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THE DIAGONAL OF THE MULTIPLIHEDRA AND

THE TENSOR PRODUCT OF A∞-MORPHISMS

by Guillaume Laplante-Anfossi & Thibaut Mazuir

Abstract. — We define a cellular approximation for the diagonal of the Forcey–Loday realiza-
tions of the multiplihedra, and endow them with a compatible topological cellular operadic
bimodule structure over the Loday realizations of the associahedra. This provides us with a
model for topological and algebraic A∞-morphisms, as well as a universal and explicit formula
for their tensor product. We study the monoidal properties of this newly defined tensor product
and conclude by outlining several applications, notably in algebraic and symplectic topology.

Résumé (La diagonale des multiplièdres et le produit tensoriel de morphismes A-infini)
On définit une approximation cellulaire de la diagonale des réalisations de Forcey–Loday des

multiplièdres, et on les munit d’une structure de bimodule opéradique topologique et cellulaire
compatible sur les réalisations de Loday des associaèdres. On obtient ainsi un modèle algébrique
et topologique pour les morphismes A-infini, de même qu’une formule universelle explicite pour
leur produit tensoriel. On étudie la monoïdalité de ce nouveau produit tensoriel et on conclut
en esquissant plusieurs applications en topologie algébrique et en topologie symplectique.
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406 G. Laplante-Anfossi & T. Mazuir

Introduction

The n-dimensional associahedron, a polytope whose faces are in bijection with
planar trees with n + 2 leaves, was first introduced as a topological cell complex by
J. Stasheff to describe algebras whose product is associative up to homotopy [Sta63].
The problem of giving polytopal realizations of these CW-complexes has a rich history
[CZ12], and the algebras that they encode, called A∞-algebras, have been extensively
studied in various branches of mathematics. They were used in algebraic topology for
the study of iterated loop spaces [May72, BV73] or the study of homotopy theory
of differential graded associative algebras [LH03, Val20] ; in symplectic topology to
define Fukaya categories of symplectic manifolds [Sei08, FOOO09], through the inter-
pretation of the associahedra as moduli spaces of disks with marked boundary points;
and more recently, in mathematical physics, mirror symmetry, Galois cohomology or
non-commutative probability.

The n-dimensional multiplihedron is a polytope whose faces are in bijection with
2-colored planar trees with n + 1 leaves. It was first introduced as a topological cell
complex by J. Stasheff to describe morphisms between A∞-algebras [Sta70]. It was
only recently realized as a convex polytope in the work of S. Forcey [For08], followed
by the work of S. Forcey and S. Devadoss [DF08], F. Ardila and J. Doker [AD13],
and F. Chapoton and V. Pilaud [CP22]. The multiplihedra were studied in algebraic
topology [BV73], as well as in symplectic topology [MW10, MWW18] and Morse
theory [Maz21a, Maz21b], as they can be respectively realized as moduli spaces of
quilted disks with marked boundary points and as moduli spaces of 2-colored metric
trees.

In this paper, we define and study a cellular approximation of the diagonal of
the multiplihedra. The need for such an approximation comes from the fact that the
standard thin diagonal △P : P → P × P , x 7→ (x, x), of a polytope P is not cellular
in general, i.e., its image is not a union of faces of P × P . A cellular approximation
of the diagonal is a cellular map △cell

P : P → P × P which is homotopic to △P and
which agrees with △P on the vertices of P .

The Alexander–Whitney map [EML53] and the Serre diagonal [Ser51] respectively
define cellular approximations for the diagonal of the simplices and for the diagonal
of the cubes, yielding the cup product in singular cohomology and the cup product in
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The diagonal of the multiplihedra 407

cubical cohomology. A cellular approximation for the diagonal of the associahedra was
first defined at the level of cellular chains in [SU04]. A second construction was given
in [MS06], and was recently shown to coincide with the first one [SU22]. A topological
map was given for the first time in [MTTV21] and was shown to recover the previous
constructions at the cellular level. Such a diagonal yields a universal formula for the
tensor product of two A∞-algebras. By the term universal, we mean that the same
formula applies uniformly to any pair of A∞-algebras. In a similar fashion, a cellular
approximation of the diagonal of the multiplihedra will be used to define a universal
tensor product of A∞-morphisms in this paper. Such a map was given at the level
of chains in [SU04]. We provide the first topological map, which is moreover distinct
from the one of [SU04] at the cellular level, see Section 3.3 for more details on this
point. Our main results can be summarized as follows.

(1) We define a cellular approximation of the diagonal on Forcey–Loday realiza-
tions of the multiplihedra (Definition 2.12).

(2) We endow them with a compatible operadic bimodule structure over the Loday
realizations of the associahedra (Theorem 1).

(3) We compute explicitly the associated combinatorial formula for the cellular
image of the diagonal (Theorem 2).

(4) We apply the cellular chains functor to the diagonal in order to define a univer-
sal tensor product of A∞-morphisms (Proposition 4.18), and we study its properties
(Section 4.4).

To achieve these goals, we use the theory of cellular approximations of diagonals
developed by the first author in [LA22], which is based on the theory of fiber polytopes
of [BS92] and the method introduced in [MTTV21]. We prove that the Forcey–Loday
realizations of the multiplihedra [For08] can be obtained from the Ardila–Doker re-
alization of the multiplihedra [AD13] by projection (Proposition 1.16). These last
realizations are generalized permutahedra, in the sense of A. Postnikov [Pos09], which
allows us to apply the results of [LA22] directly, both to define a cellular approxima-
tion of the diagonal and to describe its cellular image combinatorially.

The tensor product of A∞-morphisms defined by this diagonal does not however
define a symmetric monoidal structure on the category ∞-A∞-alg of A∞-algebras
and their A∞-morphisms, since it is not strictly compatible with the composition.
This is not a defect of our construction: in Proposition 4.25, we prove that there is
no tensor product of A∞-morphisms which is strictly compatible with the composi-
tion of A∞-morphisms. This proposition should be compared to a similar result by
M. Markl and S. Shnider, saying that there is no strictly associative tensor product
of A∞-algebras [MS06, Th. 13]. The preceding two properties are in fact always sat-
isfied up to homotopy (see Proposition 4.26), which points towards the idea that the
category∞-A∞-alg should possess some kind of homotopy symmetric monoidal struc-
ture. An analogous phenomenon was already observed for the category of homotopy
representations of an algebraic group [AACD11, Pol20].
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408 G. Laplante-Anfossi & T. Mazuir

Our results can be readily applied to different fields. The operadic bimodule struc-
ture of Point (2) above was used in the work of the second author, in order to real-
ize A∞-algebras and A∞-morphisms in Morse theory [Maz21a, Maz21b]. The alge-
braic tensor product in Point (4) has applications in Heegaard Floer homology and
could be used to relate the Fukaya categories of products of symplectic manifolds via
Lagrangian correspondences, see Section 5.3. We also expect future applications of our
work to the computation of the homology of fibered spaces, using the construction
of the convolution A∞-algebra associated to an A∞-coalgebra and an A∞-algebra
in Proposition 5.4. This last construction can also be related to the deformation
theory of ∞-morphisms developed in [RNW19b, RNW19a], see Section 5.2.3. More-
over, our geometric methods shed a new light on a result of M. Markl and S. Shnider
[MS06], pointing towards possible links with discrete and continuous Morse theory
(Remark 5.3).

Finally, the results of this paper can be straightforwardly extended to the “multi-
ploperahedra”, a family of polytopes which is to the operahedra of [LA22] what the
multiplihedra are to the associahedra. They belong at the same time to the families
of graph-multiplihedra [DF08] and of nestomultiplihedra [AD13]. Together with the
results of [LA22, §4], one would obtain a tensor product of ∞-morphisms between
homotopy operads, defined by explicit formulas.

Layout. — We introduce the Forcey–Loday and the Ardila-Doker realizations of the
multiplihedra in Section 1. We define a cellular approximation of their diagonal and
endow the Forcey–Loday multiplihedra with an operadic bimodule structure over the
Loday associahedra in Section 2. We compute explicitly the associated combinatorial
formula for the image of our diagonal in Section 3. We define a tensor product of
A∞-algebras and of A∞-morphisms and study its properties in Section 4. We finally
sketch future applications of our work in Section 5.

Conventions. — We use the conventions and notations of [Zie95] for convex polytopes
and the ones of [LV12] for operads. The word operad will always mean non-symmetric
operad [LV12, §5.2.8] in this paper. We denote by [n] := {1, . . . , n} and by {ei}i∈[n]

the standard basis of Rn. The abbreviation “dg” will stand for the words “differential
graded”.

Acknowledgements. — We would like to thank Bruno Vallette for numerous discus-
sions and for his careful reading of our paper, as well as Alexandru Oancea and Eric
Hoffbeck for their comments on earlier versions. We are also indebted to Lino Amorim
and Robert Lipshitz, for explaining to us their work and for their detailed insights
on possible applications of our results in symplectic topology. We express our grati-
tude to Sushmita Venugopalan, for taking the time to discuss potential connections
between our work and results on toric varieties, and to Daniel Robert-Nicoud, for dis-
cussing his work with us and suggesting new directions of research. Finally, we would
like to thank the anonymous referee whose detailed comments and suggestions helped
improve the exposition.
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1. Realizations of the multiplihedra

Drawing from the work of Forcey in [For08], we define the weighted Forcey–Loday
realizations of the multiplihedra and describe their geometric properties in Proposi-
tion 1.10. We then show how they can be recovered from the Ardila–Doker realizations
of the multiplihedra, which are in particular generalized permutahedra.

1.1. 2-colored trees and multiplihedra

1.1.1. 2-colored trees. — We consider in this section planar rooted trees, which we
simply abbreviate as trees. The term edge refers to both internal and external edges.
The external edges will sometimes be called leaves.

Definition 1.1 (Cut). — A cut of a tree is a subset of edges or vertices which contains
precisely one edge or vertex in each path from a leaf to the root.

A cut divides a tree into an upper part that we color in blue and a lower part that
we color in red. The edges and vertices of the cut are represented by drawing a black
line over them, as pictured in Figure 1.

Definition 1.2 (2-colored tree). — A 2-colored tree is a tree together with a cut.
We call 2-colored atomic tree a 2-colored binary tree whose cut is made of edges only.

We denote by CTn (resp. CATn) the set of 2-colored trees (resp. 2-colored atomic
trees) with n leaves, for n ⩾ 1.

Definition 1.3 (Face order). — The face order s ⊂ t on 2-colored trees is defined as
follows: a 2-colored tree s is less than a 2-colored tree t if t can be obtained from s

by a sequence of contractions of monochrome edges or moves of the cut from a family
of edges to an adjacent vertex.

⊂

Figure 1. Two 2-colored trees, related by the face order.

The set of 2-colored trees endowed with the face order ⊂ and augmented with a
global minimum element ∅n form a poset (CTn,⊂) for which 2-colored atomic trees
are atoms.

J.É.P. — M., 2023, tome 10



410 G. Laplante-Anfossi & T. Mazuir

Definition 1.4 (Tamari-type order). — The Tamari-type order s < t on 2-colored
atomic trees is generated by the following three covering relations:

t1 t2 t3

t4

≺

t3t2t1

t4

,

t1 t2 t3

t4

≺

t3t2t1

t4

,

t1 t2

t3

≺

t1 t2

t3

,

where each ti, 1 ⩽ i ⩽ 4, is a binary tree of the appropriate color.

Proposition 1.5. — The posets (CTn,⊂) and (CATn, <) are lattices.

Proof. — The poset of 2-colored trees was proved in [For08] to be isomorphic to the
face lattice of a polytope, the multiplihedron; see Point (3) of Proposition 1.10. The
Hasse diagram of the poset of 2-colored atomic trees was proved to be isomorphic to
the oriented 1-skeleton of the multiplihedron, and also to be the Hasse diagram of a
lattice in [CP22, Prop. 117]. □

Remark 1.6. — F. Chapoton and V. Pilaud introduced in [CP22] the shuffle of two
generalized permutahedra (see Section 1.2.1 for definition and examples). The fact
that the poset (CATn, <) is a lattice follows from the fact that the multiplihedron
arises as the shuffle of the associahedron and the interval, which both have the lattice
property, and that the shuffle operation preserves the lattice property in this case, see
[CP22, Cor. 95].

