fourier
coefficients Ak = 0 for k < −1. The group G from (1.2) acts on ℧ by (1.4) and we
now establish a correspondence between the orbits of G and elements in M ≡ Mn(Z).
Define a map ℧ → M as follows: For A ∈ ℧ let

(4.24) A0,1(x, v, ω) := (a, 0) ≡
( ∑
k⩾−1

ωk+1Ak(x, v), 0
)

∈ Ω0,1(Z,Cn×n),

noting that A0,1 lies in Ω0,1(Z,Cn×n) and satisfies (∂ + A0,1)2 = 0 in view of (4.22)
and Remark 4.5. We then map A to the equivalence class [A0,1] ∈ M.

Proposition 4.12 (Twistor correspondence B). — The map ℧ → M, A 7→ [A0,1] is
G-invariant and descends to an injective map ℧/G → M. If (M, g) is diffeomorphic
to a disk, the induced map is also surjective, such that

(4.25) ℧/G ∼= M.

In fact, the isomorphism (4.25) holds true for any orientable surface (M, g). For a
proof of this more general statement we refer to Remark 4.4.13 in [4].
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Proof. — Suppose that A,B ∈ ℧, let A0,1 = (a, 0) as in (4.24) and define B0,1 = (b, 0)

analogously. To demonstrate G-invariance, we assume that A◁F = B for some F ∈ G
and consider the function

(4.26) ϕ(x, v, ω) =
∑
k⩾0

ωkFk(x, v),

which is smooth and S1-invariant by Remark 4.5; further it satisfies detϕ(x, v, ω) ̸= 0

for all ω ∈ D. To see this, we define ψ as in (4.26), but with F replaced by F−1. Then
h = ϕψ − Id satisfies h(x, v, 1) = 0 by construction, and, due to S1-invariance,

h = 0 on {|ω| = 1} and ∂ωh = 0 on {|ω| ⩽ 1}.

By the maximum principle, h ≡ 0, which means that ψ is an inverse for ϕ.
We claim that A0,1 is equivalent to B0,1 via the gauge φ = p∗ϕ ∈ C∞(Z,GL(n,C)),

which is is to say that

(4.27) φ−1(∂ +A0,1)φ ≡
(
ϕ−1(ω2η+ + η− + a)ϕ, ϕ−1∂ωϕ

)
= (b, 0) ∈ Ω0,1(Z,Cn×n).

Evidently ∂ωϕ = 0, so it remains to show that the function g = ϕ−1(ω2η++η−+a)ϕ−b
vanishes identically. To see this, note that g(x, v, 1) = A ◁ F (x, v) − B(x, v) = 0.
Moreover (V + i)g = 0 which means that g only changes phase along the flow of V
and thus

g = 0 on {|ω| = 1} and ∂ωg = 0 on {|ω| < 1},
where holomorphicity in ω is easily checked. In particular the maximum modulus
principle on D applies to yield g ≡ 0.

To show that the induced map ℧/G → M is injective, we assume that [A0,1] =

[B0,1]. This means that (4.27) holds true, where now ϕ is defined as p∗φ for an
appropriate gauge φ ∈ C∞(Z,GL(n,C)). In particular ϕ is holomorphic in ω and thus
admits a series expansion as in (4.26) with coefficients Fk(x, v) ∈ Cn×n ((x, v) ∈ SM).
Similar to the proof of Proposition 4.4 one checks that Fk ∈ Ωk such that

F (x, v) = ϕ(x, v, 1)

defines a smooth, GL(n,C)-valued map on SM with both F and F−1 being fibrewise
holomorphic. Further, evaluating (4.27) at ω = 1 yields A ◁ F = B, as desired.

To establish surjectivity of ℧/G → M we need to show that each class in M admits
a representative A0,1 = (a1, a2) ∈ Ω0,1(Z,Cn×n) with a2 ≡ 0. Indeed, in that case
a1 ∈ C∞(SM × D,Cn×n) satisfies ∂ωa1 = 0 by the curvature condition, hence

a1(x, v, ω) =
∑
k⩾−1

ωk+1Ak(x, v)

for coefficients Ak(x, v), which can be seen to lie in Ωk as in the proof of Proposi-
tion 4.4; in particular A(x, v) = a1(x, v, 1) is a preimage of [A0,1].

We now make use of the fact that M is diffeomorphic to the disk D, such that global
isothermal coordinates become available. Using the description from Section 4.2, the
twistor space is then given by Z = D×D and a representative of a class in M is a tuple
(b1, b2) ∈ C∞(Z,Cn×n)2 obeying the curvature condition (Ξ+Λ)b2−∂µb1+[b1, b2] = 0,
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where Ξ, ∂µ are as in (4.14) and Λ is as in (4.15). Then by the Oka-Grauert principle
on the µ-disk (Lemma 6.2) there exists a solution φ ∈ C∞(Z,GL(n,C)) of

∂µφ− φb2 = 0,

which means that (a1, a2) := φ(Ξ + b1, ∂µ + b2)φ
−1 ≡

(
φΞφ−1 + φb1φ

−1, 0
)

defines
an equivalent representative with a2 ≡ 0, as desired. □

In view of the preceding correspondence principle, Theorem 1.3 can be reformulated
as:

Theorem 4.13 (Transport Oka-Grauert principle). — Suppose Z is the twistor space
of a simple surface (M, g). Then M = Mn(Z) = 0 for all n ∈ N. □

Note that our proof does not rely on an integrability theorem as in [8, Th. 2.1.53]
– that is, we do not first establish the existence of local holomorphic frames, which
are then ‘glued’ by means of a Cartan lemma as in the proof of the standard Oka-
Grauert principle. A local integrability theorem – for general twistor spaces – follows
a posteriori:

Corollary 4.14 (Local integrability). — Let Z be the twistor space of an arbitrary
oriented Riemannian surface. Consider a class [A0,1] ∈ Mn(Z) and a point p =

(x, v) ∈ Z with x ∈ M int. Then there exists an open neighbourhood U of p and a
gauge φ ∈ C∞(U,GL(n,C)) with (∂ +A0,1)φ = 0.

