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MIXING TIME AND EXPANSION OF

NON-NEGATIVELY CURVED MARKOV CHAINS

by Florentin Münch & Justin Salez

Abstract. — We establish three remarkable consequences of non-negative curvature for sparse
Markov chains. First, their conductance decreases logarithmically with the number of states.
Second, their displacement is at least diffusive until the mixing time. Third, they never exhibit
the cutoff phenomenon. The first result provides a nearly sharp quantitative answer to a classical
question of Ollivier, Milman & Naor. The second settles a conjecture of Lee and Peres for graphs
with non-negative curvature. The third offers a striking counterpoint to the recently established
cutoff for non-negatively curved chains with uniform expansion.

Résumé (Temps de mélange et expansion des chaînes de Markov en courbure positive)
Nous établissons trois conséquences remarquables de la courbure positive pour les chaînes

de Markov. D’abord, la conductance de ces chaînes décroît logarithmiquement avec la taille
de l’espace. Ensuite, leur déplacement est diffusif jusqu’au temps de mélange. Enfin, le phéno-
mène de cutoff ne peut pas se produire. Le premier résultat fournit une réponse quantitative
presqu’optimale à une question classique d’Ollivier, Milman et Naor. Le second confirme une
conjecture de Lee et Peres, dans le cas particulier des graphes à courbure positive. Le troi-
sième offre un contraste frappant avec les résultats positifs récents concernant le cutoff pour les
chaînes de Markov ayant à la fois une courbure positive et une expansion uniforme.
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1. Introduction

In Riemannian geometry, a lower bound on the Ricci curvature classically im-
plies an array of powerful estimates for the underlying manifold, including diameter
bounds, volume growth, comparison principles, splitting theorems, spectral estimates,
and concentration inequalities [10]. Over the past decade, those remarkable implica-
tions have motivated the development of non-smooth analogues of curvature that
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576 F. Münch & J. Salez

can be applied to discrete geometries [27, 15, 9, 8, 21, 11, 20, 19]. In particular,
Ollivier [21] proposed a transportation-based definition that makes sense on arbitrary
metric spaces, hence in particular on graphs and Markov chains. Informally, a metric
space has non-negative Ollivier-Ricci curvature if balls are at least as close to each
other as their centers are. The simplest example of a finite non-negatively curved
graph is a cycle. It is classical that this graph has poor expansion, that the random
walk on it exhibits a diffusive behavior, and that its mixing time is of the same order
as the inverse spectral gap. The aim of the present paper is to show that those three
properties are in fact shared by all sparse Markov chains with non-negative curvature.
Before we state our results in full generality, let us describe their content in the simple
but important special case of random walk on graphs.

Non-negatively curved graphs. — Let G = (V,E) be a finite simple graph, and let P

denote the random-walk transition matrix of G. Thus, P acts on any function f :V →R
as follows:

(Pf)(x) =
1

deg(x)

∑
y∼x

f(y),

where the notation y ∼ x indicates that {x, y} ∈ E. Following Ollivier [21, 22], we say
that G has non-negative curvature if P contracts the Lipschitz norm, i.e.,

∥Pf∥lip ⩽ ∥f∥lip,

where ∥f∥lip := maxy∼x |f(y)− f(x)|. This fundamental property is satisfied by many
natural families of graphs, including all Abelian Cayley graphs and, more generally,
all Cayley graphs whose generating set is conjugacy-invariant. Additional details,
including a more effective formulation in terms of couplings, will be provided in the
next section when we discuss curvature for general Markov chains.

Expansion. — Our first result concerns the expansion of graphs with non-negative
curvature. Write ∂A for the edge-boundary of a set A ⊆ V , and deg(A) for the sum
of the degrees of all vertices in A. With this notation, the conductance (also known
as Cheeger constant, or bottleneck ratio) of G is

Φ := min
{ |∂A|
deg(A)

: A ⊆ V, 0 < deg(A) ⩽ |E|
}
.

Sequences of bounded-degree graphs whose size diverges but whose conductance re-
mains bounded away from zero are famously known as expanders. Whether such
graphs can have non-negative curvature is an important question, which explicitly
appears in a survey by Ollivier [22, Probl. T], and is therein attributed to Milman
and Naor. The problem has remained open until very recently, when a negative an-
swer was given by the second author [26]. Specifically, the latter used the notion of
entropy for graph limits to prove that non-negative curvature and expansion are in-
compatible “at infinity”, and the conclusion was then transferred to finite graphs using
a compactness argument. A clear drawback of this approach is its non-quantitative na-
ture. In particular, the second author asked for a direct, quantitative relation between
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Mixing time and expansion of non-negatively curved Markov chains 577

volume, degree and expansion on non-negatively curved graphs. This is precisely the
content of our first main result.