1.1.2. Grafting of trees. — We will denote the operation of grafting a planar tree v at
the ith-leaf of a 2-colored tree u by u◦i v. We will also denote the grafting of a level of
2-colored trees v1, . . . , vk on the k leaves of a planar tree by u(v1, . . . , vk). We denote
by cTn and by cBn the corollas with n leaves fully painted with the upper and the lower
color respectively; we denote by cn the corolla with n leaves with frontier color at
the vertex. It is straightforward to see that these two grafting operations on corollas
generate all the coatoms in the poset of 2-colored trees: we call (B), for “bottom”,
the first type of 2-colored trees cp+1+r ◦p+1 c

T
q , with p + q + r = n and 2 ⩽ q ⩽ n,

and we call (T), for “top”, the second type of 2-colored trees cBk (c1, . . . , ck), with
i1 + · · ·+ ik = n, i1, . . . , ik ⩾ 1, and k ⩾ 2.

type (B) type (T)

Figure 2. Examples of 2-colored trees of type (B) and (T) respec-
tively.
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1.1.3. Multiplihedra

Definition 1.7 (Multiplihedra). — For any n ⩾ 1, an (n−1)-dimensional multiplihe-
dron is a polytope of dimension (n− 1) whose face lattice is isomorphic to the lattice
(CTn,⊂) of 2-colored trees with n leaves.

•

•

Figure 3. A 2-dimensional multiplihedron and the Tamari-type poset
(CAT3, <) on its oriented 1-skeleton.

The dimension of a face labeled by a 2-colored tree is given by the sum of the
degrees of its vertices defined by∣∣∣∣∣ k1· · ·

∣∣∣∣∣ = k − 2,

∣∣∣∣∣ k1· · ·
∣∣∣∣∣ = k − 2,

∣∣∣∣∣ k1· · ·
∣∣∣∣∣ = k − 1.

The codimension of a 2-colored tree is then equal to the number of blue and red
vertices. In the example of the 2-colored tree depicted on the left of Figure 1, the
dimension is equal to 4 and the codimension is equal to 5. As proved in [CP22,
Prop. 117], the oriented 1-skeleton of a multiplihedron is the Hasse diagram of the
Tamari-type poset.

1.2. Forcey–Loday realizations of the multiplihedra. — Jean-Louis Loday gave
realizations of the associahedra in the form of polytopes with integer coordinates in
[Lod04]. Stefan Forcey generalized this construction in [For08] in order to give similar
realizations for the multiplihedra.

Definition 1.8 (Weighted 2-colored atomic tree). — A weighted 2-colored atomic tree
is a pair (t, ω) made up of a 2-colored atomic tree t ∈ CATn with n leaves with a
weight ω = (ω1, . . . , ωn) ∈ Rn

>0. We call ω the weight and n the length of the weight ω.

Let (t, ω) be a weighted 2-colored atomic tree with n leaves. We order its n − 1

vertices from left to right. At the ith vertex, we consider the sum αi of the weights
of the leaves supported by its left input and the sum βi of the weights of the leaves
supported by its right input. If the ith vertex is colored by the upper color, we consider

J.É.P. — M., 2023, tome 10



412 G. Laplante-Anfossi & T. Mazuir

the product αiβi and if the ith vertex is colored by the lower color, we consider
the product 2αiβi. The associated string produces a point with integer coordinates
M(t, ω) ∈ Rn−1

>0 . For example, if only the first and last vertices of t are blue, we obtain
a point of the form

M(t, ω) =
(
2α1β1, α2β2, . . . , αn−2βn−2, 2αn−1βn−1

)
∈ Rn−1

>0 .

1 2

1 2 3 4

1

2

3

4

Figure 4. Examples of points associated to 2-colored atomic trees,
with standard weight.

Definition 1.9 (Forcey–Loday realization). — The Forcey–Loday realization of weight
ω of the (n− 1)-dimensional multiplihedron is the polytope

Jω := conv
{
M(t, ω) | t ∈ CATn

}
⊂ Rn−1.

The Forcey–Loday realization associated to the standard weight (1, . . . , 1) will
simply be denoted by Jn. By convention, we define the polytope Jω with weight
ω = (ω1) of length 1 to be made up of one point labeled by the 2-colored tree iTB := .

Proposition 1.10. — The Forcey–Loday realization Jω satisfies the following proper-
ties.

(1) Let t ∈ CATn be a 2-colored atomic tree.
For p+ q + r = n, with 2 ⩽ q ⩽ n, the point M(t, ω) is contained in the half-space

defined by the inequality

(B) xp+1 + · · ·+ xp+q−1 ⩾
∑

p+1⩽a<b⩽p+q

ωaωb,

with equality if and only if the 2-colored atomic tree t can be decomposed as t = u◦p+1v,
where u ∈ CATp+1+r and v ∈ PBTq.

J.É.P. — M., 2023, tome 10
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x1 x2

x3

Figure 5. The Forcey–Loday realization of the multiplihedron J4.

For i1 + · · ·+ ik = n, with i1, . . . , ik ⩾ 1 and k ⩾ 2, the point M(t, ω) is contained
in the half-space defined by the inequality

(T) xi1 + xi1+i2 + · · ·+ xi1+···+ik−1
⩽ 2

∑
1⩽j<ℓ⩽k

ωIjωIℓ ,

where Ij = [i1 + · · ·+ ij−1 + 1, . . . , i1 + · · ·+ ij ] and ωIj :=
∑

a∈Ij
ωa, with equality if

and only if the 2-colored atomic tree t can be decomposed as t = u(v1, . . . , vk), where
u ∈ PBTk and vj ∈ CATij , for 1 ⩽ j ⩽ k.

(2) The polytope Jω is the intersection of the half-spaces defined in (1).
(3) The face lattice (L(Jω),⊂) is isomorphic to the lattice (CTn,⊂) of 2-colored

trees with n leaves.
(4) Any face of a Forcey–Loday realization of a multiplihedron is isomorphic to a

product of a Loday realization of an associahedron with possibly many Forcey–Loday
realizations of multiplihedra, via a permutation of coordinates.

Proof. — Points (1)–(3) were proved in [For08]. We prove Point (4) by induction on
n. It clearly holds true for n = 1. Let us suppose that it holds true up to n − 1 and
let us prove it for the polytopes Jω, for any weight ω of length n. We examine first
facets. In the case of a facet of type (B) associated to p+q+r = n with 2 ⩽ q ⩽ n−1,
we consider the following two weights

ω := (ω1, . . . , ωp, ωp+1 + · · ·+ ωp+q, ωp+q+1, . . . , ωn) and ω̃ := (ωp+1, . . . , ωp+q)

and the isomorphism

Rp+r × Rq−1
Θp,q,r−−−−−−→ Rn−1

(x1, . . . , xp+r)× (y1, . . . , yq−1) 7−−−−−−→ (x1, . . . , xp, y1, . . . , yq−1, xp+1, . . . , xp+r).

The image of the vertices of Jω×Kω̃ are sent to the vertices of the facet of Jω labeled
by the 2-colored tree cp+1+r ◦p+1 c

T
q . In other words, the permutation of coordinates Θ

sends bijectively Jω×Kω̃ to Jω. Similarly, in the case of a facet of type (T) associated

J.É.P. — M., 2023, tome 10



414 G. Laplante-Anfossi & T. Mazuir

to i1 + · · ·+ ik = n with i1, . . . , ik ⩾ 1 and k ⩾ 2, we consider the following weights

ω :=
(√

2ωI1 , . . . ,
√
2ωIk

)
ω̃j := (ωi1+···+ij−1+1, . . . , ωi1+···+ij−1+ij ), for 1 ⩽ j ⩽ k,and

and the isomorphism

Θi1,...,ik : Rk−1 × Ri1−1 × · · · × Rik−1
∼=−→ Rn−1

which sends

(x1, . . . , xk−1)× (y11 , . . . , y
1
i1−1)× · · · × (yk1 , . . . , y

k
ik−1)

to
(y11 , . . . , y

1
i1−1, x1, y

2
1 , . . . , y

2
i2−1, x2, y

3
1 , . . . , xk−1, y

k
1 , . . . , y

k
ik−1).

The image of the vertices of Kω × Jω̃1
× · · · × Jω̃k

are sent to the vertices of the facet
of Jω labeled by the 2-colored tree cBk (c1, . . . , ck). In other words, the permutation of
coordinates Θ sends bijectively Kω × Jω̃1

× · · · × Jω̃k
to Jω.

We can finally conclude the proof with these decompositions of facets of Jω, the
induction hypothesis, and Point (5) of [MTTV21, Prop. 1]. □

1.2.1. Ardila-Doker realizations of the multiplihedra

Definition 1.11 (Permutahedron). — The (n− 1)-dimensional permutahedron is the
polytope in Rn equivalently defined as:

– the convex hull of the points
∑n

i=1 ieσ(i) for all permutations σ ∈ Sn, or
– the intersection of the hyperplane

{
x ∈ Rn |

∑n
i=1 xi =

(
n+1
2

)}
with the affine

half-spaces
{
x ∈ Rn |

∑
i∈I xi ⩾

(|I|+1
2

)}
for all I ⊂ [n] such that I ̸= ∅.

For a face F of a polytope P ⊂ Rn, the normal cone of F is the cone

NP (F ) :=
{
c ∈ (Rn)∗ | F ⊆ {x ∈ P | cx = maxy∈P cy

}
.

The codimension of NP (F ) is equal to the dimension of F . The normal fan of P is the
collection of the normal cones NP := {NP (F ) | F ∈ L(P ) ∖ ∅}. We refer to [Zie95,
Chap. 7] for more details.

Definition 1.12 (Generalized permutahedron). — A generalized permutahedron is a
polytope equivalently defined as:

– a polytope whose normal fan coarsens the one of the permutahedron, or
– the convex set{

x ∈ Rn |
∑n

i=1 xi = z[n],
∑

i∈I xi ⩾ zI for all I ⊆ [n]
}
,

where {zI}I⊆[n] are real numbers which satisfy the inequalities zI + zJ ⩽ zI∪J + zI∩J

for all I, J ⊆ [n], and where z∅ = 0.

Generalized permutahedra were introduced by A. Postnikov in [Pos09]. Loday real-
izations of the associahedra are all generalized permutahedra (see [LA22, Cor. 2.16(2)],
specialized to nested linear trees), while Forcey–Loday realizations of the multiplihe-
dra are not. However, F. Ardila and J. Doker introduced in [AD13] realizations of the
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multiplihedra that are generalized permutahedra. They are obtained from the Loday
realizations of the associahedra via the operation of q-lifting. We will consider the
special case q = 1/2 of their construction.

Definition 1.13 (Lifting of a generalized permutahedron [AD13, Def. 2.3])
For a generalized permutahedron P ⊂ Rn, its 1

2 -lifting P (1/2) ⊂ Rn+1 is de-
fined by

P (1/2) :=
{
x ∈ Rn+1 |

∑n+1
i=1 xi = z[n],∑

i∈I xi ⩾ 1
2zI ,

∑
i∈I∪{n+1} xi ⩾ zI for all I ⊆ [n]

}
.

Proposition 1.14 ([AD13, Prop. 2.4]). — The 1
2 -lifting P (1/2) of a generalized per-

mutahedron is again a generalized permutahedron.

Proposition 1.15. — The generalized permutahedron Kω(1/2) given by the 1
2 -lifting

of the Loday realization of weight ω of the associahedron is a realization of the multi-
plihedron.

Proof. — This is a particular case of [AD13, Cor. 4.10]. □

We call the lifting of the Loday associahedron Kω(1/2) the Ardila–Doker realization
of the multiplihedron. It is related to the Forcey–Loday realization via the projection
π : Rn+1 → Rn which forgets the last coordinate.

Proposition 1.16. — The Forcey–Loday realization of the multiplihedron is the image
under the projection π of the 1

2 -lifting of the Loday realization of the associahedron,
scaled by 2. That is, we have

Jω = π (2Kω(1/2)) .