Proof. — There exists a simple surface M1 ⊂ M int containing x in its interior – its
twistor space Z1 is then a subset of Z. By Theorem 4.13, we have [A0,1|Z1 ] = 0 ∈
Mn(Z1) and thus the corollary follows with U = Z1|M int

1
. □

A further consequence is the following ‘vanishing theorem’ in the spirit of Cartan’s
Theorem B. In fact, this is a reformulation of the linear result in Proposition 3.1
(modulo tame estimates) and thus does not require an inverse function theorem.

Corollary 4.15. — Suppose Z is the twistor space of a simple surface (M, g). Then
for [A0,1] ∈ M the 1st cohomology of the twisted ∂-complex (4.21) vanishes, i.e.,

(4.28) H1
∂
(Z, [A0,1]) ≡

ker
(
(∂ +A0,1)|Ω0,1(Z)

)
im

(
(∂ +A0,1)|Ω0(Z)

) = 0.

Proof. — We give a brief sketch: It is straightforward to see that (4.28) is gauge-
invariant, so by Proposition 4.12 we may assume that A0,1 = (a, 0), where a is as in
(4.24) for an attenuation A ∈ ℧. Next, using solvability of the ∂ω-equation, any coho-
mology class may be represented by a tuple (h1, 0) ∈ Ω0,1(SM,Cn). Via Remark 4.5
the function h1 gives rise to a element in

⊕
k⩾−1 Ωk and we are in the setting of

Proposition 3.1. From this, one deduces that there is a solution h ∈ Ω0(Z,Cn) to
(∂ + A0,1)h = (h1, 0) – first for ω = 1, then for all ω ∈ D by invariance and the
maximum principle. □
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4.4. Discussion of related work. — The twistor space Z considered in this article
is closely related to the more classical twistor notion from [9, 32], used recently, e.g.,
in the context of projective structures [26, 27]. To explain this relation, we first note
that the constructions from Section 4.1 can be carried out in greater generality by
substituting the vector fields V and ξ = ω2η+ + η− by

Vn = V + in(ω∂ω − ω∂ω), and ξk =

{
ωkη+ + η− k ⩾ 0,

ω−kη+ + η− k < 0,

for n, k ∈ Z, respectively. A computation similar to Lemma 4.1 shows that [ξk,Vn] =
iξk if and only if nk = 2, such that we obtain four twistor spaces

Z(n) =
(
(SM × D)/S1, Dn = p∗ span{ξ2/n, ∂ω}

)
, n ∈ {±1,±2},

where the quotient is taken with respect to the flow of Vn. Then (x, v, ω) 7→ (x, v, ω2)

induces holomorphic maps Z(±1) → Z(±2) and, in particular, Z ≡ Z(1) may be
viewed as branched double cover of the space Z(2) (branched double covers were also
found useful in [21]).

We claim that the interior of Z(2) is precisely the twistor space considered in the
articles mentioned above. Using the description in [27], this means that there is a
biholomorphic map

(4.29) F : Z(2)int
∼−→ P/CO(2),

where P is the oriented frame bundle and CO(2) is the group of dilations and rotations
of R2. Here we assume that the projective class p that is used to define the complex
structure on P/CO(2), as explained in [27, §4.1], is given by p = [∇g] for the Levi-
Civita connection ∇g of (M, g). To construct F, consider

SM × Dint R−−→ P × Dint Υ−−−→ P,

with Υ as in [27, §4.1] and R(x, v, ω) = (x, fv,−ω), where fv = (v, v⊥) ∈ Px. Here,
v⊥ is the rotation of v by π/2, counterclockwise with respect to the orientation of M .
As below equation (4.6) in [27], one checks that

R
(
(x, v, ω) ◁ eit

)
=

(
(x, fv) ◁ Rt, R

−1
t ▷ (−ω)

)
= R(x, v, ω) ◁ Rt,

where Rt ∈ GL+(2,R) is the rotation matrix corresponding to eit. This shows that R

induces a smooth map between the quotient spaces Z(2)int ≡ (SM × Dint)/S1

and P ×GL+(2,R) Dint. Also Υ descends to quotient spaces and thus F([(x, v, ω]) =

[Υ ◦ R(x, v, ω)] defines a smooth map F as in (4.29). To check that F is also holo-
morphic one can use the description of (1, 0)-forms on P from [27], in particular the
computation of their pull-backs by Υ in (4.3) and (4.5). Pulling these back by R one
obtains (nonzero multiples) of the following 1-forms on SM × Dint:

η∨+ − ωη∨− and dω + 2iωV ∨.

After complex conjugation these equal precisely the 1-forms in Lemma 4.2 (with an
additional factor 2 which is due to the choice of n = 2 here). This shows that F is a
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holomorphic immersion. It is easily checked that F is bijective, so overall we obtain
an isomorphism as in (4.29).

Next, we briefly discuss the work of Eskin and Ralston [11], who proved a version
of Theorem 4.13 in a Euclidean setting. They establish the existence of gauges φ –
that is, GL(n,C)-valued solutions to (∂ + A0,1)φ = 0 – that are smooth in Z int and
have a continuous extension to ∂Z. We give a brief outline of their argument in the
language developed above. Recall from Section 4.2 that the twistor space of R2 admits
a ‘blow down’ map β : Z →W into a (closed) polydisk. The punchline of [11] is that
pull back by β gives a surjective map

(4.30) β∗ : M̃(W ) −→ M̃(Z)

between appropriate moduli spaces containing ‘holomorphic vector bundles’ which are
trivial away from a compact set and have a continuous extension to the boundary.
The result then follows from the classical Oka-Grauert principle on W – in a version
with continuous boundary values (cf. [22, Th. 10.1]) – which implies M̃(W ) = 0. Their
approach thus parallels the desingularisation by means of a blow down in [20].

In order to establish surjectivity of β∗ as in (4.30), the authors prove a local
integrability result as in Corollary 4.14 a priori (using the inverse function theorem
in a Hölder space, where no loss of derivatives occurs) and then glue local solutions
to (∂+A0,1)φ = 0 by means of an appropriate Cartan lemma. The crucial step lies in
showing that by such a gluing procedure one can arrange all transition functions to be
of the form h = β∗g for locally defined functions g on W (cf. equation (12) in [11]) –
this is quite delicate and encompasses removing singularities at β(∂Z) using methods
from complex analysis.