Theorem 1 (Poor expansion). — If G has non-negative curvature, then

Φ ⩽ c

√
d log d

log n
,

where n is the number of vertices, d the maximum degree, and c a universal constant.

In other words, large graphs can not simultaneously enjoy non-negative curvature
and uniform expansion unless their maximum degree grows at least like log n/ log log n.
We note that this is sharp up to the log log n correction. Indeed, a celebrated result of
Alon and Roichman asserts that random Cayley graphs with logarithmic degrees have
uniform expansion with high probability [1], and specializing this result to random
Cayley graphs of Abelian groups produces examples of non-negatively curved graphs
with logarithmic degrees and uniform expansion.

Mixing times. — Our second result is a complete determination of the order of mag-
nitude of the mixing time of all vertex-transitive graphs with bounded degrees and
non-negative curvature. Suppose that G is vertex-transitive, with degree d and volume
n. Fix an arbitrary origin x ∈ V (the choice is irrelevant, by transitivity), and consider
the lazy simple random walk on G started at x, i.e., the Markov chain (Xt)t⩾0 on V

with initial condition X0 = x and transition matrix (P + I)/2. The mixing time of G
is a fundamental graph-theoretical parameter, defined as follows [13]:

tmix := min
{
t ∈ N : max

A⊆V

∣∣∣P(Xt ∈ A)− |A|
n

∣∣∣ ⩽ 1

4

}
.

An important, closely related quantity is the so-called relaxation time

trel :=
1

1− λ2
,

where 1 = λ1 > λ2 ⩾ · · · ⩾ λn denote the ordered eigenvalues of P . It is classical that
tmix ⩾ trel, and that this inequality can be off by a factor as large as log n, as is the
case for expanders (see [13]).

Theorem 2 (Mixing times). — All vertex-transitive graphs with non-negative curva-
ture satisfy

tmix ≍d trel ≍d
1

Φ2
,

where the notation a ≍d b means that the ratio a/b is bounded from above and below
by positive constants that depend only on the degree d.

This has the following remarkable consequence. For a sequence of graphs (Gn)n⩾1,
the condition

tmix(Gn)

trel(Gn)
−−−−→
n→∞

+∞

J.É.P. — M., 2023, tome 10



578 F. Münch & J. Salez

is known as the product condition. It is well-known to be necessary (see [13, Prop. 18.4])
for the occurrence of the so-called cutoff phenomenon, a celebrated but still mysteri-
ous phase transition in the approach to equilibrium of certain Markov chains (see [13,
Chap. 18] for the precise definition). Thus, Theorem 2 implies that vertex-transitive
graphs with fixed degree and non-negative curvature never exhibit cutoff. This stands
in stark contrast with recent results due to the second author, showing that many
non-negatively curved graphs with logarithmic degree do exhibit cutoff [25]. Interest-
ingly, the conclusion of Theorem 2 is known to hold for fixed-degree Cayley graphs of
moderate growth [6]. This geometric condition was later shown to be equivalent to the
much simpler requirement that the diameter is algebraically large in the volume [5]
(see the recent paper [28] for an extension to vertex-transitive graphs). This raises
the following question. A positive answer would be surprisingly strong, but we have
not been able to produce any counter-example.

Question 1 (Moderate growth?) — Do all non-negatively curved graphs with degree
at most d satisfy

diam(G) ⩾ εdn
εd ,

where n is the number of vertices, and εd > 0 a constant depending only on d?

Indeed, this question was answered affirmatively in case of a modified Barky Emery
curvature dimension condition in [2], and later by the first author in case of the weaker,
unmodified Bakry Emery curvature dimension condition [17].

Diffusivity. — Finally, our last result concerns the speed of random walk on vertex-
transitive graphs with non-negative curvature. Many infinite graphs such as the line Z
are known to exhibit a diffusive behavior, in the sense that the typical graph distance
between Xt and X0 grows like

√
t. On a finite graph, the distance to the starting

point can of course no longer grow indefinitely with time, but one may still hope for
a diffusive behavior on appropriate time-scales. This vague statement was recently
given a powerful rigorous content by Lee and Peres [12], who showed that the simple
random walk on any finite vertex-transitive graph satisfies the diffusive lower-bound

E
[
dist(X0, Xt)

]
⩾ c

√
t

d

for all t ∈ [d, trel], where c > 0 is a universal constant. The graph Zd
2 ×Zn shows that

this lower-bound is sharp. However, the authors conjectured that the time-scale on
which the diffusive behavior remains valid should actually be much longer, namely,
of order tmix [12, Conj. 2.5]. Our second result confirms this prediction in the case of
non-negatively curved graphs.