Proof. — This follows from the vertex description of 1
2 -lifting given in [Dok11,

Def. 3.5.3], together with the description of the projection from the permutahedron
to the multiplihedron given in the proof of [Dok11, Th. 3.3.6]. The coordinates of
a vertex in 2Kω are of the form (2α1β1, . . . , 2αnβn). A coordinate 2αiβi is then
multiplied by 1/2 in the lifting if and only if its associated vertex in the 2-colored
atomic tree is of the upper color. We thus recover the description of Definition 1.9. □

In summary, we have the following diagram:

Loday Ardila–Doker Forcey–Loday
associahedron multiplihedron multiplihedron

Kω ↪−→ Kω(1/2)
π(2·)
−−−−−→−→ Jω

Rn ↪−→ Rn+1 −−−−−→−→ Rn

Gen. permutahedron Gen. permutahedron Not a gen. permutahedron
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2. Diagonal of the multiplihedra

In this section, we define a cellular approximation of the diagonal of the Forcey–
Loday realizations of the multiplihedra, and we endow them with an operadic bimod-
ule structure over the Loday realizations of the associahedra in the category Poly.
We use the methods of [MTTV21] and the general theory developed in [LA22]. Our
construction of the cellular approximation relies crucially on the fact that the Forcey–
Loday multiplihedra, are obtained from the Ardila–Doker multiplihedra by projection
(Proposition 1.16).

2.1. The monoidal category Poly. — We recall the definition of the symmetric
monoidal category (Poly,×) from [MTTV21, §2.1].

Objects. — An object of Poly is a d-dimensional polytope P in the n-dimensional
Euclidean space Rn, for any 0 ⩽ d ⩽ n.

Morphisms. — A morphism in Poly is a continuous map f : P → Q which sends P

homeomorphically to the underlying set |D| of a polytopal subcomplex D ⊂ L(Q)

of Q such that f−1(D) defines a polytopal subdivision of P .

We will use the notion of operad, operadic bimodule and Hadamard product of
operads and operadic bimodules in the rest of this paper. For the sake of concision,
we refer respectively to [Maz21a, §1.1.1], [Maz21a, §1.1.3] and [LV12, §5.1.12] for a
complete definition of these notions. An operad will in particular be a non-symmetric
operad in the language of [LV12, §5.2.8]. The fact that the category Poly is monoidal
will moreover allow us to define operads and operadic bimodules in polytopes.

2.2. Positively oriented polytopes and diagonal maps. — For a polytope P , we will
denote by ρzP := 2z − P its reflection with respect to a point z ∈ P .

Definition 2.1. — A positively oriented polytope (P, v⃗) is a polytope P ⊂ Rn together
with a vector v⃗ ∈ Rn which is not perpendicular to any edge of P ∩ρzP , for any z ∈ P .

For any point z in a positively oriented polytope, the intersection P ∩ρzP admits a
unique vertex botv⃗(P∩ρzP ) which minimizes the euclidean scalar product with v⃗, and
a unique vertex topv⃗(P ∩ ρzP ) which maximizes it. These two distinguished vertices
in each intersection define a diagonal map

△(P,v⃗) : P −→ P × P

z 7−→
(
botv⃗(P ∩ ρzP ), topv⃗(P ∩ ρzP )

)
.

Such a map is a morphism in Poly, coincides with the usual thin diagonal x 7→ (x, x)

on vertices, and is fiber-homotopic to it, see [MTTV21, Prop. 5] and [LA22, Prop. 1.1].
Its cellular image, which consists of pairs of faces (F,G) of P , admits a combinatorial
description in terms of the fundamental hyperplane arrangement of P , as we will now
recall.
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Definition 2.2 (Fundamental hyperplane arrangement). — An edge hyperplane of P
is an hyperplane in Rn which is orthogonal to the direction of an edge of P ∩ ρzP for
some z ∈ P . The fundamental hyperplane arrangement HP of P is the collection of
all edge hyperplanes of P .

Recall that a face F of a polytope P ⊂ Rn is equal to the intersection of a family
of facets {Fi}. If we choose an outward pointing normal vector F⃗i for each facet Fi

(see [LA22, Def. 1.25]), a basis {bk} of the orthogonal complement of the affine hull
of P in Rn, and use the canonical identification of Rn with its dual (Rn)∗, we have
that the normal cone of F is given by NP (F ) = Cone({F⃗i} ∪ {bk,−bk}).

Proposition 2.3 ([LA22, Th. 1.26]). — Let (P, v⃗) be a positively oriented polytope
in Rn. For each H ∈ HP , we choose a normal vector d⃗H such that ⟨d⃗H , v⃗⟩ > 0.
We have

(F,G) ∈ Im△(P,v⃗) ⇐⇒ ∀H ∈ HP , ∃i, ⟨F⃗i, d⃗H⟩ < 0 or ∃j, ⟨G⃗j , d⃗H⟩ > 0.

We finally recall general facts from [LA22, §1.6].

Definition 2.4 (Coarsening projection). — Let P and Q be two polytopes in Rn

such that the normal fan of P refines the normal fan of Q. The coarsening projection
from P to Q is the map θ : L(P ) → L(Q) which sends a face F of P to the face
θ(F ) of Q whose normal cone NQ(θ(F )) is the minimal cone with respect to inclusion
which contains NP (F ).

Proposition 2.5. — Let P and Q be two polytopes such that the normal fan of P

refines the one of Q. If P is positively oriented by v⃗, then so is Q. Moreover, the
coarsening projection from P to Q commutes with the diagonal maps △(P,v⃗) and
△(Q,v⃗), and we have

(F,G) ∈ Im△(Q,v⃗) ⇐⇒ ∀H ∈ HP , ∃i, ⟨F⃗i, d⃗H⟩ < 0 or ∃j, ⟨G⃗j , d⃗H⟩ > 0.

We will apply Proposition 2.5 to P the permutahedron and Q the Ardila–Doker
multiplihedron, in order to define a diagonal map on the Forcey–Loday multiplihedron
and to compute an explicit formula for its cellular image in Theorem 2.

2.3. Good orientation vectors and generalized permutahedra. — The projection
π : Rn+1 → Rn forgetting the last coordinate defines an affine isomorphism between
any hyperplane H of equation

∑n+1
i=1 xi = c ∈ R, and Rn. The inverse map (π|H)−1

is given by the assignment

(x1, . . . , xn) 7→
(
x1, . . . , xn, c−

∑n
i=1 xi

)
.

If a polytope P is contained in the hyperplane H, then the polytope π(P ) is affinely
isomorphic to P , and the projection π defines a bijection between the faces of P and
the faces of π(P ). Moreover, for every face F of P , we have dimF = dimπ(F ).

However, the projection π does not preserve orthogonality in general, so if P is pos-
itively oriented by v⃗, the projection π(P ) might not be positively oriented by π(v⃗).
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We restrict our attention to a certain class of orientation vectors for which this prop-
erty holds, in the case where P is a generalized permutahedron.

Definition 2.6. — A good orientation vector is a vector v⃗ = (v1, . . . , vn+1) ∈ Rn+1

satisfying

vi ⩾ 2vi+1, for any i with 1 ⩽ i ⩽ n, and vn+1 > 0.

Observe that the family of good orientation vectors is stable under the projection
forgetting the last coordinate: if v⃗ is a good orientation vector, then so is π(v⃗). Being
a good orientation vector is a more restrictive condition than being a principal orien-
tation vector in the sense of [LA22, Def. 3.15]. Thus, a good orientation vector orients
positively any generalized permutahedron.

Proposition 2.7. — Let P ⊂ Rn+1 be a generalized permutahedron, and let v⃗ ∈ Rn+1

be a good orientation vector. Then, the polytope π(P ) is positively oriented by π(v⃗).
Moreover, the projection π commutes with the diagonal maps of P and π(P ), that is
△(π(P ),π(v⃗)) = (π × π)△(P,v⃗).

Proof. — Since P is a generalized permutahedron, the direction of the edges of the
intersection P ∩ ρzP , for any z ∈ P , are vectors with coordinates equal to 0, 1 or −1,
and the same number of 1 and −1 (combine Proposition 1.30 and Proposition 3.4
of [LA22]). The direction d⃗ of such an edge satisfies ⟨d⃗, v⃗⟩ ≠ 0, since the first non-
zero coordinate of d⃗ will contribute a greater amount than the sum of the remaining
coordinates in the scalar product. For the same reason, we have ⟨π(d⃗), π(v⃗)⟩ ≠ 0.
As π(P ∩ ρzP ) = π(P ) ∩ ρπ(z)π(P ), we have in particular that the image of the
edges of P ∩ ρzP under π are the edges of π(P ) ∩ ρπ(z)π(P ) and thus that π(P ) is
positively oriented by π(v⃗). For the last part of the statement, observe that π preserves
the orientation of the edges: if we have ⟨d⃗, v⃗⟩ > 0, then we have ⟨π(d⃗), π(v⃗)⟩ > 0.
Hence, the image of the vertex topv⃗(P ∩ ρzP ), which maximizes ⟨−, v⃗⟩ over P ∩ ρzP ,
under π is equal to the vertex topπ(v⃗)(π(P ) ∩ ρπ(z)π(P )) which maximizes ⟨−, π(v⃗)⟩
over π(P )∩ρπ(z)π(P ). The argument for the minimum bot(P ∩ρzP ) is the same. □

Proposition 2.8. — Let P ⊂ Rn+1 be a generalized permutahedron. Any two good
orientation vectors v⃗, w⃗ define the same diagonal maps on P and π(P ), that is, we have
△(P,v⃗) = △(P,w⃗) and △(π(P ),π(v⃗)) = △(π(P ),π(w⃗)).

Proof. — Good orientation vectors are principal orientation vectors [LA22, Def. 3.15].
Since all principal orientation vectors live in the same chamber of the fundamental
hyperplane arrangement of the permutahedron, they all define the same diagonal on
the permutahedron [LA22, Prop. 1.23], and thus the same diagonal on any generalized
permutahedron (Proposition 2.5). So, we have △(P,v⃗) = △(P,w⃗). Finally, using Propo-
sition 2.7, we have △(π(P ),π(v⃗)) = (π × π)△(P,v⃗) = (π × π)△(P,w⃗) = △(π(P ),π(w⃗)). □
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2.4. Diagonal of the Forcey–Loday multiplihedra

Definition 2.9. — A well-oriented realization of the multiplihedron is a positively
oriented polytope which realizes the multiplihedron and such that the orientation
vector induces the Tamari-type order on the set of vertices.

Proposition 2.10. — Any good orientation vector induces a well-oriented realization
(Jω, v⃗) of the Forcey–Loday multiplihedron, for any weight ω.

Proof. — Using Definition 1.9, we can compute that any edge of the realization of
the multiplihedron Jω is directed, according to the Tamari type order, by either ei
or ei − ej , for i < j. Since v⃗ has strictly decreasing coordinates, the scalar product
is in each case positive. It remains to show that P ∩ ρzP is oriented by v⃗, for any
z ∈ P . This follows directly from Proposition 2.7, and the fact that Jω arises as the
projection under π of a generalized permutahedron as shown in Proposition 1.16. □

Any good orientation vector therefore defines a diagonal map △ω : Jω → Jω × Jω,
for any weight ω. These diagonal maps are all equivalent up to isomorphism in the
category Poly.

Proposition 2.11. — For any pair of weights ω and θ of length n, there exists a unique
isomorphism tr = trθω : Jω → Jθ in the category Poly, which preserves homeomorphi-
cally the faces of the same type and which commutes with the respective diagonals.

Proof. — The arguments of [MTTV21, §§3.1–3.2] hold in the present case using
Proposition 1.10. We note that the crucial condition above is that the map tr com-
mutes with the respective diagonals: this makes the map tr unique and highly non-
trivial to construct, see the proof of [MTTV21, Prop. 7]. □

Definition 2.12. — We define △n : Jn → Jn × Jn to be the diagonal induced by
any good orientation vector for the Forcey–Loday realization of standard weight ω =

(1, . . . , 1).

2.5. Operadic bimodule structure on the Forcey–Loday multiplihedra. — We will
use the transition maps tr of Proposition 2.11 above to endow the family of standard
weight Forcey–Loday multiplihedra with an operadic bimodule structure over the
standard weight Loday associahedra. The uniqueness property of the map tr will be
used in a crucial way.