5. Range characterisations

We now turn to the range characterisation for the non-Abelian X-ray transform,
starting with some general considerations that hold on any non-trapping surface
(M, g) with strictly convex boundary. Define

(5.1) B : C∞(∂SM,GL(n,C)) −→ C∞(∂+SM,GL(n,C)), f 7−→ f(f−1 ◦ α)|∂+SM ,

where α : ∂SM → ∂SM is the scattering relation of (M, g) (see Section 1.3). To
motivate the range characterisations in this section, consider the following diagram:

(5.2)
C∞

Id (SM,GL(n,C)) C∞(SM,Cn×n)

C∞
Id (∂SM,GL(n,C)) C∞(∂+SM,GL(n,C)).

(·)|∂SM

I∗

A 7→ CA
B

Here and below, double-headed arrows stand for surjections; further C∞
Id (·,GL(n,C))

is the space of maps which are homotopic to Id and we define

I∗(R) = −(XR)R−1.
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The map I∗, while not being an adjoint in any natural way, serves a similar purpose
as I∗ in the linear theory. This is illustrated by the following lemma and further
substantiated in Section 5.2, where surjectivity results for I∗ in different settings are
derived using Theorem 1.3 on simple surfaces.

Lemma 5.1. — The diagram (5.2) commutes and the map I∗ : C∞
Id (SM,GL(n,C)) →

C∞(SM,Cn×n) is surjective.

Proof. — We assume that the diagonal arrow is B(·|∂SM ) such that the lower triangle
commutes. To check that the upper triangle commutes, let F ∈ C∞

Id (SM,GL(n,C))
and denote A = I∗(F ). Let G : SM → GL(n,C) be the unique continuous solution
(differentiable along the geodesic flow) of the transport problem

XG = 0 and G = F−1 on ∂−SM.

Then R = FG satisfies (X + A)R = 0 and R = Id on ∂−SM . In particular, using
that G|∂SM is α-invariant, we have

CA = R|∂+SM = B(R|∂SM ) = FG(G−1 ◦ α)(F−1 ◦ α)|∂+SM = B(F |∂SM ).

To check that I∗ is onto, we have to show that any A ∈ C∞(SM,Cn×n) admits
a smooth, contractible integrating factor. To this end, embed (M, g) into a closed
manifold (N, g) and extend A smoothly to N . Then there is a smooth cocycle C :

SN × R → GL(n,C) associated to A, uniquely defined by

∂tC(x, v, t) + AC(x, v, t) = 0 on SN × R and C(x, v, 0) = Id on SN.

Let M0 ⊂ N be a non-trapping surface with strictly convex boundary, containing M
in its interior. Let τ0 be the exit time of M0 (which is smooth on SM) and define

Rs(x, v) = [C(x, v, sτ0(x, v))]
−1, 0 ⩽ s ⩽ 1, (x, v) ∈ SM.

Then R1 ∈ C∞(SM,GL(n,C)) is a smooth integrating factor for A (cf. Lemma 5.3.2
in [36]) and sending s→ 0 provides a homotopy with Id, as desired. □

Using the preceding lemma, a simple diagram chase in (5.2) reveals a first range
characterisation:

Proposition 5.2. — An element q ∈ C∞(∂+SM,GL(n,C)) is given as scattering data
q = CA of a general attenuation A ∈ C∞(SM,Cn×n) if and only if q = Bf for some
f ∈ C∞

Id (∂SM,GL(n,C)). □

In the remaining section we give similar characterisations, when A is restricted to
certain subclasses A ⊂ C∞(SM,Cn×n) of attenuations. This involves finding appro-
priate domains D and boundary spaces B for which there is a diagram

D A

B C∞(∂+SM,GL(n,C)),

I∗

A 7→ CA
P
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where P is an appropriate boundary operator and the arrows emerging from D are
surjective. If such a diagram commutes (up to gauge), then the range of A ∋ A 7→ CA
equals that of P (up to gauge).

5.1. Nonlinear Hilbert transforms. — As building block for the boundary opera-
tors considered below we introduce here a nonlinear operator

(5.3) H : C∞
• (∂SM,GL(n,C)) −→ C∞

• (∂SM,U(n))

which is based on the factorisation theorems discussed in Section 2.1 (see Remark 2.4
for the •-notation) and serves as analogue of the Hilbert transform in the linear theory.
Upon choosing a section 1 :M → SM (or equivalently, fixing a trivialisation of SM)
we define H ≡ H1 by

H(r) = u∗,

where r = uf is a decomposition as in (2.4), normalised such that u(x,1(x)) = Id.
In reference to H we also define

H∗ : C∞
• (∂SM,GL(n,C)) −→ C∞

• (∂SM,U(n)), H∗(r) = H(r−1),

H+ : C∞(∂SM,Her+n ) −→ C∞
Id (∂SM,GL(n,C)), H+(r) = H(r1/2)r1/2.(5.4)

Both transforms can be described in terms of suitable decompositions: Indeed, we
have H∗(r) = u, where r = fu as in (2.5), normalised such that u(x,1(x)) = Id and
H+(r) = f , where r = f∗f is a Birkhoff factorisation as in (2.6), with normalisation
inherited from H.

We introduce two further types of ‘nonlinear Hilbert transforms’, which do not
depend on a choice of 1, but are only available if r admits a special decomposition.
To this end, define spaces

(5.5) C∞
0 (∂SM,GL(n,C)) and C∞

0 (∂SM,Her+n ),

as follows: An element r ∈ C∞
• (∂SM,GL(n,C)) lies in the left space, if it admits a

(necessarily unique) decomposition r = uf as in (2.4) with f0 = Id – we then write
H0(r) = u∗. Further, r ∈ C∞(∂SM,Her+n ) lies in the right space in (5.5), if r1/2 ∈
C∞

0 (∂SM,GL(n,C)) and we set H+,0(r) = H0(r1/2)r1/2. We obtain transforms:

H0 : C∞
0 (∂SM,GL(n,C)) −→ C∞

• (∂SM,U(n)),(5.6)
H+,0 : C∞

0 (∂SM,Her+n ) −→ C∞
Id (∂SM,GL(n,C)).(5.7)

Next, we consider the space C∞
∆ (∂SM,GL(n,C)) consisting of those maps

r ∈ C∞
Id (∂SM,GL(n,C))

which factor uniquely as r = gf , where f, g∗ ∈ H (with H as in Remark 2.4) and
g0 = Id. With respect to this factorisation we define

(5.8) H∆ : C∞
∆ (∂SM,GL(n,C)) −→ G, H∆(r) = f.