Theorem 3 (Diffusive lower-bound). — If G is vertex-transitive and non-negatively
curved, then

E
[
dist(X0, Xt)

]
⩾ c

√
t

d
,

for t ∈ [d, tmix], where c is a universal constant.
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We emphasize that our estimates are not restricted to simple random walks on
graphs. Analogous results will be stated for general Markov chains with non-negative
curvature. In particular, neither reversibility, nor even the symmetry of the support
of P are actually required for a version of Theorem 1 to hold. Ollivier curvature with
respect to a directed metric has been explored before in [30, 23, 24, 7]. However the
specific consequences of non-negative curvature seem to be unexplored to the best of
our knowledge. Our general results are exposed in Section 2 below, and are proved in
Section 3.

2. Main results

In the remainder of the paper, we consider an arbitrary, irreducible stochastic
matrix P on a finite state space V . A natural measure of the “distance” from a state
x ∈ V to a state y ∈ V is the minimum number of transitions needed for the chain to
move from x to y, namely

dist(x, y) := min{k ∈ N : P k(x, y) > 0}.

This quantity is not necessarily symmetric, but it clearly satisfies the two other axioms
of a distance. We may then use optimal transport to extend this notion to probability
measures as follows: write P(V ) for the set of probability measures on V , and define
W : P(V )× P(V ) → R+ by

W (µ, ν) := inf
X∼µ
Y∼ν

E
[
dist(X,Y )

]
,

where the infimum runs over all possible random pairs (X,Y ) whose marginals are µ

and ν. Again, this quantity is not necessarily symmetric, but it always satisfies the
two other axioms of a distance. Due to Kantorovich duality [29, Th. 5.10 & Particular
Case 5.4], we can write

W (µ, ν) = sup {νf − µf : ∥f∥lip ⩽ 1}

with
∥f∥lip := sup

y∼x
f(y)− f(x).

Finally, we say that P has non-negative curvature if it is a contraction under W , i.e.,

(1) ∀µ, ν ∈ P(V ), W (µP, νP ) ⩽ W (µ, ν).

Ollivier curvature with a non-symmetric distance has been studied in [30, 23, 7, 24].
Due to Kantorovich duality and as in the introduction, non-negative curvature is
equivalent to ∥Pf∥lip ⩽ ∥f∥lip. By convexity, it is in fact sufficient to check property
(1) on Dirac masses µ = δx, ν = δy, x, y ∈ V . Moreover, by the triangle inequality, we
may further restrict our attention to the case where y is a neighbor of x (by which
we mean that dist(x, y) = 1 and which we denote by y ∼ x), i.e.,

(2) ∀y ∼ x, W (P (x, ·), P (y, ·)) ⩽ 1.

J.É.P. — M., 2023, tome 10



580 F. Münch & J. Salez

This local condition is easily verified in practice. For example, it holds for ran-
dom walks on Abelian groups and, more generally, random walks with a conjugacy-
invariant support, as we now explain.

Example 1 (Random walks on groups). — Suppose that V is a group, and fix µ ∈
P(V ). By definition, the random walk on V with increment distribution µ is the
Markov chain whose transitions correspond to left-multiplication by a µ−distributed
element, i.e., P (x, y) := µ(yx−1). This chain has non-negative curvature as soon as
the set S := {z ∈ V : µ(z) > 0} is conjugacy-invariant, i.e.,

(3) ∀z ∈ V, zSz−1 = S.

Indeed, this assumption implies that dist(zx, zy) = dist(x, y) for all x, y, z ∈ V . In par-
ticular, if Z denotes a random variable with law µ, then the “obvious” coupling of
P (x, ·) and P (y, ·) given by X := Zx and Y := Zy verifies (2). Note that the condi-
tion (3) trivially holds if the group is Abelian. An emblematic non-Abelian example is
the transposition walk on the symmetric group [3].

To avoid periodicity issues, we now assume that P is lazy, i.e., P (x, x) ⩾ 1/2 for
all x ∈ V . This is more than enough to guarantee that the chain mixes, i.e.,

∀x, y ∈ V, P t(x, y) −−−→
t→∞

π(y),

where π = πP denotes the unique invariant distribution. Quantifying the speed at
which this convergence to equilibrium occurs is a fundamental question, with many
applications [13, 16]. Formally, this amounts to estimating the so-called mixing time:

tmix := min{t ⩾ 0: dtv(t) ⩽ 1/4}, where dtv(t) := max
x∈V

∥∥P t(x, ·)− π
∥∥

tv.