Definition 2.13 (Action-composition maps). — For any p+ q+ r = n ⩾ 1, k ⩾ 2 and
any i1, . . . , ik ⩾ 1, we define the action-composition maps by

◦p+1 : Jp+1+r ×Kq
tr× id−−−−−−→ J(1,...,q,...,1) ×Kq ↪

Θp,q,r−−−−−−→ Jn

γi1,...,ik : Kk × Ji1 × · · · × Jik
tr× id−−−−−−→ K(i1,...,ik) × Ji1 × · · · × Jik ,and

↪
Θi1,...,ik
−−−−−−−→ Ji1+···+ik ,

where the last inclusions are given by the block permutations of the coordinates
introduced in the proof of Proposition 1.10.
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Recall from [MTTV21, Th. 1] that the diagonal maps △n : Kn → Kn ×Kn define
a morphism of operads, where the operad {Kn × Kn} is to be understood as the
Hadamard product {Kn}×{Kn}. The next proposition shows that the diagonal maps
△n : Kn → Kn × Kn and △n : Jn → Jn × Jn are compatible with the action-
composition maps introduced in Definition 2.13.

Proposition 2.14. — The diagonal maps △n commute with the maps Θ.

Proof. — First observe that a good orientation vector has decreasing coordinates,
thereby induces the diagonal maps △n : Kn → Kn × Kn and the operad structure
on {Kn} defined in [MTTV21]. Following [LA22, Prop. 4.14], to prove the claim it suf-
fices to show that the preimage under Θ−1 of a good orientation vector is still a good
orientation vector for each associahedron and multiplihedron. This is easily seen to
be the case from the definition of Θ, in the proof of Proposition 1.10. □

Theorem 1
(1) The collection {Jn}n⩾1 together with the action-composition maps ◦i and

γi1,...,ik form an operadic bimodule over the operad {Kn} in the category Poly.
(2) The maps {△n : Jn → Jn×Jn}n⩾1 form a morphism of ({Kn}, {Kn})-operadic

bimodules in the category Poly.

Proof. — Using Proposition 2.14, we can apply the proof of [MTTV21, Th. 1] mutatis
mutandis. The uniqueness of the transition map tr is the key argument, as it forces
the operadic axioms to hold. We also point out that {Jn × Jn} is to be understood
as the Hadamard product {Jn}×{Jn}, and that its ({Kn}, {Kn})-operadic bimodule
structure is defined as the pullback of its natural ({Kn × Kn}, {Kn × Kn})-operadic
bimodule structure under the diagonal maps {△n : Kn → Kn ×Kn}. □

Point (1) of Theorem 1 was already mentioned in [Maz21a, §1.2], where associa-
hedra and multiplihedra are realized as compactifications of moduli spaces of metric
trees and used to construct A∞-structures on the Morse cochains of a closed manifold.

3. Cellular formula for the diagonal of the multiplihedra

We compute in Theorem 2 an explicit cellular formula for the diagonal of the
Forcey–Loday multiplihedra, using again the key fact that the Ardila–Doker multipli-
hedron is a generalized permutahedron to which one can apply Proposition 2.5 and
the results of [LA22]. We then explain geometrically why this formula necessarily has
to differ from the “magical formula” computed for the associahedra in [MTTV21].

3.1. 2-colored nested linear graphs. — Let ℓ be a linear graph with n vertices, as
represented in Figure 6. We respectively write V (ℓ) and E(ℓ) for its sets of vertices
and edges. Any subset of edges N ⊂ E(ℓ) defines a subgraph of ℓ whose edges are N

and whose vertices are all the vertices adjacent to an edge in N . We call this graph
the closure of N .
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Definition 3.1 (Nest and nesting)
– A nest of a linear graph ℓ with n vertices is a non-empty set of edges N ⊂ E(ℓ)

whose closure is a connected subgraph of ℓ.
– A nesting of a linear graph ℓ is a set N = {Ni}i∈I of nests such that

(1) the trivial nest E(ℓ) is in N,
(2) for every pair of nests Ni ̸= Nj , we have either Ni ⊊ Nj , Nj ⊊ Ni or

Ni ∩Nj = ∅, and
(3) if Ni ∩Nj = ∅ then no edge of Ni is adjacent to an edge of Nj .

Two nests that satisfy Conditions (2) and (3) are said to be compatible. We denote
the set of nestings of ℓ by N(ℓ). We naturally represent a nesting by circling the
closure of each nest as in Figure 6. A nesting is moreover atomic if it has maximal
cardinality |N| = |E(ℓ)|.

Definition 3.2 (2-colored nesting). — A 2-colored nesting is a nesting where each
nest is either colored in blue, red or both red and blue (that is, purple), and which
satisfy the following properties:

(1) if a nest N is blue or purple, then all nests contained in N are blue, and
(2) if a nest N is red or purple, then all nests that contain N are red.

We call monochrome the nests that are either blue or red, and bicolored the purple
nests. We denote by mono(N) the set of monochrome nests of a 2-colored nesting N,
and by N2(ℓ) the set of 2-colored nestings of ℓ. A 2-colored nesting is moreover atomic
if it has maximal cardinality, and it is made of monochrome nests only.

Remark 3.3. — The data of a 2-colored nesting on a graph is equivalent to the data
of a marked tubing on its line graph, as defined in [DF08]. See also [LA22, Rem. 2.4].

Lemma 3.4. — There is a bijection between (2-colored) trees with n leaves and
(2-colored) nested linear graphs with n vertices. Under this map, (2-colored) atomic
trees are in bijection with atomic (2-colored) nested linear graphs.

Under this bijection, vertices of 2-colored trees correspond to nests, and their colors
agree under the previous conventions.

3.2. Cellular formula for the diagonal

Definition 3.5. — Let (ℓ,N) be a nested linear graph. We respectively denote by
B(N), P (N) and R(N) the set of blue, purple and red nests of N. We define Q(N) to
be the set whose elements are the unions of nests

k⋃
i=1

Ri ∪
⋃

B∈B(N)

B ∪
⋃

P∈P (N)

P,

where R1, . . . , Rk ∈ R(N), for any 0 ⩽ k ⩽ |R(N)|, the case ∪Ri = ∅ being allowed,
and where two unions that result in the same set are identified.
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←→ ←→ ( • [ ( • • ) • ] )

Figure 6. Bijections between 2-colored trees, 2-colored nested linear
graphs, and 2-colored parenthesizations.

We number the edges of the linear graph with n vertices from bottom to top
as represented in Figure 6, starting at 1 and ending at n − 1. To each blue nest
B ∈ B(N) in a 2-colored nesting N of a linear graph with n vertices, we associate
the characteristic vector B⃗ ∈ Rn which has a 1 in position i if i ∈ B, 0 in position i

if i /∈ B and 0 in position n. To each union of nests Q ∈ Q(N), we associate the
characteristic vector Q⃗ ∈ Rn which has a 1 in position i if i ∈ Q, 0 in position i

if i /∈ Q and 1 in position n. We denote moreover by n⃗ the vector (1, . . . , 1) ∈ Rn.

Lemma 3.6. — The normal cone of the face of the Ardila–Doker realization of the
multiplihedron labeled by the 2-colored nesting N is given by

Cone
(
{−B⃗}B∈B(N) ∪ {−Q⃗}Q∈Q(N) ∪ {n⃗,−n⃗}

)
.

Proof. — This follows from the description of the Ardila–Doker multiplihedron as a
generalized permutahedron: the normal cone of a face of the multiplihedron is a union
of normal cones of faces of the permutahedron, and these faces can be easily deter-
mined from the projection from the permutahedron to the multiplihedron, written
down explicitly in the proof of [Dok11, Th. 3.3.6]. □

We are now ready to compute the cellular formula for the diagonal of the Forcey–
Loday multiplihedra. We introduce

D(n) := {(I, J) | I, J ⊂ {1, . . . , n}, |I| = |J |, I ∩ J = ∅,min(I ∪ J) ∈ I}.

We number again the edges of the linear graph with n vertices from bottom to top,
starting at 1 and ending at n− 1. Blue nests and unions of blue, purple and red nests
can then in particular be seen as subsets of {1, . . . , n− 1}, hence of {1, . . . , n}.

Theorem 2. — The cellular image of the diagonal map △n : Jn → Jn × Jn intro-
duced in Definition 2.12 admits the following description. For N and N′ two 2-colored
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nestings of the linear graph with n vertices, we have that

(N,N′) ∈ Im△n ⇐⇒ ∀(I, J) ∈ D(n), ∃B ∈ B(N), |B ∩ I| > |B ∩ J | or
∃Q ∈ Q(N), |(Q ∪ {n}) ∩ I| > |(Q ∪ {n}) ∩ J | or
∃B′ ∈ B(N′), |B′ ∩ I| < |B′ ∩ J | or
∃Q′ ∈ Q(N′), |(Q′ ∪ {n}) ∩ I| < |(Q′ ∪ {n}) ∩ J |.

Proof. — The essential ingredient is the computation of the fundamental hyperplane
arrangement of the permutahedron, which was done in [LA22, §3.1]. The result follows
in three steps:

(1) Since a good orientation vector v⃗ is also a principal orientation vector [LA22,
Def. 3.15], it orients positively the permutahedron.

(2) Using Proposition 2.5 and the description of the normal cones of the faces of
the multiplihedron in Lemma 3.6, we get the above formula for the Ardila–Doker
realizations of the multiplihedra.

(3) Proposition 2.7 guarantees that this formula holds for the Forcey–Loday real-
izations, which completes the proof. □

We now make this formula explicit in dimension 1, 2 and 3, see Figure 7. We write
2-colored nestings of a linear graph with n vertices as 2-colored parenthesizations of
a word with n symbols •, which are easier to read and shorter to type, see Figure 6.
For the sake of readability, we use brackets instead of parentheses for the purple
nests in this representation. We moreover only write pairs of faces (F,G) such that
dimF + dimG = dimP .

We also compute in Figure 8 the number of faces of complementary dimensions
and the number of pairs of vertices in the cellular image of the diagonal of the multi-
plihedra in dimensions 0 to 6. They are compared with the diagonals induced by the
same orientation vector on the Loday associahedra and the permutahedra. The two
sequences of numbers that we obtain did not appear before in [OEI22].

3.3. About the cellular formula. — Given a face F of a positively oriented poly-
tope (P, v⃗), the orientation vector v⃗ defines a unique vertex topF (resp. botF ) which
maximizes (resp. minimizes) the scalar product ⟨−, v⃗⟩ over F . By [LA22, Prop. 1.17],
any pair of faces (F,G) ∈ Im△(P,v⃗) satisfies topF ⩽ botG. In the case of the sim-
plices, the cubes and the associahedra, the converse also holds: the image of the
diagonal is given by the “magical formula”

(3.1) (F,G) ∈ Im△n ⇐⇒ topF ⩽ botG.

This formula, however, does not hold for the diagonal of the Forcey–Loday multipli-
hedra.