We discuss the relation of H∆ to Birkhoff factorisations below Theorem 5.13.
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Example 5.3. — We consider the ‘nonlinear Hilbert transforms’ from above for n = 1.
A general element in C∞

• (∂SM,GL(1,C)) has the form

r = eikθeψ+iσ, where k ∈ Z, ψ, σ ∈ C∞(∂SM,R).

Let ψ = ψ<0+ψ0+ψ>0 be the decomposition into negative, zero and positive Fourier
modes. Then the standard, linear Hilbert transform of ψ is Hψ = (ψ>0 −ψ<0)/i and
thus ψ = −iHψ + ψ0 + 2ψ>0, which implies that

r =
(
eikθe−iHψ+iσ

)
×
(
eψ0+2ψ>0

)
=: uf

is a decomposition as in (2.4) (not necessarily normalised). Then

H(r) = weiHψe−iσ−ikθ and H∗(r) = we−iHψeiσ+ikθ,

where w = w1 ∈ C∞(M,U(n)) is chosen to achieve the correct normalisation. If r
takes values in R>0 ≡ Her+1 (such that k = 0 and σ = 0) we see that H and H∗ are
exponentiated linear Hilbert transforms; further

H+(r) = we
1
2 (ψ+iHψ).

Finally, r is in the domain of H0 and H+,0 iff ψ0 = 0 and it is in the domain of H∆

iff k = 0, in which case H∆(r) = eψ0+ψ>0+iσ0+iσ>0 .

5.2. Range for u(n)-attenuations. — It is instructive to first consider the non-
Abelian X-ray transform on the space ℧ from (1.3). In terms of the right action of G
on ℧ (defined in (1.4)), we have I∗(F ) = 0 ◁ F−1 and hence I∗ fits into an exact
sequence (of pointed sets):

(5.9) 0 −→ G0 ↪−→ G I∗−−−→ ℧ −→ M −→ 0.

Here G0 is the stabiliser of 0 ∈ ℧ and – for the purpose of this section – we think of
M as quotient space ℧/G, such that exactness in (5.9) is evident. The identification
℧/G = M is justified by Proposition 4.12.

Let us assume now that M is trivial – by Theorem 1.3 this holds in particular if
(M, g) is simple. Then I∗ : G → ℧ is surjective and we have a commutative diagram

(5.10)
G ℧

H C∞(∂+SM,GL(n,C)),

I∗

(·)|∂SM A 7→ CA
B

where H = {f = F |∂SM : F ∈ G} (see also Remark 2.4). Note that H is a genuine
boundary space in that it has the intrinsic characterisation

H = {f ∈ C∞
Id (∂SM,GL(n,C)) : f is fibrewise holomorphic}.

We thus obtain the following range characterisation:

Proposition 5.4. — Suppose M = 0. Then an element q ∈ C∞(∂+SM,GL(n,C)) lies
in the range of ℧ ∋ A 7→ CA if and only if q = Bf for some f ∈ H. □
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Let us now consider attenuations in one of the three classes

(5.11) ℧(u(n)) = {u(n)-pairs}, C∞(M, u(n)) and Ω1(M, u(n)),

all considered as subsets of ℧. Note that ℧(u(n)) = ℧ ∩ C∞(SM, u(n)), due to the
identity A−k = −A∗

k (k ∈ Z) for skew-Hermitian attenuations. The second and third
space in (5.11) consist of skew-Hermitian matrix fields Φ and connections A, respec-
tively.

Define √
G0 := {F ∈ G : X(F ∗F ) = 0} ⊂ C∞(SM,Cn×n),

and recall that a function F on SM (or ∂SM) is even, if it only has even Fourier
modes or equivalently if it obeys the symmetry condition F (x, v) = F (x,−v).

Proposition 5.5. — Suppose that (M, g) is simple. Then I∗ is well defined and sur-
jective in the following settings:

(i) I∗ :
√
G0 → ℧(u(n)),

(ii) I∗ : {F ∈
√
G0 : F even} → Ω1(M, u(n)),

(iii) I∗ : {F ∈
√
G0 : F0 = Id} → C∞(M, u(n)).

Part (i) holds in greater generality and is in fact equivalent to the assertion that
M = 0 (assuming that (M, g) is non-trapping and has a strictly convex boundary).

Proof. — For (i) let F ∈
√
G0, then

0 = X(F ∗F ) = (XF ∗)F + F ∗(XF ) = F ∗ ((F−1)∗(XF ∗)− I∗(F )
)
F,

and hence (I∗(F ))∗ =
(
(F−1)∗(XF ∗)

)∗
= −I∗(F ), which shows that I∗ indeed maps√

G0 into ℧(u(n)). To see that it is onto, let A ∈ ℧(u(n)) and let F ∈ G be an
arbitrary HIF for A. Then, as A is skew-Hermitian,

X(F ∗F ) = (−AF )∗F + F ∗XF = F ∗(AF +XF ) = 0,

which means that F ∈
√
G0.

For (ii) let F ∈
√
G0 be even. Then I∗(F ) is odd and, being skew-Hermitian, only

has Fourier modes in degree ±1; hence I∗(F ) ∈ Ω1(M, u(n)). Conversely, if A is a
u(n)-connection, then by Proposition 3.5 there exists an even HIF F ∈ G and we
must have F ∈

√
G0, as above.