Here ∥µ− ν∥tv denotes the total-variation distance between µ, ν ∈ P(V ), defined as

∥µ− ν∥tv = max
A⊆V

|µ(A)− ν(A)| = 1

2

∑
x∈V

|µ(x)− ν(x)| = inf
X∼µ
Y∼ν

P(X ̸= Y ),

where the infimum in the last expression runs over all possible couplings (X,Y ) of µ
and ν. Thus, a natural way to estimate mixing times is to exhibit good couplings, and
this is precisely where curvature enters the play. Indeed, an elementary but crucial
reformulation of the non-negative curvature assumption (1) is that the trajectories
(Xt)t⩾0 and (Yt)t⩾0 emanating from any two states X0 = x and Y0 = y can be
coupled in such a way that their distance t 7→ dist(Xt, Yt) forms a super-martingale.
When combined with an appropriate diffusive estimate for super-martingales, this
observation turns out to imply the following O(1/

√
t) decay for the total-variation

distance between the laws of Xt and Yt.

Theorem 4 (Total-variation decay). — If P is lazy and non-negatively curved, then,∥∥P t(x, ·)− P t(y, ·)
∥∥

tv ⩽ dist(x, y)

√
10

(t+ 1)Pmin
,

for all x, y ∈ V and all t ⩾ 0, where Pmin denotes the smallest non-zero entry of P .

J.É.P. — M., 2023, tome 10
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Variants of this result have appeared in a number of works, under various forms
[4, 14, 18, 26]. However, all proofs use the fact that the increments of the process
t 7→ dist(Xt, Yt) are uniformly bounded (by 2), and this property may dramatically
fail in our more general setup where the metric is directed. Nevertheless, the conclusion
turns out to remain valid, and a proof is presented in Section 3.3. The most “obvious”
application of Theorem 4 consists in taking a maximum over all states x, y ∈ V to
obtain the following mixing-time estimate, which is new in our directed setup.

Corollary 1 (Diameter bound). — If P is lazy and non-negatively curved, then

tmix ⩽
160 (diam)2

Pmin
,

where diam := maxx,y dist(x, y) denotes the diameter of the state space.

While interesting in its own right, this estimate is actually not the key to the new
results mentioned in the Introduction. Our main finding is that a significantly finer
estimate can be deduced from Theorem 4 provided we replace the worst-case mixing
time by its average version:

t♯mix := min{t ⩾ 0: d♯tv(t) ⩽ 1/4}, where d♯tv(t) :=
∑
x∈V

π(x)
∥∥P t(x, ·)− π

∥∥
tv.

Remark 1 (Transitive chains). — Obtaining a bound on t♯mix rather than tmix is not
a huge drawback. For example, we have t♯mix = tmix for all random walks on groups
and, more generally, for all transitive chains (P is transitive if for each x, y ∈ V , there
is a bijection f : V → V which maps x to y and preserves the transition kernel, i.e.,
P (f(u), f(v)) = P (u, v) for all u, v ∈ V ).

Throughout the paper, we let X = (Xt)t⩾0 denote a Markov chain with transition
matrix P starting from stationarity (X0 ∼ π). Our main new estimate on t♯mix depends
on two statistics of this chain. The first one is the mean displacement in t steps:

E
[
dist(X0, Xt)

]
=

∑
x,y∈V

π(x)P t(x, y) dist(x, y).

The second is the escape probability in t steps, i.e., the conductance of P t:

Φ(P t) = min
{
P (Xt /∈ A|X0 ∈ A) : A ⊆ V, 0 < π(A) ⩽

1

2

}
= min

{
1

π(A)

∑
x∈A

∑
y∈Ac

π(x)P t(x, y) : A ⊆ V, 0 < π(A) ⩽
1

2

}
.

Theorem 5 (Main estimate). — If P is lazy and non-negatively curved, then

(4) t♯mix ⩽
160

Pmin
inf
t⩾1

{E[dist(X0, Xt)]

Φ(P t)

}2

,

where we recall that Pmin denotes the smallest non-zero entry of P .
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582 F. Münch & J. Salez

Theorem 5 has a number of notable consequences, which we now enumerate. The
simplest one is an “average” version of Corollary 1, obtained by sending t → ∞ in
the infimum (4):

(5) t♯mix ⩽
640 (diam♯)2

Pmin
,

where diam♯ :=
∑

x,y∈V π(x)π(y) dist(x, y) denotes the effective diameter. Note that
the latter can be significantly smaller than the true diameter appearing in Corol-
lary 1 (consider, e.g., the biased random walk on a segment). A much more refined
consequence of Theorem 5 is obtained by taking t = 1 in the infimum (4): writing
Φ = Φ(P ), we readily obtain the following surprising bound.