Example 3.7. — The diagonal on the multiplihedron J4 is such that

Im△4 ⊊ {(F,G) | topF ⩽ botG}.
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△2([ • • ]) = ( • • )× [ • • ] ∪ [ • • ]× ( • • )
△3([ • • • ]) = ( ( • • ) • )× [ • • • ]

∪ [ • • • ]× ( • ( • • ) ) ∪ ( • • • )× [ • ( • • ) ]

∪ ( • • • )× ( • [ • • ] ) ∪ [ • ( • • ) ]× ( • [ • • ] ) ∪ [ ( • • ) • ]× ( [ • • ] • )

∪ [ ( • • ) • ]× ( • • • ) ∪ ( [ • • ] • )× ( • • • )

△4([ • • • • ])
= ( ( ( • • ) • ) • )× [ • • • • ] ∪ [ • • • • ]× ( • ( • ( • • ) ) ) ∪ ( ( • • • ) • )× [ • ( • • ) • ]

∪ ( [ • • ][ • • ] )× ( • •( • • ) ) ∪ ( ( • • • ) • )× [ • ( • • • ) ] ∪ ( [ • • ] • • )× ( • •( • • ) )

∪ ( • ( • • ) • )× [ • ( • • • ) ] ∪ ( [ • • • ] • )× ( • ( • • ) • ) ∪ ( ( • • ) • • )× [ • •( • • ) ]

∪ ( [ • • • ] • )× ( • ( • • • ) ) ∪ [ ( ( • • ) • ) • ]× ( [ • • • ] • ) ∪ [ • •( • • ) ]× ( • ( • [ • • ] ) )

∪ [ ( • • )( • • ) ]× ( [ • • ][ • • ] ) ∪ [ • ( • • ) • ]× ( • ( [ • • ] • ) ) ∪ ( ( • • ) • • )× ( [ • • ][ • • ] )

∪ [ • ( • • ) • ]× ( • ( • • • ) ) ∪ [ • ( ( • • ) • ) ]× ( • [ • • • ] ) ∪ [ ( • • ) • • ]× ( [ • • ]( • • ) )

∪ ( • ( • • ) • )× ( • [ • • • ] ) ∪ ( ( • • • ) • )× ( • [ • • • ] ) ∪ [ ( • • ) • • ]× ( • •( • • ) )

∪ ( [ ( • • ) • ] • )× ( [ • • ] • • ) ∪ [ • ( • • • ) ]× ( • [ • ( • • ) ] ) ∪ [ ( ( • • ) • ) • ]× ( [ • • ] • • )

∪ [ • ( • • • ) ]× ( • ( • [ • • ] ) ) ∪ ( • [ • • ] • )× ( • ( • • • ) ) ∪ ( ( [ • • ] • ) • )× ( • • • • )

∪ ( • • • • )× [ • ( • ( • • ) ) ] ∪ ( [ ( • • ) • ] • )× ( • • • • ) ∪ ( • • • • )× ( • [ • ( • • ) ] )

∪ [ ( ( • • ) • ) • ]× ( • • • • ) ∪ ( • • • • )× ( • ( • [ • • ] ) ) ∪ ( [ • • ]( • • ) )× ( • •[ • • ] )

∪ [ ( • • • ) • ]× ( [ • ( • • ) ] • ) ∪ [ ( • • )( • • ) ]× ( • •[ • • ] ) ∪ [ ( • • • ) • ]× ( • ( [ • • ] • ) )

∪ [ ( • • • ) • ]× ( • ( • • ) • ) ∪ ( ( • • ) • • )× ( • •[ • • ] ) ∪ [ ( • • • ) • ]× ( • ( • • • ) )

∪ ( [ • ( • • ) ] • )× ( • [ • • ] • ) ∪ ( ( • • • ) • )× ( • [ • • ] • ) ∪ [ ( ( • • ) • ) • ]× ( • [ • • ] • )

Figure 7. Pairs of complementary dimensions in the cellular image
of the diagonal of the multiplihedra in dimension 1,2 and 3.

Pairs (F,G) ∈ Im△(P,v⃗) Polytopes 0 1 2 3 4 5 6 [OEI22]
Assoc. 1 2 6 22 91 408 1938 A000139

dimF + dimG = dimP Multipl. 1 2 8 42 254 1678 11790 to appear
Permut. 1 2 8 50 432 4802 65536 A007334
Assoc. 1 3 13 68 399 2530 16965 A000260

dimF = dimG = 0 Multipl. 1 3 17 122 992 8721 80920 to appear
Permut. 1 3 17 149 1809 28399 550297 A213507

Figure 8. Number of pairs of faces in the cellular image of the diag-
onal of the associahedra, multiplihedra and permutahedra of dimen-
sion 0 ⩽ dimP ⩽ 6, induced by any good orientation vector.

Indeed, the pairs of faces (F,G) that satisfy dimF + dimG = 3 and topF ⩽ botG

include the four pairs

(3.2)
[ ( • • • ) • ]× ( [ • ( • • ) ] • ) ( ( • • • ) • )× ( • [ • • ] • )

[ ( • • • ) • ]× ( • ( • • ) • ) ( [ • ( • • ) ] • )× ( • [ • • ] • )
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and the four pairs

(3.3)
[ ( • • • ) • ]× ( ( • [ • • ] ) • ) ( ( • • • ) • )× ( • [ • • ] • )

[ ( • • • ) • ]× ( • ( • • ) • ) [ ( • ( • • ) ) • ]× ( • [ • • ] • ).

While the image Im△4 contains the four pairs in (3.2), it does not include the four
pairs in (3.3), as can be checked directly from Theorem 2.

Remark 3.8. — We point out that Formula (3.1) also does not hold neither for the
permutahedra nor the operahedra in general, as proved in [LA22, §3.2].

The diagonal △n being a section of the projection π : Jn × Jn → Jn, (x, y) 7→
(x+ y)/2 [LA22, Prop. 1.1], one can in fact represent its cellular image by projecting
it to Jn: for each pair of faces (F,G) ∈ Im△n, one draws the polytope (F + G)/2

in Jn. This defines a polytopal subdivision of Jn. The polytopal subdivision of J3 can
be found in [LA22, Fig. 3], while the polytopal subdivision of J4 is illustrated on the
first page of this article.

Example 3.7 can then be illustrated geometrically as follows. There are two distinct
diagonals on J4 which agree with the Tamari-type order on the vertices. The first one,
corresponding to the diagonal defined in this paper, is induced by the choice of any
orientation vector v⃗ = (v1, v2, v3, v4) satisfying v1 > v2 > v3 > v4 and v1+v4 > v2+v3
(here we work with the Ardila–Doker realization of the multiplihedron). Changing the
last condition to v1 + v4 < v2 + v3 gives the second choice of diagonal, which is in
fact exactly the diagonal of Saneblidze–Umble [SU04, §5]. These two diagonals on J4
then differ by four pairs of faces, as represented in Figure 9: the first diagonal includes
the pairs of (3.2), while the second diagonal includes the pairs of (3.3). Under the
projection π : J4 × J4 → J4, (x, y) 7→ (x + y)/2, these two families of faces induce
two distinct polytopal subdivisions of the same “diamond” inside J4, represented
in Figure 10. We also refer to the last paragraph of Section 4.2.3 for an algebraic
counterpart of Example 3.7.

Remark 3.9. — The two previous families of orientation vectors correspond to two
adjacent chambers in the fundamental hyperplane arrangement of the permutahedron
[LA22, Th. 3.6], separated by the hyperplane x1 + x4 = x2 + x3, pictured in blue in
[LA22, Fig. 12]. A way to relate the diagonal constructed in this article to the diagonal
of [SU04, §5] would possibly be to find further choices of chambers in the fundamental
hyperplane arrangements of the permutahedra (or the multiplihedra) in all dimensions
n ⩾ 4 recovering the latter diagonal, see also [LA22, Rem. 3.19].

4. Tensor product of A∞-morphisms and A∞-functors

We begin by proving that for a certain choice of cellular orientation, the cellular
chains functor maps the Loday associahedra to the operad A∞ encoding A∞-algebras
and maps the Forcey–Loday multiplihedra to the operadic bimodule M∞ encoding
A∞-morphisms between them. It then maps the respective geometric diagonals to

J.É.P. — M., 2023, tome 10



426 G. Laplante-Anfossi & T. Mazuir

•

•

Figure 9. The four pairs of (3.2) represented in blue on the two top
copies of J4 and the four pairs of (3.3) represented in red on the two
bottom copies of J4. The minimal (top right) and maximal (bottom
left) vertices for the Tamari-type order are drawn in black, in the top
left copy.

Figure 10. The two distinct subdivisions of the same “diamond” in
J4, respectively induced by sets of pairs (3.2) and (3.3) from Exam-
ple 3.7.
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algebraic ones, which can be used to define compatible tensor products of A∞-algebras
and A∞-morphisms (with signs). Tensor product of A∞-categories and A∞-functors
are defined in a similar fashion, and we relate them to the different notions of
A∞-categories with identities. We finally study coassociativity, cocommutativity and
compatibility with composition of A∞-morphisms for these diagonals. We show that
these properties are always satisfied up to homotopy, hinting at the idea that the cate-
gory∞-A∞-alg should possess some kind of homotopy symmetric monoidal structure.

4.1. A∞-algebras and A∞-morphisms

4.1.1. Definitions. — We work in the rest of this article with homological convention.
We will refer to chain complexes as dg modules, where the abbreviation dg stands
for “differential graded”, and their differential will always have degree −1. For a
dg module (A, ∂), we endow the graded module Hom(A⊗n, A) with the differential
[∂, f ] := ∂f − (−1)|f |f∂.

Definition 4.1 (A∞-algebra). — An A∞-algebra is the data of a dg module (A, ∂)

together with operations
mn : A⊗n −→ A, n ⩾ 2

of degree |mn| = n− 2, satisfying the equations

[∂,mn] = −
∑

p+q+r=n
2⩽q⩽n−1

(−1)p+qrmp+1+r(id
⊗p ⊗mq ⊗ id⊗r), n ⩾ 2.

Definition 4.2 (A∞-morphism). — An A∞-morphism F : A ⇝ B between two
A∞-algebras (A, {mn}) and (B, {m′

n}) is a family of linear maps

fn : A⊗n −→ B, n ⩾ 1

of degree |fn| = n− 1, satisfying the equations

[∂, fn] =
∑

p+q+r=n
q⩾2

(−1)p+qrfp+1+r(id
⊗p⊗mq⊗id⊗r)−

∑
i1+···+ik=n

k⩾2

(−1)εm′
k(fi1⊗· · ·⊗fik),

for n ⩾ 1, where ε =
∑k

u=1(k − u)(1− iu).

For three A∞-algebras A, B, C and two A∞-morphisms F : A⇝ B, B ⇝ C, their
composition G ◦ F : A⇝ C is the A∞-morphism whose operation of arity n is given
by the formula

(G ◦ F )n :=
∑

i1+···+ik=n

(−1)εgk(fi1 ⊗ · · · ⊗ fik).

This composition is associative. We moreover point out that a standard dg (associa-
tive) algebra can be defined as an A∞-algebra whose higher operations mn vanish for
n ⩾ 3. For more details on these notions, we refer to [LV12, Chap. 9].

Definition 4.3. — We denote by ∞-A∞-alg the category of A∞-algebras with
A∞-morphisms.
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Representing the operations mn as corollas of arity n, the equations of Defi-
nition 4.1 read as

(4.1) [∂, ] = −
∑

p+q+r=n
2⩽q⩽n−1

(−1)p+qr p

q

r .

Representing the operations mn in blue , the operations m′
n in red and the

operations fn by , the equations of Definition 4.2 can be rewritten as

[∂, ] =
∑

p+q+r=n
q⩾2

(−1)p+qr p

q

r −
∑

i1+···+ik=n
k⩾2

(−1)ε
i1 ik

.(4.2)

Finally, representing the operations fn by and the operations gn by , the
formula for the composition of A∞-morphisms reads as

∑
i1+···+ik=n

(−1)ε
i1 ik

.(4.3)

4.1.2. The operad A∞ and the operadic bimodule M∞

Definition 4.4 (Operad A∞). — The operad A∞ is the quasi-free dg operad generated
in arity n ⩾ 2 by one operation of degree n− 2

A∞ :=
(
T( , , , . . . ), ∂

)
,

and whose differential is defined by Equations (4.1).

Definition 4.5 (Operadic bimodule M∞). — The operadic bimodule M∞ is the quasi-
free (A∞,A∞)-operadic bimodule generated in arity n ⩾ 1 by one operation of
degree n− 1

M∞ :=
(
TA∞,A∞( , , , , . . . ), ∂

)
,

and whose differential is defined by Equations (4.2).

We denote by EndA the endomorphism operad of a dg module A, i.e., the operad
whose dg module of operations of arity n is EndA(n) := Hom(A⊗n, A). An A∞-alge-
bra structure on A is then equivalent to the datum of a morphism of operads A∞ →
EndA. We denote similarly by HomA

B the (EndB ,EndA)-operadic bimodule defined
by HomA

B(n) := Hom(A⊗n, B). An A∞-morphism between two A∞-algebras A and B

is then equivalent to the datum of a morphism of operadic bimodules M∞ → HomA
B .