Finally, for (iii), let F ∈
√
G0 with F0 = Id. Then A = I∗(F ) satisfies

(5.12) A−1 = −(η−F0)(F
−1)0 = 0

and, A being skew-Hermitian, also A1 = −A∗
−1 = 0. Hence A ∈ Ω0(SM, u(n)) ≡

C∞(M, u(n)). Conversely, given Φ ∈ C∞(M, u(n)) let F̃ ∈
√
G0 be any HIF. Then,

similar to (5.12) we see that η−F̃0 = 0 and as F̃0 is invertible, also η−F̃
−1
0 = 0.

By Theorem 13.11.6 in [36] there existsG ∈ G0 withG0 = F̃−1
0 , hence F = F̃G ∈

√
G0

is a new HIF for Φ with F0 = F̃0G0 = Id, as desired. □
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The domains in the preceding proposition can be projected onto the following
boundary spaces of Her+n -valued functions:

C∞
α (∂+SM,Her+n ) =

{
w ∈ C∞(∂+SM,Her+n ) : A+w smooth on ∂SM

}
,(5.13)

C∞
α,1(∂+SM,Her+n ) =

{
w ∈ C∞

α (∂+SM,Her+n ) : w ◦ αa = w
}
,(5.14)

C∞
α,0(∂+SM,Her+n ) =

{
w ∈ C∞

α (∂+SM,Her+n ) :
w♯ = F ∗F for some
F ∈ G with F0 = Id

}
.(5.15)

Here

(5.16) A+w(x, v) =

{
w(x, v) (x, v) ∈ ∂+SM,

w ◦ α(x, v) (x, v) ∈ ∂−SM,
and αa(x, v) = α(x,−v),

and w♯ is the unique solution to Xw♯ = 0 on SM and w♯ = w on ∂+SM . By a
classical result of Pestov and Uhlmann (see [39] or Theorem 5.1.1 in [36]), the first
integral w♯ is smooth on SM for w ∈ C∞

α (SM,Her+n ).
Note that (5.13) and (5.14) define genuine boundary spaces in the sense that mem-

bership can be checked on ∂SM only in terms of the scattering relation α. To check
whether a function w belongs to C∞

α,0 one first has to find the first integral w♯.

The following result is a consequence of Birkhoff’s factorisation theorem for Her-
mitian matrices (Theorem 2.3) and does not require (M, g) to be simple.

Proposition 5.6. — Let σ(F ) = F ∗F |∂+SM , then:

(i) σ :
√
G0 → C∞

α (∂+SM,Her+n ) is surjective,
(ii) σ : {F ∈

√
G0 : F even} → C∞

α,1(∂+SM,Her+n ) is surjective,
(iii) σ : {F ∈

√
G0 : F0 = Id} → C∞

α,0(∂+SM,Her+n ) is bijective.

Proof. — For (i) let w ∈ C∞
α (∂+SM,Her+n ), then w♯ ∈ C∞(SM,Her+n ) (it takes

values in Her+n , as it is constant along the geodesic flow) and by Theorem 2.3 there
exists F ∈ G with w♯ = F ∗F . We then automatically have F ∈

√
G0.

For (ii) note that if F ∈
√
G0 is even, then F ∗F |∂SM is α-invariant and thus

w = σ(F ) satisfies

w(α(x,−v)) = F ∗F (x,−v) = F ∗F (x, v) = w(x, v).

Conversely if w ∈ C∞
α (∂+SM,Her+n ) satisfies w(α(x,−v)) = w(x, v), then w♯ is even

by Lemma 9.4.9 in [36]. Using Theorem 2.3, this factors as w♯ = F ∗F for an even
F ∈ G. As above, we must have F ∈

√
G0 and the proof is complete.

For (iii), surjectivity is clear. Here σ is also injective, because w♯ = F ∗F = F̃ ∗F̃ for
two different F, F̃ ∈

√
G0 only if F = uF̃ for u ∈ C∞(M,U(n)), while the requirement

F0 = F̃0 = Id implies u = Id and thus F = F̃ . □
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By the preceding propositions, and if (M, g) is simple, we obtain three diagrams
which are analogous to (5.2) and (5.10). The first of these is

(5.17)

√
G0 ℧(u(n))

C∞
α (∂+SM,Her+n ) C∞(∂+SM,U(n)),

I∗

B(·|∂SM )
σ A 7→ CA

P

with boundary operator P yet to be defined. Here the upper triangle commutes as
it arises from restricting (5.2); moreover, any choice of P making the lower triangle
commute would have the same range as ℧(u(n)) ∋ A 7→ CA. However, commutativity
can only be achieved up to unitary gauge, as we now explain.

Note that C∞(M,U(n)) acts on
√
G0 by left-multiplication and C∞

Id (∂M,U(n))

(subscript Id means: homotopic to Id) acts on C∞(∂+SM,GL(n,C)) by

(5.18) h ▷ q = hq(h−1 ◦ α).

Then the diagonal arrow in (5.17) is equivariant with respect to these group actions,
while σ is invariant and in fact injective up the action of C∞(M,U(n)), i.e., σ(F ) =
σ(F ′) if and only if F ′ = UF for some U ∈ C∞(M,U(n)) (see Theorem 2.3(ii)).

In terms of H+ from (5.4) we now define a boundary operator P by

(5.19) Pw := BH+A+w, w ∈ C∞
α (∂+SM,Her+n ).

Lemma 5.7. — With P as in (5.19) the lower triangle in (5.17) commutes up to gauge.
That is, for any F ∈

√
G0 there exists h ∈ C∞

Id (∂M,U(n)) such that B(F |∂SM ) =

h ▷ P (σ(F ))).

Proof. — Let F ∈
√
G0 and put w = σ(F ). Then, by definition of H+, we have

A+w = f∗f , where f = H+(A+w). On the other hand, A+w = F ∗F |∂SM is another
such decomposition and thus f = hF for some h ∈ C∞

Id (∂M,U(n)). Hence Pw =

B(hF |∂SM ) = h ▷ B(F |∂SM ), as desired. □

Theorem 5.8 (Range for u(n)-pairs). — Suppose that (M, g) is simple (or more gen-
erally, that M = 0). Then an element q ∈ C∞(∂+SM,U(n)) lies in the range of
℧(u(n)) ∋ (A,Φ) → CA,Φ if and only if

(5.20) q = h ▷ Pw, for some (w, h) ∈ C∞
α (∂+SM,Her+n )× C∞

Id (∂M,U(n)).