Corollary 2 (Conductance bound). — If P is lazy and non-negatively curved, then

t♯mix ⩽
40

PminΦ2
.

This offers a considerable improvement over (5) in situations where the effective
diameter diverges while the conductance remains bounded away from 0 (consider, e.g.,
random walk on a random Abelian Cayley graph with logarithmic degree). More im-
portantly, by virtue of an elementary combinatorial lower-bound on t♯mix (see, e.g., [13,
§7.1.1]), Corollary 2 implies the quantitative non-existence of non-negatively curved
expanders promised in Theorem 1. For general chains, we will show that t♯mix can be
bounded below by diam♯, leading to the following result.

Corollary 3 (Poor expansion). — If P is non-negatively curved, then

Φ ⩽
19√

Pmin diam
♯
.

Thus, non-negatively curved chains which are large (diam♯ ≫ 1) and sparse (Pmin

bounded away from 0) must have poor expansion (Φ ≪ 1). This constitutes a precise
quantitative answer to the Markov-chain generalization of the question of Milman,
Naor and Ollivier [22, Probl. T]. Note that there are examples of sparse chains with
non-negative curvature and arbitrarily many states (consider, e.g., a biased random
walk on a segment). However, the fact that their effective diameter is bounded forces
their stationary measure to concentrate on a bounded number of states.

Corollary 2 is sharp in the important case where P is transitive, reversible and
sparse. Indeed, we have the classical lower-bound tmix ⩾ trel, where trel := (1−λ2)

−1

denotes the inverse spectral gap of P (see, e.g., [13]), and the first author established
in [18] the Buser inequality

trel ⩾
Pmin

12Φ2
,

for any non-negatively curved, reversible chain. When combined with Corollary 2, this
yields the following result, of which Theorem 2 is clearly a special case.

J.É.P. — M., 2023, tome 10
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Corollary 4 (No cutoff for sparse chains). — Fix p ∈ (0, 1). Then, any lazy reversible
transitive chain with non-negative curvature and Pmin ⩾ p satisfies

tmix ≍p trel ≍p
1

Φ2
,

where the notation a ≍p b means that the ratio a/b is bounded from above and below
by positive constants that depend only on p. In particular, no family of such chains
can exhibit cutoff.

An important observation here is that the transitivity of the chain is only used to
ensure that tmix = t♯mix. Consequently, Corollary 4 extends to any collection of chains
which are “spatially homogeneous” in the mild sense that tmix ≍ t♯mix.

Finally, a last notable consequence of Theorem 5 is that the expected displacement
of the chain over short time-scales is already substantial. More precisely, assuming
that P is reversible, we have

Φ(P t) ⩾
1− λt

2

2
⩾

1− e−t/trel

2
,

and the right-hand side is at least (1− e−1)/2 for all t ⩾ trel, yielding the following
estimate.

Corollary 5 (Fast escape). — If P is lazy, reversible and non-negatively curved, then

∀t ⩾ trel, E
[
dist(X0, Xt)

]
⩾

√
t♯mixPmin

41
,

where we recall that E
[
dist(X0, Xt)

]
=

∑
x,y π(x)P

t(x, y) dist(x, y).

For reversible transitive chains, Lee and Peres [12] proved the diffusive lower-bound

E
[
dist(X0, Xt)

]
⩾ c

√
tPmin,

for all t such that P−1
min ⩽ t ⩽ trel, where c > 0 is a universal constant. They

conjectured that this diffusive lower-bound should remain valid until the mixing time
[12, Conj. 2.5]. Corollary 5 readily implies that this is true in the non-negatively curved
case, and Theorem 3 follows as a special case.

3. Proofs

Section 3.1 below is devoted to the proof of our main result, namely the relation be-
tween conductance, displacement and mixing times (Theorem 5). The latter exploits
the diffusive total-variation decay of non-negatively curved chains (Theorem 4), which
will be proved independently in Section 3.3. Once Theorem 5 is established, all an-
nounced corollaries follow effortlessly, except for Corollary 3: the latter requires a
lower bound on the average mixing time in terms of the effective diameter, which we
prove in Section 3.2.
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584 F. Münch & J. Salez

3.1. Mixing time vs. conductance. — In this section, we prove Theorem 5. We will
make crucial use of Theorem 4, as well as the following L1 version of Cheeger’s
inequality. An important remark is that the latter holds without any assumption
on the transition matrix P , and will thus also apply to powers of P .