Composition of A∞-morphisms can also be formulated at the level of the operadic
bimodule M∞ as a morphism of (A∞,A∞)-operadic bimodules M∞ → M∞ ◦A∞

M∞, where the notation ◦A∞ denotes the relative composite product [LV12, §11.2.1].
We write the first factor of M∞◦A∞M∞ using green for the color above the diaphragm
and red for the color below the diaphragm,

M∞ := TA∞,A∞( , , , , . . . ),
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and its second factor using blue for the color above the diaphragm and green for the
color below the diaphragm

M∞ := TA∞,A∞( , , , , . . . ).

Definition 4.6 (Composition morphism). — The composition morphism is defined to
be the morphism of (A∞,A∞)-operadic bimodules comp : M∞ → M∞ ◦A∞ M∞ given
on the generating operations of M∞ by

comp
( )

=
∑

i1+···+ik=n

(−1)ε
i1 ik

.

The composition of two A∞-morphisms A ⇝ B and B ⇝ C is then equivalent to
the following composition of morphisms of operadic bimodules

M∞
comp−−−−−→ M∞ ◦A∞ M∞ −→ HomB

C ◦EndB
HomA

B −→ HomA
C .

4.1.3. The Forcey–Loday multiplihedra realize the operadic bimodule M∞

Definition 4.7 (Cellular orientation). — Let P ⊂ Rn be a polytope, and let F be
a face of P . A cellular orientation of F is a choice of orientation of its linear span.
A cellular orientation of P is a choice of cellular orientation for each face F of P .

We respectively denote by CW and dg −mod the symmetric monoidal categories
of CW complexes and of dg modules over Z, and by Ccell

• : CW → dg −mod the
cellular chains functor. A choice of a cellular orientation for every polytope P ∈ Poly

defines an inclusion Poly ⊂ CW. Then, the strong symmetric monoidal functor Ccell
•

respectively sends operads and operadic bimodules in polytopes to dg operads and
dg operadic bimodules.

Definition 4.8 (Left-levelwise order). — Let t be a (2-colored) tree t. The left-
levelwise order on the vertices of t is defined by ordering them from bottom to top
and from left to right, proceeding one level at a time.

Figure 11. The tree on the left decomposes as (c4 ◦3 c4) ◦3 c3 and
the orientation on the face it labels is determined by the product
K4 ×K4 ×K3. The tree on the right decomposes as (c4 ◦1 c3) ◦6 c4
and defines the orientation determined by the product K4×K3×K4.

Given a tree t, there is a unique decomposition

t = (· · · ((cn1
◦i1 cn2

) ◦i2 cn3
) · · · ◦ik cnk+1

),
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where the corollas cn are grafted according to this total order. Using the grafting
operations defined in Section 1.1.2, a 2-colored tree admits similarly a unique decom-
position as a sequence of blue corollas, red corollas and 2-colored corollas ordered
according to this total order. We can then make the same choices of cellular orienta-
tions as in [Maz21a, §1.4], illustrated in Figure 11 :

– For the Loday associahedra Kn ⊂ Rn−1 of [MTTV21], we choose the basis
{e1 − ej+1}1⩽j⩽n−2 as positively oriented basis of the top dimensional cell .
We then choose the orientation of any other face t of Kn to be the image of the
positively oriented bases of the top cells of the polytopes Kni

under the sequence of
partial compositions following the left-levelwise order on t.

– We choose the basis {−ej}1⩽j⩽n−1 as positively oriented basis of the top dimen-
sional cell of the Forcey–Loday multiplihedra Jn ⊂ Rn−1. We then choose the
orientation of any other face t of Jn to be the image of the positively oriented bases of
the top cells of the polytopes Kni

and Jnj
under the sequence of action-compositions

maps, following the left-levelwise order on t.

Proposition 4.9. — These cellular orientations on the Loday associahedra and the
Forcey–Loday multiplihedra provide an isomorphism of dg operads Ccell

• ({Kn}) ∼= A∞
and an isomorphism of dg operadic bimodules Ccell

• ({Jn}) ∼= M∞.

Proof. — The choice of a cellular orientation endows the Kn and Jn with a natural
CW structure (see [LA22, Prop. 4.22]). The choice of the left-levelwise order on trees
ensures that we recover precisely the usual sign conventions for the partial composi-
tions of the quasi-free operad A∞and for the action-composition maps of the quasi-free
operadic bimodule M∞. The signs for the respective differentials were computed in
[Maz21a, §1.4]. □

4.2. Tensor product of A∞-algebras and A∞-morphisms

4.2.1. Diagonals on the operad A∞ and on the operadic bimodule M∞

Definition 4.10 (Operadic diagonals)
(1) A diagonal on the operad A∞ is a morphism of dg operads△ : A∞ → A∞⊗A∞

which satisfies △( ) = ⊗ .
(2) Given a diagonal on the operad A∞, a diagonal on the operadic bimodule M∞ is

a morphism of dg-operadic bimodules △ : M∞ → M∞⊗M∞ which satisfies △( ) =

⊗ , and where M∞ ⊗ M∞ is endowed with its (A∞,A∞)-operadic bimodule
structure induced by the diagonal on A∞.

Diagonals provide an adapted framework to define tensor products of A∞-algebras
and tensor products of A∞-morphisms. Given a diagonal A∞ → A∞ ⊗ A∞ and two
A∞-algebras A and B, one can define an A∞-algebra structure on A⊗B by considering
the following composition

A∞ −→ A∞ ⊗A∞ −→ EndA ⊗ EndB −→ EndA⊗B .
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Given similarly a diagonal M∞ → M∞ ⊗M∞ and two A∞-morphisms F1 : A1 ⇝ B1

and F2 : A2 ⇝ B2, one can define an A∞-morphism F1⊗F2 : A1⊗A2 ⇝ B1⊗B2 by
the following composition

M∞ −→ M∞ ⊗M∞ −→ HomA1

B1
⊗HomA2

B2
−→ HomA1⊗A2

B1⊗B2
.

We moreover point out that the conditions △( ) = ⊗ and △( ) = ⊗
respectively imply that these constructions recover the standard tensor product of dg
algebras and the standard tensor product of ordinary morphisms between dg algebras.

4.2.2. Admissible edges and permutations. — We fix a (2-colored) nested linear graph
(ℓ,N). We denote by Ni the unique minimal nest of N with respect to nest inclusion,
which contains the edge i.

Definition 4.11 (Admissible edge). — For a nested linear graph (ℓ,N), an edge i is
admissible with respect to N if i ̸= minNi. For a 2-colored nested linear graph (ℓ,N),
an edge i is admissible with respect to N when Ni is bicolored, or if i ̸= minNi

when Ni is monochrome. We denote the set of admissible edges of N by Ad(N).

Definition 4.12 (Left-levelwise order). — The left-levelwise order on N is defined by
ordering the nests by decreasing order of cardinality, and ordering two nests of the
same cardinality according to the increasing order on their minimal elements.

Under the bijection of Lemma 3.4, the left-levelwise order on the nesting of a
nested linear graph is equivalent to the left-levelwise order on the vertices of the
corresponding tree t, as defined in Definition 4.8.

Consider the left-levelwise order N1 < N2 < · · · < Nk on the nesting N =

{N j}1⩽j⩽k. We endow the set Ad(N) with a total order, by ordering the admis-
sible edges of N1 ∖

⋃
2⩽j⩽k Nj in increasing order, then the admissible edges of

N2 ∖
⋃

3⩽j⩽k Nj in increasing order, and so on. Given two nestings N,N′ of ℓ, we en-
dow the set Ad(N)⊔Ad(N′) with the total order given by following the total order on
Ad(N) and then the total order on Ad(N′). We denote by △K and △J the algebraic
diagonals obtained from the polytopal ones by applying the cellular chains functor,
see Propositions 4.15 and 4.18 below. The proofs of these two propositions include
the proofs of the following two lemmas.

Lemma 4.13. — For a pair of nestings of complementary dimensions (N,N′) ∈
Im△K , the function σNN′ : Ad(N) ⊔ Ad(N′) → (1, 2, . . . , |Ad(N) ⊔ Ad(N′)|) defined
on i ∈ Ad(N) by

σNN′(i) =

{
minNi − 1 if i ∈ Ad(N) ∩Ad(N′) and 1 ̸= minNi < minN ′

i

i− 1 otherwise,

and similarly on i ∈ Ad(N′) by reversing the roles of N and N′, induces a permutation
of the set

{1, 2, . . . , |Ad(N) ⊔Ad(N′)|}
that we will still denote by σNN′ .

J.É.P. — M., 2023, tome 10



432 G. Laplante-Anfossi & T. Mazuir

Lemma 4.14. — For a pair of 2-colored nestings of complementary dimensions
(N,N′) ∈ Im△J , the function σNN′ : Ad(N)⊔Ad(N′)→ (1, 2, . . . , |Ad(N)⊔Ad(N′)|)
defined on i ∈ Ad(N) by

σNN′(i) =


minNi if i ∈ Ad(N) ∩Ad(N′), Ni is monochrome and N ′

i is not

minNi

if i ∈ Ad(N) ∩Ad(N′), Ni and N ′
i are monochrome

and minNi < minN ′
i ,

i otherwise,

and similarly on i ∈ Ad(N′) by reversing the roles of N and N′, induces a permutation
of the set

{1, 2, . . . , |Ad(N) ⊔Ad(N′)|}
that we will still denote by σNN′ .

4.2.3. The polytopal diagonals on A∞ and M∞. — We use nested linear graphs intro-
duced in Section 3.1 to work with the operad A∞ and the operadic bimodule M∞.
The generating operation of arity n of A∞ corresponds to the trivial nested linear
graph with n vertices ( • · · · • ), while the generating operation of arity n of M∞ is
represented by the trivial 2-colored nested linear graph with n vertices [ • · · · • ].

Proposition 4.15. — The image under the functor Ccell
• of the diagonal of the Loday

associahedra constructed in [MTTV21] defines a diagonal on the operad A∞, that
we denote △K . It is determined by the formula

△K (( • · · · • )) =
∑

N,N′∈Nn

top(N)⩽bot(N′)
|N|+|N′|=n

(−1)|Ad(N)∩Ad(N′)|sgn(σNN′)N ⊗N′,

where • · · · • stands for the linear graph with n vertices.

Proof. — The image of the diagonal on the Loday associahedra under the functor Ccell
•

defines a diagonal on the operad A∞ as this functor is strong monoidal. This diagonal
△K : A∞ → A∞⊗A∞ is determined by the image of the generating operations of the
quasi-free operad A∞, which are the trivially nested linear graphs. The signs arise from
the choices of cellular orientations on the Loday associahedra made in Section 4.1.3 as
follows. As explained in the proof of [LA22, Prop. 4.27], the computation of the signs
boils down to the computation of the determinant of the bases eFj , e

G
j determining

the cellular orientations of the faces F and G associated to the nestings N and N′,
expressed in the basis ej of the top dimensional cell of Kn. The second part of the
proof of [LA22, Th. 1.26] shows that dim(F ∩ ρzG) = 0, for any z ∈ (F̊ + G̊)/2.
Combined with the fact that dimF +dimG = dimKn, this implies that the two bases
eFj , e

G
j form together a basis of the linear span of Kn. Writing horizontally the eFj and

then the eGj in the basis ej defines a square matrix. The positions of the rightmost
non-zero entries of each line are given by the admissible edges of N and N′. The
permutation σNN′ corresponds to a permutation of the lines of this matrix, sending
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these rightmost entries to the diagonal, except for one case: when N and N′ share
the same admissible edge. In this case, linear independence guarantees that the two
vectors differ in another place. We moreover point out that that the −1 term in the
definition of the permutation σNN′ in Lemma 4.13 stems from the fact that Kn is
defined in Rn−1 but has dimension n− 2. □

We compute in particular

△K(( • • )) = ( • • )⊗ ( • • ),
△K(( • • • )) = ( ( • • ) • )⊗ ( • • • ) + ( • • • )⊗ ( • ( • • ) ),
△K(( • • • • )) = ( • • • • )⊗ ( • ( • ( • • ) ) ) + ( ( ( • • ) • ) • )⊗ ( • • • • )

− ( ( • • ) • • )⊗ ( • •( • • ) ) + ( ( • • • ) • )⊗ ( • ( • • ) • )

+ ( ( • • • ) • )⊗ ( • ( • • • ) ) + ( • ( • • ) • )⊗ ( • ( • • • ) ).