Proof. — The proof is essentially a diagram chase in (5.17). First suppose that q = CA
for some A ∈ ℧(u(n)). By Proposition 5.5 (valid also if M = 0) there exists F ∈

√
G0

with I∗(F ) = A and consequently, using Lemma 5.7, we have q = B(F |∂SM ) =

h▷P (w) for w = σ(F ) and some h ∈ C∞
Id (∂M,U(n)). For the other direction suppose

that q = h ▷ P (w) for (w, h) as in (5.20). By Proposition 5.6 we have w = σ(F )

for some F ∈
√
G0 and by Lemma 5.7, we have B(F |∂SM ) = h1 ▷ Pw for some
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h1 ∈ C∞
Id (∂M,U(n)). We may extend both h and h1 to functions in C∞(M,U(n))

(denoted by the same symbol) and set A = I∗(hh−1
1 F ), such that

CA = (hh−1
1 ) ▷ B(F |∂SM ) = h ▷ Pw = q.

This completes the proof. □

Remark 5.9. — In fact, on simple surfaces the range characterisation in the preceding
theorem is equivalent to the assertion that M = 0 in the following sense: If the
scattering data of a u(n)-pair A = (A,Φ) is of the form (5.20), then A automatically
admits holomorphic integrating factors. To see this, let (w, h) be as in (5.20), extend h
to a function in C∞(M,U(n)) and factor w♯ = G∗G for some G ∈ G. Then also
F := hG lies in G and B := −(XF )F−1 is a u(n)-pair with the same scattering data
as A. By Theorem 1.1, the attenuation A is gauge equivalent to B and thus it admits
holomorphic integrating factors. Granted a characterisation as in the theorem, one
thus obtains HIF’s for u(n)-pairs and as every orbit in M ≡ ℧/G contains such a pair
[33, Lem. 5.2], it holds that M = 0.

Similarly, with αa as in (5.16), we obtain:

Theorem 5.10 (Range for u(n)-connections). — Suppose that (M, g) is simple. Then
an element q ∈ C∞(∂+SM,U(n)) lies in the range of Ω1(M, u(n)) ∋ A 7→ CA if and
only if one of the following equivalent conditions is satisfied:

(i) q satisfies (5.20) and additionally q ◦ αa = q−1,
(ii) q satisfies (5.20) with w ∈ C∞

α,1(∂+SM,Her+n ) (i.e., w ◦ αa = w).

Proof. — To prove the characterisation (i), we first consider an arbitrary attenuation
A ∈ C∞(SM,Cn×n) with integrating factor R ∈ C∞(SM,Cn×n). Then S(x, v) =

R(x,−v) defines an integrating factor for B(x, v) = −A(x,−v) and we have

CA ◦ αa = (R ◦ αa)(R−1 ◦ α ◦ αa) =
[
S(S−1 ◦ α)

]−1
= C−1

B on ∂+SM.

Now, if q = CA for A equal to a connection A ∈ Ω1(M, u(n)), then also B = A and
thus q has the desired symmetry. Conversely, if q = CA for a u(n)-pair A = (A,Φ)

and additionally q ◦ αa = q−1, then the previous display implies CA = CB and by
Theorem 1.1 there is a gauge φ ∈ C∞(M,U(n)) with φ = Id on ∂M such that

φΦ+ Φφ = 0 and dφ+ [A,φ] = 0 on M.

By the second equation φ solves an ODE along every curve in M and thus it is
determined by its boundary values. It follows that φ ≡ Id and hence Φ = 0.

The characterisation in (ii) follows by the same arguments that lead to Theorem 5.8,
replacing diagram (5.17) with the obvious analogue containing the spaces

{F ∈
√

G0 : F even} and C∞
α,1(∂+SM,Her+n ).

This completes the proof. □
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Next, we consider the range of Φ 7→ CΦ for u(n)-valued matrix fields. In this case
one defines a boundary operator in terms of the transform H+,0 from (5.7):

P0w := BH+,0A+w, w ∈ C∞
α,0(∂+SM,Her+n ).

Using Propositions 5.5 and 5.6, one obtains a similar diagram as in (5.17), this time
commutative, as σ is bijective in this setting. We obtain the following result, omitting
the proof:

Theorem 5.11 (Range for u(n)-matrix fields). — Suppose that (M, g) is simple. Then
an element q ∈ C∞(∂+SM,U(n)) lies in the range of C∞(M, u(n)) ∋ Φ 7→ CΦ if and
only if q = P0w for some w ∈ C∞

α,0(∂+SM,Her+n ). □

Remark 5.12. — An alternative characterisation for u(n)-pairs is obtained as follows:
Define GU = {(U,F ) ∈ C∞(SM,U(n))×G : X(UF ) = 0} and consider the diagram

(5.21)

GU ℧(u(n))

C∞
α (∂+SM,GL(n,C)) C∞(∂+SM,U(n)),

(U,F ) 7→ I∗(F )

(U,F ) 7→ B(F |∂SM )
(U,F ) 7→ UF |∂+SM A 7→ CA

BHA+

where H is as in (5.3). As above, one proves commutativity up to gauge and – assuming
that (M, g) is simple – one establishes surjectivity results as indicated by the double
headed arrows. This shows that condition (5.20) in Theorem 5.8 can be replaced by

q = h ▷ (BHA+w) for some (w, h) ∈ C∞
α (∂+SM,GL(n,C))× C∞

Id (∂M,U(n)).

In order to isolate connections and matrix fields one can use the same ideas that lead
to Theorems 5.10 and 5.11; we leave the details to the reader.