Lemma 1 (L1 analogue of Cheeger’s inequality). — If f : V → R satisfies πf = 0,
then, ∑

x∈V

π(x) |f(x)| ⩽ 1

Φ(P )

∑
x,y∈V

π(x)P (x, y) |f(y)− f(x)| .

Proof. — Upon replacing f with −f , we may assume that π(f ⩾ 0) ⩾ 1/2. For any
t ⩾ 0, we may take A = {f ⩾ t} in the definition of Φ(P ) to obtain

Φ(P )
∑
x∈V

π(x)1(f(x)⩾t) ⩽
∑

x,y∈V

π(x)P (x, y)1(f(y)⩽t<f(x)).

Integrating over t ∈ R+ and interchanging the sum and integral, we obtain

Φ(P )
∑
x∈V

π(x)f+(x) ⩽
∑

x,y∈V

π(x)P (x, y)(f+(x)− f+(y))+,

where a+ := max(0, a) denotes the positive part of a. Now, since f is centered under π,
the left-hand side does not change if we replace f+(x) by |f(x)|/2. Similarly, since any
gradient is centered under the measure (x, y) 7→ π(x)P (x, y), the right-hand side does
not change if we replace (f+(x)− f+(y))+ by |f+(x)− f+(y)| /2. Finally, observe that
|f+(x)− f+(y)| ⩽ |f(x)− f(y)|. □

Proof of Theorem 5. — Fix s ⩾ 1. Lemma 1 applied to P s instead of P gives∑
x∈V

π(x) |f(x)| ⩽ 1

Φ(P s)

∑
x,y∈V

π(x)P s(x, y)|f(x)− f(y)|,

for any centered observable f : V → R. Now, fix t ∈ N and z ∈ V , and let us apply
this to the observable f(x) := P t(x, z) − π(z), which is centered because πP t = π.
We readily obtain∑

x∈V

π(x)
∣∣P t(x, z)− π(z)

∣∣ ⩽ 1

Φ(P s)

∑
x,y∈V

π(x)P s(x, y)
∣∣P t(x, z)− P t(y, z)

∣∣.
We may now sum over all z ∈ V and use Theorem 4 to get

d♯tv(t) ⩽
1

Φ(P s)

∑
x,y∈V

π(x)P s(x, y)
∥∥P t(x, ·)− P t(y, ·)

∥∥
tv

⩽

√
10

(t+ 1)Pmin

E [dist(X0, Xs)]

Φ(P s)
.

Finally, choosing t so that the right-hand side is smaller than 1/4 shows that

t♯mix ⩽
160

Pmin

(E [dist(X0, Xs)]

Φ(P s)

)2

.

The result follows by taking an infimum over all s ⩾ 1. □
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3.2. Effective diameter vs. conductance. — Here we prove Corollary 3. We will use
the following concentration inequality.

Lemma 2 (Concentration inequality). — For any f : V → R and a > 0,

π (f ⩾ πf + a) ⩽
1

aΦ
min

(
max
y∼x

(f(y)− f(x))+,max
y∼x

(f(x)− f(y))+

)
,

and the same holds for π(f ⩽ πf − a).

We remark that if “∼” is symmetric, then the minimum is the Lipschitz constant
of f .

Proof. — Upon replacing f by f −πf if necessary, we may assume that f is centered
under π, i.e., πf = 0. Now, we use Markov’s inequality and Lemma 1 to write

π (f ⩾ a) ⩽
1

a

∑
x∈V

π(x)f+(x) =
1

2a

∑
x∈V

π(x)|f(x)|

⩽
1

2aΦ

∑
x,y∈V

π(x)P (x, y) |f(x)− f(y)|

=
1

aΦ

∑
x,y∈V

π(x)P (x, y) (f(x)− f(y))+

⩽
1

aΦ
max
y∼x

(f(x)− f(y))+.

Note that, since the function (x, y) 7→ f(x) − f(y) is centered under the measure
(x, y) 7→ π(x)P (x, y), the integral of its positive part equals that of its negative part.
This establishes the first claim, and the second is obtained by replacing f with −f . □

We will use this lemma to prove the following lower-bound on the mixing time.

Lemma 3 (Diameter lower-bound). — For any lazy chain P , we have

t♯mix ⩾ diam♯ − 4

Φ
.