Remark 4.16. — Proposition 4.15 completes the work of [MTTV21], by explicitly
computing the signs for the polytopal diagonal on the dg level. This formula corre-
sponds in fact to the formula originally computed in [MS06] (up to signs verification).
We also conjecture that this diagonal is equal to the diagonal constructed in [SU04].

Definition 4.17 (Tensor product of A∞-algebras). — Given A and B two A∞-alge-
bras, their tensor product as A∞-algebras is defined to be the dg module A ⊗ B

endowed with the A∞-algebra structure induced by the diagonal △K .

Proposition 4.18. — The image under the functor Ccell
• of the diagonal on the Forcey–

Loday multiplihedra constructed in this paper defines a diagonal on the operadic bi-
module M∞, that we denote △J . It is determined by the formula

△J ([ • · · · • ]) =
∑
N,N′

(−1)|Ad(N)∩Ad(N′)|sgn(σNN′)N ⊗N′,

where the sum runs over the pairs N,N′ ∈ N2
n such that |mono(N)| + |mono(N′)| =

n− 1 and which satisfy the conditions in Theorem 2.

Proof. — The proof is similar to the proof of Proposition 4.15. Note that in this case,
there is no −1 term in the definition of the permutation σNN′ in Lemma 4.14 since Jn
is full-dimensional. □

We compute in particular

△J([ • ]) = [ • ]⊗ [ • ],

△J([ • • ]) = ( • • )⊗ [ • • ] + [ • • ]⊗ ( • • ),
△J([ • • • ]) = ( ( • • ) • )⊗ [ • • • ] + [ • • • ]⊗ ( • ( • • ) )

− ( • • • )⊗ [ • ( • • ) ] − ( • • • )⊗ ( • [ • • ] )
+ [ • ( • • ) ]⊗ ( • [ • • ] ) − [ ( • • ) • ]⊗ ( [ • • ] • )

+ [ ( • • ) • ]⊗ ( • • • ) + ( [ • • ] • )⊗ ( • • • ).

Definition 4.19 (Tensor product of A∞-morphisms). — Let F1 : A1 ⇝ B1 and
F2 : A2 ⇝ B2 be two A∞-morphisms between A∞-algebras. Their tensor product
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is defined to be the A∞-morphism F1 ⊗ F2 : A1 ⊗ A2 ⇝ B1 ⊗ B2 induced by the
diagonal △Jon M∞.

One can ask whether the dg “magical formula” for the diagonal on the operad A∞
also defines a diagonal on the operadic bimodule M∞, i.e., if by relaxing the conditions
of Theorem 2 to the condition top(N) ⩽ bot(N′), the formula of Proposition 4.18 still
defines a diagonal on M∞. A simple computation in arity 4 shows that the answer to
this question is negative, see Example 3.7. In other words, it is not possible to naively
extend the “magical formula” for the tensor product of A∞-algebras to define a tensor
product of A∞-morphisms.

4.3. Categorification

4.3.1. Tensor product of A∞-categories and A∞-functors. — As categories can be
viewed as associative algebras with several objects, A∞-categories can be viewed
in a similar fashion as A∞-algebras with several objects. One says that the notions
of A∞-category and A∞-functor are the horizontal categorifications of the notions
of A∞-algebra and A∞-morphism, respectively. We refer to [Sei08, Chap. 1] for the
definitions of these two notions. We borrow the notations from [Sei08] and will
moreover use the sign conventions of Section 4.1.

Definition 4.20 (Tensor product of A∞-categories). — The tensor product of two
A∞-categories A and B is given by

– the set of objects Ob(A⊗B) := Ob(A)×Ob(B),
– for each pair of objects X1×Y1, X2×Y2 ∈ Ob(A⊗B), the dg module of morphisms

A⊗B(X1 × Y1, X2 × Y2) := A(X1, X2)⊗B(Y1, Y2),

and by defining the higher compositions mn as in Proposition 4.15.

Definition 4.21 (Tensor product of A∞-functors). — The tensor product of two
A∞-functors F : A1 ⇝ B1 and G : A2 ⇝ B2 is given by the function

Ob(F ⊗ G) := Ob(F)×Ob(G) : Ob(A1 ⊗B1) −→ Ob(A2 ⊗B2),

and by defining the operations (F ⊗ G)n as in Proposition 4.18.

4.3.2. Identities. — The category H∗(A) associated to an A∞-category A does not
necessarily have identity morphisms. As explained in [Sei08, §1.2], there exist three
notions of A∞-category with identity morphisms : strictly unital A∞-category, coho-
mologically unital A∞-category and homotopy unital A∞-category.

(1) A cohomologically unital A∞-category is an A∞-category A which is such that
H∗(A) has identity morphisms.

(2) A strictly unital A∞-category is an A∞-category together with an element
eX ∈ A(X,X) for every X ∈ Ob(A) such that ∂(eX) = 0, m2(e, ·) = m2(·, e) = id

and mn(· · · , e, . . . ) = 0 for n ⩾ 3.
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(3) A homotopy unital A∞-category is defined to be an A∞-category together with
elements eX ∈ A(X,X) and endowed with additional operations encoding the fact
that the previous relations on the mn and the eX are satisfied only up to higher
coherent homotopies, see also [HM12, §6.1].
We have in particular that

unital =⇒ homotopy unital =⇒ cohomologically unital.

The proof of the following proposition is straightforward.

Proposition 4.22
(1) If A and B are cohomologically unital A∞-categories, the tensor A∞-category

A⊗B is again cohomologically unital.
(2) If A and B are strictly unital A∞-categories, the tensor A∞-category A⊗B is

again strictly unital, with identity morphisms eX×Y := eX ⊗ eY for X ∈ Ob(A) and
Y ∈ Ob(B).

If A and B are homotopy unital A∞-categories, we have to define the additional
operations associated to the fact that the elements eX ⊗ eY are identity morphisms
up to homotopy in order to endow the A∞-category A ⊗ B with a homotopy unital
A∞-category structure. In other words, we have to define a diagonal on the operad
uA∞ encoding homotopy unital A∞-algebras, which has not been done yet to the
authors knowledge. An idea would be to define a diagonal on the unital associahedra,
which are CW-complexes constructed by Muro and Tonks in [MT14] and which form
an operad whose image under the cellular chains is the operad uA∞. However, not
all unital associahedra are polytopes, meaning that the present techniques cannot be
directly applied to them.

4.4. Homotopy properties of diagonals on A∞ and M∞. — The goal of this sec-
tion is to show that the category of A∞-algebras is symmetric monoidal only up to
homotopy.

4.4.1. The 2-colored viewpoint. — The operad A∞ together with the operadic bimod-
ule M∞ define the quasi-free 2-colored operad

A2
∞ :=

(
T( , , , . . . , , , , . . . , , , , , . . . ), ∂

)
,

whose differential is given by the equations of Definition 4.1 and Definition 4.2.
We refer to [Yau16, §11] for a complete definition of a 2-colored operad. The data of
A∞-algebra structures on two dg modules A and B together with an A∞-morphism
A ⇝ B between them is equivalent to a morphism of 2-colored operads A2

∞ →
End(A ;B), where End(A ;B) is the endomorphism 2-colored operad naturally asso-
ciated to A and B. The data of a diagonal on the operad A∞ and of a diagonal on
the operadic bimodule M∞ is moreover equivalent to the datum of a morphism of
2-colored operads A2

∞ → A2
∞ ⊗A2

∞, while the composition of A∞-morphisms can be
defined by a morphism of 2-colored operads A2

∞ → A2
∞ ◦A∞ A2

∞.
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4.4.2. Coassociativity and cocommutativity. — First, we would like to know whether
given three A∞-algebras A, B and C, the two A∞-algebra structures (A ⊗ B) ⊗ C

and A⊗ (B ⊗C) on the dg module A⊗B ⊗C are the same. In operadic terms, this
amounts to ask if the diagonal on A∞ is coassociative.

Proposition 4.23
(1) There is no diagonal on the operad A∞ which is coassociative.
(2) There is no diagonal on the operadic bimodule M∞ which is coassociative.

Proof. — The non-existence of a coassociative diagonal on the operad A∞ was already
proved in [MS06, §6]. The non-existence of a coassociative diagonal on the operad A∞
implies the non-existence of a coassociative diagonal on the operadic bimodule M∞.
Given indeed diagonals △A∞ and △M∞ , it is not possible to compare the two mor-
phisms of dg operadic bimodules (△M∞ ⊗ idM∞)△M∞ and (idM∞ ⊗△M∞)△M∞ , as
the (A∞,A∞)-operadic bimodule structures induced on M⊗3

∞ by (△A∞ ⊗ idA∞)△A∞

and (idA∞ ⊗△A∞)△A∞ do not coincide. We can in fact prove a stronger result: for
any diagonal △ : M∞ → M∞ ⊗M∞, we have that

((id⊗△)△− (△⊗ id)△) ([ • • • ]) ̸= 0.

The proof of this result involves computations identical to the ones of [MS06, §6],
that we do not include for the sake of concision. □

This proposition implies in particular that a diagonal on the 2-colored operad A2
∞

is never coassociative. In the specific cases of △K and △J we compute moreover that(
(id⊗△K)△K − (△K ⊗ id)△K

)
(( • • • • ))

= −∂
(
( ( • • • ) • )⊗ ( • ( • • ) • )⊗ ( • ( • • • ) )

)
,

and that(
(id⊗△J)△J − (△J ⊗ id)△J

)
([ • • • ])

= ∂
(
( • • • )⊗ [ • ( • • ) ]⊗ ( • [ • • ] )− [ ( • • ) • ]⊗ ( [ • • ] • )⊗ ( • • • )

)
.

Given two A∞-algebras A and B, we would also like to know whether the A∞-alge-
bra structure on B⊗A can simply be obtained from the maps defining the A∞-algebra
structure on A⊗B

mA⊗B
n : (A⊗B)⊗n −→ A⊗B

by rearranging (A⊗B)⊗n into (B ⊗A)⊗n and A⊗B into B ⊗A. In operadic terms,
this amounts to ask if the diagonal on A∞ is cocommutative or not.

Proposition 4.24. — The diagonals △K and △J are not cocommutative.

Proof. — We compute indeed that(
△K − τ△K

)
(( • • • )) = ∂

(
( • • • )⊗ ( • • • )

)
,
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where τ acts by the permutation (1 2) on the operad A∞ ⊗ A∞. We also compute
that (

△J − τ△J
)
([ • • ]) = ∂

(
[ • • ]⊗ [ • • ]

)
. □

We conjecture in fact that Proposition 4.24 holds for any diagonal on the op-
erad A∞ and for any diagonal on the operadic bimodule M∞.

4.4.3. Compatibility with the composition. — We would finally like to know whether
the tensor product is functorial with respect to the composition of A∞-morphisms.
In other words, if given four A∞-morphisms F1 : A1 ⇝ B1, G1 : B1 ⇝ C1, F2 :

A2 ⇝ B2 and G2 : B2 ⇝ C2 they satisfy the following equality

(G1 ⊗ F1) ◦ (G2 ⊗ F2) = (G1 ⊗G2) ◦ (F1 ⊗ F2).

In operadic terms, this amounts to ask if the diagonal △ on M∞ together with the
composition morphism comp of Section 4.1.2 satisfy the following equality

(comp⊗ comp)△ = (△ ◦A∞ △)comp.

Proposition 4.25. — There is no diagonal on the operadic bimodule M∞ which is
compatible with the composition of A∞-morphisms.

Proof. — Let △ be a diagonal M∞ → M∞ ⊗M∞. The compatibility with the differ-
ential implies that △ is necessarily of the form

△([ • ]) = [ • ]⊗ [ • ]

and

△([ • • ]) = α(( • • )⊗ [ • • ]+ [ • • ]⊗ ( • • ))
+ (1− α)(( • • )⊗ [ • • ]+ [ • • ]⊗ ( • • )),

where α ∈ Z. We compute that if the equality

(comp⊗ comp)△([ • • ]) = (△ ◦A∞ △)comp([ • • ])

holds, we necessarily have that α = 0 and that α = 1, which is not possible. □

In the case of the diagonals △K and △J , we compute that(
comp ◦ △J − (△J ◦A∞ △J) ◦ comp

) ( )
= ∂

(
⊗

)
.