5.3. Range for gl(n,C)-attenuations. — To obtain range characterisations in the
gl(n,C)-case, define GG = {(G,F ) ∈ G∗ ×G : G0 = Id} and consider the diagram

(5.22)

GG {gl(n,C)-pairs}

C∞
α,∆ C∞(∂+SM,GL(n)),

(G,F ) 7→ I∗(F )

(G,F ) 7→ GF |∂+SM A 7→ CA

P∆

where P∆ = BH∆A+ with transform H∆ as in (5.8) and with diagonal arrow equal
to (G,F ) 7→ B(F |∂SM ). Here C∞

α,∆ ⊂ C∞
α (∂+SM,GL(n,C)) is defined – somewhat

tautologically – as range of the left vertical map and commutativity holds up to a
GL(n,C)-valued gauge. If (M, g) is simple, the top arrow is surjective and similar to
Theorem 5.8, the following result holds true (the proof is omitted):
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Theorem 5.13 (Range for gl(n,C)-pairs). — Suppose that (M, g) is simple (or more
generally, that M = 0). Then an element q ∈ C∞(∂+SM,GL(n,C)) lies in the range
of {gl(n,C)-pairs} ∋ (A,Φ) 7→ CA,Φ iff

q = h ▷ P∆w for some (w, h) ∈ C∞
α,∆ × C∞

Id (∂M,GL(n,C)). □

Similar to above one can isolate connections and matrix fields; we omit the details.
The space C∞

α,∆ can also be described as follows: Any w ∈ C∞
α (∂SM,GL(n,C))

extends to a first integral w♯ : SM → GL(n,C) which, by virtue of [41, Th. 8.1.2],
admits a Birkhoff factorisation as

w♯(x, ·) = G(x, ·)∆(x, ·)F (x, ·).

Here F (x, ·) and G(x, ·)∗ are fibrewise holomorphic and

∆(x, θ) = diag(eia1(x)θ, . . . , eian(x)θ)

for not necessarily continuous maps ai :M → Z (i = 1, . . . , n). We then have w ∈ C∞
α,∆

if and only if ∆ ≡ Id, in which case F and G are automatically smooth on SM .
To check membership of w in C∞

α,∆ it is thus necessary that ∆|∂+SM ≡ Id; it is an
interesting question whether this also sufficient or more generally, whether disconti-
nuities of ∆ – also called jumping lines – can be detected at the boundary.

5.4. Nontrivial M. — Finally, we give a range characterisation if M ̸= 0. In this case
the range of {u(n)-pairs} ∋ (A,Φ) 7→ CA,Φ is parametrised in terms of both solitonic
and radiative/dispersive degrees of freedom – as discussed below Theorem 1.5 – in the
following sense: We construct a ‘boundary space’ B(∂+SM) which fits into a short
exact sequence (of pointed sets)

(5.23) 0 −→ C∞
α (∂+SM,GL(n,C)) −→ B(∂+SM) −→ M −→ 0,

and is the natural domain of a ‘boundary operator’

P : B(∂+SM) −→ U\C∞(∂+SM,U(n)).

Here the right hand side denotes the quotient by U := C∞
Id (∂M,U(n)) under the

action defined in (5.18).
In order to define the boundary space B(∂+SM), denote S∞A (∂+SM,GL(n,C)) the

space of functions w : ∂+SM → GL(n,C) for which the extension

EAw(x, v) =

{
w(x, v) (x, v) ∈ ∂+SM,

C−1
A w(α(x, v)) (x, v) ∈ ∂−SM,

defines a smooth function on ∂SM . Next, denote with S(∂+SM) the subset of
℧ × C∞(∂+SM,GL(n,C)) consisting of pairs (A, w) with w ∈ S∞A (∂+SM,Cn×n).
Then G acts on S(∂+SM) via (A, w) ◁ F = (A ◁ F, (F−1|∂+SM )w) and we define

B(∂+SM) := S(∂+SM)/G.
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The arrows in (5.23) are given by w 7→ [(0, w)] and [(A, w)] 7→ [A] respectively (exact-
ness is obvious). The boundary operator P is defined as concatenation

B(∂+SM) −→ G\C∞(∂SM,GL(n,C)) H∗
−−−−→ U\C∞(∂SM,U(n)),

U\C∞(∂SM,U(n))
B−−−→ U\C∞(∂+SM,U(n)),

where the first arrow is [(A, w)] 7→ [EAw] and H∗ is the transform defined in (5.4).
Both H∗ and B are easily seen to descend to quotient spaces as indicated and we
keep denoting them by the same symbols.

Theorem 5.14. — An element q ∈ C∞(∂+SM,U(n)) lies in the range of
{u(n)-pairs} ∋ (A,Φ) 7−→ CA,Φ

if and only if
[q] = P(b) for some b ∈ B(∂+SM).

Proof. — First assume that q=CA for a u(n)-pair A=(A,Φ). Let U ∈C∞(SM,U(n))

be a solution to (X +A)U = 0 on SM . Setting w = U |∂+SM , we have b := [(A, w)] ∈
B(∂+SM) and EAw = U |∂SM , which means that P(b) = [B(U |∂SM )] = [CA] = [q].

Conversely, suppose that [q] = P (b) for some b = [(A, w)] ∈ B(∂+SM). Then
w = R|∂+SM for a solution R ∈ C∞(SM,GL(n,C)) to (X+A)R = 0. By Theorem 2.3
this may be factored as R = FU for F ∈ G and U ∈ C∞(SM,U(n)). Then

P(b) = [B(U |∂SM )] = [CA◁F ],

and by Lemma 5.2 in [33], the attenuation A◁F is given by a u(n)-pair, as desired. □

6. Appendix

6.1. A tame setting. — We discuss the Fréchet structure and tameness of the spaces,
Lie groups and actions used in the proofs of Theorem 1.3 and Proposition 3.5.
Throughout (M, g) is a compact, oriented Riemannian surface with smooth and pos-
sibly empty boundary ∂M .

First recall that C∞(SM,Cn) has a standard Fréchet topology, which can be
generated by norms ∥ · ∥Hs of the Sobolev-spaces Hs(SM,Cn) (s ∈ R). We view
C∞(SM,Cn) as graded Fréchet space, with grading given by
(6.1) ∥ · ∥L2 = ∥ · ∥H0 ⩽ ∥ · ∥H1 ⩽ · · · .