Proof. — Let us first note that for a lazy chain, Lemma 2 holds with the better
constant 2Φ instead of Φ (just apply the lemma to the non-lazy chain 2P − I). Now,
fix x ∈ V and t ∈ N, and write Bx(t) := {y ∈ V : dist(x, y) ⩽ t}. By definition,

∥P t(x, ·)− π∥tv = max
A⊆V

|P t(x,A)− π(A)|

⩾ 1− π (Bx(t))

= 1− P
(
dist(x, Y ) ⩽ t

)
,

where Y denotes a π−distributed random variable. Averaging over x ∈ V , we obtain

d♯tv(t) ⩾ 1− P
(
dist(X,Y ) ⩽ t

)
,

where X is π−distributed and independent of Y . The claim follows if we can show

(6) P
(
dist(X,Y ) ⩽ diam♯ −4/Φ

)
⩽

1

2
.
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Now, for fixed x ∈ V , the function f : y 7→ dist(x, y) satisfies f(z) ⩽ f(y)+1 whenever
z ∼ y, by the triangle inequality. Thus, Lemma 2 ensures that

P
(
dist(X,Y ) ⩽ E

[
dist(X,Y )|X

]
− 2/Φ

)
⩽

1

4
.

On the other hand, by the triangle inequality again, the function f : x 7→ E[dist(x, Y )]

satisfies f(x) ⩽ f(y) + 1 whenever y ∼ x, and πf = E[dist(X,Y )] = diam♯. Thus,
Lemma 2 yields

P
(
E
[
dist(X,Y )|X

]
⩽ diam♯ −2/Φ

)
⩽

1

4
.

Combining those two estimates readily yields (6). □

Proof of Corollary 3. — If P is lazy and non-negatively curved, then Corollary 2 and
Lemma 3 give

diam♯ ⩽
40

Φ2Pmin
+

4

Φ
⩽

41

Φ2Pmin
,

because Pmin,Φ ⩽ 1
2 . If P is not lazy, we apply the above result to (P + I)/2. The

latter is still non-negatively curved, but its conductance and minimal entry are half
those of P , so we loose a factor of 8 and obtain

diam♯ ⩽
328

Φ2Pmin
.

This readily implies the claim, because
√
328 < 19. □

3.3. Diffusive total-variation decay. — In this section, we prove Theorem 4. Fix
two distinct states x ̸= y, and recall that

W (P (x, ·), P (y, ·)) = inf
χ

{∑
u,v∈V χ(u, v) dist(u, v)

}
,

where the infimum runs over all probability distributions χ ∈ P(V 2) with marginals
P (x, ·) and P (y, ·). Minimizers are called optimal couplings. As in [4, 18], our first
task consists in showing that they can be chosen so as to assign a “decent” probability
to the “good” set

Γ :=
{
(u, v) ∈ V 2 : dist(u, v) < dist(x, y)

}
.

Lemma 4 (Good optimal couplings). — If P is lazy and x ̸= y, then there is an
optimal coupling χ of P (x, ·), P (y, ·) such that χ (Γ) ⩾ Pmin.

Proof. — By compactness, we can find an optimal coupling χ which, among all opti-
mal couplings, maximizes χ(Γ). Suppose for a contradiction that this “doubly optimal”
coupling satisfies χ (Γ) < Pmin. The set A := {u ∼ x : (u, y) ∈ Γ} is not empty, since
it contains the first vertex on a geodesic from x to y. Thus, χ(A × V ) = P (x,A) ⩾
Pmin > χ(Γ). This forces χ((A× V )∖ Γ) > 0, i.e.,

(7) ∃(x0, y0) ∈ (A× V )∖ Γ, χ(x0, y0) ⩾ ε,
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for some ε > 0. On the other hand, we have χ(A×{y})+χ(Ac×{y}) = P (y, y) ⩾ 1/2.

This forces χ(Ac×{y}) > 0, because χ(A×{y}) ⩽ χ(Γ) < Pmin ⩽ 1/2. In other words,

(8) ∃x1 ∈ Ac, χ(x1, y) ⩾ ε,

provided ε > 0 is chosen small enough. We now use the vertices x0, y0, x1 found at
(7)–(8) to construct a new coupling χ̃ which contradicts the optimality of χ. For all
(u, v) ∈ V 2, we set

χ̃(u, v) :=


χ(u, v) if u /∈ {x0, x1} and v /∈ {y0, y};
χ(u, v)− ε if (u, v) = (x0, y0) or (u, v) = (x1, y);

χ(u, v) + ε if (u, v) = (x0, y) or (u, v) = (x1, y0).