Note that while there are several ways to define these norms, a different choice will
result in a tamely equivalent grading. As in Section 2 we will tacitly apply the con-
siderations in this section also to gl(n,C)-valued functions.

6.1.1. Tame spaces. — The space
⊕

k∈I Ωk (I ⊂ Z) from (2.2) lies closed in the
ambient C∞-space and thus inherits a Fréchet topology and a grading. The next
lemma implies that

⊕
k∈I Ωk is a tame direct summand and as C∞(SM,Cn) is tame

[16, Cor. 1.3.7, §II] the space
⊕

k∈I Ωk must be tame itself [16, Lem. 1.3.3, §II].
In particular, both ℧ from (1.3) and ℧odd from Proposition 3.5 are tame Fréchet

spaces.
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Lemma 6.1. — For all I ⊂ Z, the L2-orthogonal projection PI : C∞(SM,Cn) →⊕
k∈I Ωk satisfies the tame estimate

∥PIu∥Hs ≲ ∥u∥Hs , u ∈ C∞(SM,Cn), s ⩾ 0,

where ≲ means up to a constant that may depend on I and s.

Proof. — First note that PI extends to a bounded map L2(SM,Cn) → L2(SM,Cn),
simply because it is a projection. This gives a tame estimate for s = 0 and we may
proceed by induction. To this end note the Sobolev scale on SM is generated by the
operators η± from (2.3) together with the vertical derivative V in the sense that

∥ · ∥Hs+1 ≈ ∥η+ · ∥Hs + ∥η− · ∥Hs + ∥V · ∥Hs + ∥ · ∥Hs , s ⩾ 0,

is an equivalence of norms. Let I± = I ± 1 ⊂ Z, then η±PI = PI±η± and [V, PI ] = 0,
which means that for all u ∈ C∞(SM,Cn)

∥PIu∥Hs+1 ≲ ∥η+PIu∥Hs + ∥η−PIu∥Hs + ∥V PIu∥Hs + ∥PIu∥Hs

= ∥PI+(η+u)∥Hs + ∥PI−(η−u)∥Hs + ∥PI(V u)∥Hs + ∥PIu∥Hs

≲ ∥η+u∥Hs + ∥η−u∥Hs + ∥V u∥Hs + ∥u∥Hs ≲ ∥u∥Hs+1 ,

where we have used the induction hypothesis. □

6.1.2. Tame Lie groups. — The group Ĝ = C∞(SM,GL(n,C)) lies open in the ambi-
ent space C∞(SM,Cn×n) and thus is a Fréchet manifold. We claim that Ĝ is a tame
Lie Group, which means that additionally the maps

(6.2) m : Ĝ× Ĝ −→ Ĝ and i : Ĝ −→ Ĝ,

given by multiplication and taking inverses, respectively, are smooth tame. Similarly,
the subgroups G ⊂ Ĝ from (1.2) and Gev ⊂ G from Theorem 3.5 are tame Lie groups.

To prove tameness of m and i one may invoke the high-level Theorem 2.2.6 in
[16, §II], which states that so called ‘nonlinear vector bundle operators’ are tame.
To this end let E and F be trivial vector bundles over SM , with fibres given by Cn×n

and Cn×n × Cn×n respectively. Next, let U ⊂ E and V ⊂ F be the open subsets
consisting of tuples (x, v,A) and (x, v,A,B) respectively, where (x, v) ∈ SM and
A,B ∈ GL(n,C). Then

p : V −→ E, (x, v,A,B) 7−→ (x, v,AB),

q : U −→ E, (x, v,A) 7−→ (x, v,A−1),

are ‘nonlinear vector bundle maps’ in Hamilton’s sense. Let V ⊂ C∞(SM,F ) be the
set of sections f with image in V and denote Pf = p ◦ f , then the just cited theorem
implies that P : V → C∞(SM,E) is a tame map. Similarly, q gives rise to a tame
map Q : U → C∞(SM,E). Identifying U with Ĝ and V with Ĝ × Ĝ, we see that P
and Q correspond precisely to m and i, such that we have established tameness of
multiplication and inversion on Ĝ.

For m and i to be smooth tame it is required that they be smooth (which is
clear) and that all derivatives are tame. However, this is a consequence of the already

J.É.P. — M., 2023, tome 10



The TOG-principle for simple surfaces 767

obtained tameness, for all derivatives are again given in terms of multiplication and
inversion.

6.1.3. Tame actions. — Finally, the various Lie group actions defined in the paper
are smooth tame. As each of the actions is given in terms of multiplication, inversion
and taking adjoints, this can be proved similar to above, by recasting the action map
as nonlinear partial differential operator and applying [16, Cor. 2.2.7]; we omit the
details.

6.2. Oka-Grauert principle on compact disks. — Let D = {z ∈ C : |z| ⩽ 1} ⊂ C.

Lemma 6.2. — Let a ∈ C∞(D,Cn×n) (n ∈ N). Then there exist GL(n,C)-valued
solutions f, g ∈ C∞(D,GL(n,C)) to the equations

(6.3) ∂zf + af = 0 and ∂zg − ga = 0 on D.

Moreover, if a = a(p, ·) smoothly depends on a parameter p in some manifold P –
that is, a ∈ C∞(P×D,Cn×n) – then there are corresponding solutions f = f(p, ·) and
g = g(p, ·) in C∞(P× D,GL(n,C)).

This classical result is discussed e.g. in [23] – we include a brief sketch of its proof
and refer to the just cited monograph for further background and details.

Proof. — It suffices to solve the second equation in (6.3), the first one is then solved
by f = g−1. We can extend a to a function a ∈ C∞(P × C,Cn×n) and cover D
by translates of the box [0, ε]2 ⊂ C. For ε > 0 sufficiently small, GL(n,C)-valued
solutions g1, . . . , gm(ε), defined in neighbourhoods of the boxes, can be constructed
by means of a scaling argument and a Neumann series. By Cartan’s lemma, these
local solutions can be patched together and, when restricted to D, yield the desired
solution g. For more details – including smooth parameter dependence in case that P

is an open subset of Rn – see [23, Th. 1, p. 66]. The passage to P being a manifold
follows from standard arguments. □
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