By construction, χ̃ is non-negative and has the same marginals as χ. Thus, it is a
coupling of P (x, ·) and P (y, ·). This coupling is moreover optimal, since∑

u,v∈V

dist(u, v) (χ̃(u, v)− χ(u, v))

= ε (dist(x0, y) + dist(x1, y0)− dist(x0, y0)− dist(x1, y))

⩽ ε (dist(x, y)− 1 + dist(x1, y0)− dist(x, y)− dist(x1, y))

⩽ 0,

where we have successively used x0 ∈ A, (x0, y0) /∈ Γ, and the triangle inequal-
ity dist(x1, y0) ⩽ dist(x1, y) + dist(y, y0). Finally, Γ contains (x1, y) but not
(x0, y0), (x1, y), so we have χ̃(Γ) ⩾ χ(Γ) + ε, contradicting the double optimal-
ity of χ. □

Our second ingredient is a diffusive hitting-time estimate for super-martingales.
Results of this sort are standard, but usually require a uniform bound on the incre-
ments, a property which fails in our directed setting (dist(x, x′) = dist(y, y′) = 1 no
longer implies dist(x′, y′) ⩽ dist(x, y) + 2).

Lemma 5 (Hitting-time estimate). — Let (Zt)t⩾0 be a discrete-time, N−valued super-
martingale with Z0 = z0 ∈ N, and set τ := min{t ⩾ 0: Zt = 0}. Assume that
almost-surely,

P (Zt+1 ̸= Zt|Ft) ⩾ p1(τ>t),

for all t ⩾ 0, where (Ft)t⩾0 denotes the underlying filtration. Then, for all t ⩾ 1,

P(τ ⩾ t) ⩽ z0

√
10

pt
.

Proof. — Our starting point is the following easily verified inequality: for all x ∈ R,

e−x/2 ⩾ 1− x

2
+

1 ∧ x2

10
.
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In particular, for all t ∈ N and λ ∈ [0, 1], we have on the event {τ > t},

E
[
e−

λ
2 (Zt+1−Zt)|Ft

]
⩾ E

[
1− λ

2
(Zt+1 − Zt) +

1 ∧ (λZt+1 − λZt)
2

10

∣∣∣Ft

]
⩾ 1 +

pλ2

10
,

where the second line uses our assumptions on Z. It inductively follows that for t ∈ N,

E
[
e−

λ
2 (Zt∧τ−Z0)

(
1 +

pλ2

10

)−t∧τ]
⩾ 1.

Since Zt∧τ − Z0 ⩾ −Z0 = −z0, we deduce that

E
[(

1 +
pλ2

10

)−t∧τ]
⩾ e−λz0/2 ⩾ 1− λz0

2
.

In particular,

λz0 ⩾ 2E
[
1−

(
1 +

pλ2

10

)−t∧τ]
⩾ 2

(
1−

(
1 +

pλ2

10

)−t)
P(τ ⩾ t)

⩾ 2
(
1−

(
1 +

ptλ2

10

)−1)
P(τ ⩾ t).

The result now readily follows by choosing λ =
√
10/pt. Note that this choice satisfies

λ ∈ [0, 1] only when 10/pt ⩽ 1, but the conclusion trivially holds when 10/pt > 1. □

Proof of Theorem 4. — For each (x, y) ∈ V , let χx,y denote an optimal coupling of
P (x, ·) and P (y, ·) satisfying the condition in Lemma 4, and let us define a transition
matrix K on V 2 by

K((x, y), (u, v)) := χx,y(u, v).

Finally, consider a Markov chain (Xt, Yt)t⩾0 with transition matrix K, and let us use
the notation E(x,y)[·] to indicate that (X0, Y0) = (x, y). By construction, we have for
all x, y ∈ V ,

E(x,y)

[
dist(X1, Y1)

]
= W (P (x, ·), P (y, ·)) ⩽ dist(x, y);

P(x,y)

[
dist(X1, Y1) < dist(x, y)

]
⩾ Pmin1(x̸=y).

By the Markov property, the first condition implies that the process Z := (Zt)t⩾0 de-
fined by Zt := dist(Xt, Yt) is a super-martingale with respect to the natural filtration
(Ft)t⩾0 of (Xt, Yt)t⩾0, and the second implies that P(Zt+1 ̸= Zt|Ft) ⩾ Pmin1Zt ̸=0.
Thus, Lemma 5 applies and yields

Px,y(Xt ̸= Yt) ⩽ dist(x, y)

√
10

(t+ 1)Pmin
.

The result follows, since P(x,y) ((Xt, Yt) = (·, ·)) is a coupling of P t(x, ·) and P t(y, ·).
□
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