4.4.4. Homotopy properties. — While coassociativity, compatibility with the compo-
sition and cocommutativity are not satisfied by the diagonals △K and △J , we will
now prove that a diagonal on the 2-colored operad A2

∞ always satisfies these proper-
ties up to homotopy. We use the notion of homotopy between morphisms of 2-colored
operads as defined in [MSS02, §3.10].

Proposition 4.26. — Let △ be a diagonal on the 2-colored operad A2
∞.

(1) The morphisms of operads (△⊗ id)△) and (id⊗△)△) are homotopic. In other
words, a diagonal on A2

∞ is always coassociative up to homotopy.
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(2) The morphisms of operads △ and τ△ are homotopic. In other words, a diagonal
on A2

∞ is always cocommutative up to homotopy.
(3) The morphisms of operads comp ◦ △J and (△J ◦A∞ △J) ◦ comp are homo-

topic. In other words, a diagonal on A2
∞ is always compatible with the composition of

A∞-morphisms up to homotopy.

Proof. — The proof of this proposition is a simple adaptation of the results of [MS06,
§2] in the context of 2-colored dg operads, applied to the minimal model A2

∞ for
the 2-colored dg operad As2 encoding pairs of dg algebras together with morphisms
between them. □

While Proposition 4.25 shows that it is not possible to endow the category
∞-A∞-alg with a symmetric monoidal category structure using the viewpoint of
diagonals, Proposition 4.26 exhibits a first level of homotopies that could be involved
in the definition of some kind of homotopy symmetric monoidal category structure
on ∞-A∞-alg. This question will be studied in a future work by D. Poliakova and the
two authors of this paper. As a first step towards solving that problem, we will inspect
in particular which higher coherent homotopies arise from the lack of coassociativity
of △Kn and △Jn on the level of polytopes.

5. Further applications

We first prove that a diagonal on the dg operad A∞ is equivalent to a retraction
of the bar-cobar resolution AA∞ onto the operad A∞. We then explain how to as-
sociate a convolution A∞-algebra to an A∞-coalgebra and an A∞-algebra, as well as
A∞-morphisms between convolution A∞-algebras, using diagonals on A∞ and M∞.
We finally describe two possible applications of our results in symplectic topology:
in the context of Heegard Floer homology, and to study tensor products of Fukaya
categories/algebras and A∞-functors between them.

5.1. Retractions and diagonals. — Recall that the operad A∞ is the minimal model
A∞ = ΩAs¡ of the dg operad As encoding associative algebras. Another cofibrant
replacement of the operad As is given by the bar-cobar (or Boardman-Vogt) resolution
AA∞ := ΩBAs, which is defined as the quasi-free operad

AA∞ :=
(
T( , , , , . . . ,PTn , . . . ), ∂

)
,

where PTn is the set of planar rooted trees of arity n and the degree of a tree is
defined as the number of its internal edges. We refer to [LV12, §9.3] for a complete
study of the operad AA∞, and in particular for a definition of its differential. There
exists an explicit embedding of dg operads A∞ → AA∞, as constructed in [MS06, §4]
and in [Maz21a, §1.3.1.5]. The problem of the construction of an explicit morphism
of dg operads AA∞ → A∞ is more complicated and is the subject of the following
proposition.
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Definition 5.1 (Retraction). — A morphism of dg operads AA∞ → A∞ sending
to will be called a retraction of the operad AA∞ onto the operad A∞.

Proposition 5.2. — The datum of a diagonal on the operad A∞ is equivalent to the
datum of a retraction r : AA∞ → A∞.

Proof. — We apply the general theory of operadic twisting morphisms [LV12, §6.4]
to prove the following sequence of isomorphisms:

HomOp(ΩAs¡,ΩAs¡ ⊗ ΩAs¡) ∼= Tw(As¡,ΩAs¡ ⊗ ΩAs¡)

∼= Tw(BAs,ΩAs¡)

∼= HomOp(ΩBAs,ΩAs¡).

The first and last isomorphisms are given by the bar-cobar adjunction. We thus only
need to explain the second isomorphism. A twisting morphism As¡ → ΩAs¡⊗ΩAs¡ is
by definition a Maurer–Cartan element in the convolution pre-Lie algebra associated
to the convolution dg operad Hom(As¡,ΩAs¡ ⊗ΩAs¡). This convolution dg operad is
in turn isomorphic to the desuspension S−1(ΩAs¡ ⊗ ΩAs¡). Since the cooperad As¡

is 1-dimensional in every arity, and since the arity-wise linear dual dg cooperad of
the desuspended dg operad S−1(ΩAs¡) is isomorphic to the bar construction BAs,
we have that the desuspension S−1(ΩAs¡⊗ΩAs¡) is isomorphic to the convolution dg
operad Hom(BAs,ΩAs¡). We hence have the following isomorphisms of dg operads

Hom(As¡,ΩAs¡ ⊗ ΩAs¡) ∼= S−1(ΩAs¡ ⊗ ΩAs¡) ∼= Hom(BAs,ΩAs¡).

This implies an isomorphism on the level of the Maurer–Cartan elements of the asso-
ciated dg pre-Lie algebras, that is

Tw(As¡,ΩAs¡ ⊗ ΩAs¡) ∼= Tw(BAs,ΩAs¡).

We finally check that the condition △( ) = ⊗ is equivalent to the condition
r( ) = . □

Proposition 5.2 clarifies in particular the construction of the diagonal on the ope-
rad A∞ given in [MS06]. The operad AA∞ can indeed be seen as the cellular chains on
the cubical realization of the associahedra [LV12, §9.3.1]. It comes with an elementary
diagonal AA∞ → AA∞ ⊗ AA∞ defined using the Serre cubical diagonal of [Ser51].
M. Markl and S. Shnider then define a retraction r : AA∞ → A∞ and deduce a
diagonal on the operad A∞ as the composite

A∞ −→ AA∞ −→ AA∞ ⊗AA∞
r ⊗ r−−−−−→ A∞ ⊗A∞.

Their choice of retraction recovers the diagonal constructed directly on the level of
the associahedra in [MTTV21, Th. 2]. A similar proof would however not adapt to
the case of the multiplihedra, as they are not simple polytopes hence do not admit a
cubical realization.
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Remark 5.3. — As observed in [LA22, Rem. 1.6], the methods used to construct
our cellular approximation of the diagonal could be related to the Fulton–Sturmfels
formula [FS97, Th. 4.2], appearing in the study of the intersection theory on toric
varieties. We also expect an interpretation of Proposition 5.2 in terms of Morse theory,
in the vein of [FMMS21, Fra07]. There should also be an interpretation in terms of
discrete Morse theory as in [Tho18, §1.1.4] for the case of the standard simplices.

5.2. Convolution A∞-algebra

5.2.1. Standard convolution algebra. — Given a dg algebra A and a dg coalgebra C,
recall from [LV12, §1.6] that one can define the convolution algebra of C and A as the
dg algebra (Hom(C,A), [∂, ·], ⋆), where Hom(C,A) is the dg module of maps C → A,
endowed with the convolution product f ⋆ g := µA ◦ (f ⊗ g) ◦ ∆C . The convolution
algebra construction is in fact functorial, i.e., fits into a bifunctor (dg-cog)op×dg-alg→
dg-alg defined on objects as (C,A) 7→ Hom(C,A). A Maurer-Cartan element α of
Hom(C,A), i.e., a map α : C → A such that [∂, α] + α ⋆ α = 0, is then called
a twisting morphism. Twisting morphisms define twisted differentials on the tensor
product C ⊗A via the formula

∂α := ∂C⊗A + (id⊗ µA)(id⊗ α⊗ id)(∆C ⊗ id).

Twisted differentials appear in the computation of the singular homology of fiber
spaces [Bro59]. Given a fibration F → X → B satisfying some mild assumptions,
the singular homology of X can then be computed as the homology of the tensor
product C∗(B) ⊗ C∗(F ) endowed with a twisted differential, where C∗(F ) is seen as
a dg module over the dg algebra C∗(ΩB).

5.2.2. Convolution A∞-algebra. — One defines an A∞-coalgebra structure on a dg
module C to be a morphism of dg operads A∞ → coEndC , where coEndC(n) =

Hom(C,C⊗n). Put differently, it is the structure dual to the structure of A∞-algebra,
i.e., it corresponds to a collection of operations cn : C → C⊗n of degree n − 2

satisfying the equations obtained by inverting inputs and outputs in the equations
for A∞-algebras. The notion of an A∞-morphism between A∞-coalgebras is defined
in a similar fashion: either in terms of operations fn : C → D⊗n of degree n − 1

and satisfying the equations dual to the equations for A∞-morphisms, or equivalently
as a morphism of dg operadic bimodules M∞ → coHomC1

C2
. Our results allow us to

extend the convolution algebra construction when C is an A∞-coalgebra and A is an
A∞-algebra.

Proposition 5.4
(1) Let C be an A∞-coalgebra and A be an A∞-algebra. A diagonal on the ope-

rad A∞ yields an A∞-algebra structure on the dg module (Hom(C,A), [∂, ·]). We call
this A∞-algebra the convolution A∞-algebra of C and A.
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(2) Let F : A1 ⇝ A2 be an A∞-morphism between two A∞-algebras A1 and A2

and G : C2 ⇝ C1 be an A∞-morphism between two A∞-coalgebras C2 and C1. A diag-
onal on the operad M∞ yields an A∞-morphism between the convolution A∞-algebras
Hom(C1, A1) and Hom(C2, A2).

Proof

(1) Given a diagonal A∞ → A∞ ⊗ A∞, the following composite of morphism of
operads defines the A∞-algebra structure on Hom(C,A) :

A∞ −→ A∞ ⊗A∞ −→ coEndC ⊗ EndA −→ EndHom(C,A),

where the morphism of dg operads coEndC⊗EndA → EndHom(C,A) is straightforward
to define.

(2) Given a diagonal M∞ → M∞ ⊗ M∞, we consider in a similar fashion the
composite of morphism of operadic bimodules

M∞ −→ M∞ ⊗M∞ −→ coHomC2

C1
⊗HomA1

A2
−→ Hom

Hom(C1,A1)
Hom(C2,A2)

. □

Proposition 5.5. — For any diagonal on A∞and for any diagonal on M∞, the
convolution A∞-algebra Hom(C,A) does not define a bifunctor (∞-A∞-cog)op ×
∞-A∞-alg→∞-A∞-alg.

Proof. — This is a direct corollary to Proposition 4.25. □

Proposition 5.4 implies in particular that for an A∞-coalgebra C and an A∞-alge-
bra A, it is still possible to define the notion of a twisting morphism α : C → A as a
Maurer-Cartan element in the A∞-algebra Hom(C,A), see [DSV22, Eq. (4.1), p.72] for
instance. It also implies that the A∞-morphism Hom(C1, A1)⇝ Hom(C2, A2) defined
by the A∞-morphism F : A1 ⇝ A2 and G : C2 ⇝ C1, sends a twisting morphism
C1 → A1 to a twisting morphism C2 → A2. We will use this key property in order to
pursue the work of Brown [Bro59] and [Pro86] on the homology of fibered spaces in
a forthcoming paper.

5.2.3. Diagonals as twisting morphisms. — The results of Section 5.2.2 can be inter-
preted in a more general framework, developed by D. Robert-Nicoud and F. Wierstra
in [RNW19b, RNW19a].

Proposition 5.6. — The datum of a diagonal on A∞is equivalent to the datum of a
twisting morphism α ∈ Tw(BAs,ΩAs¡) sending to .

Proof. — This result was proved in the proof of Proposition 5.2. □

Setting C = BAs and P = ΩAs¡ and working in the context of non-symmetric
operads where the operad L∞ of [RNW19b, RNW19a] is replaced by the operad A∞,
we recover Proposition 5.6 (and thus Proposition 5.2) via [RNW19b, Th. 7.1] and
Point (1) of Proposition 5.4 via [RNW19b, Th. 4.1]. We denote by A∞- alg the category
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of A∞-algebras and their strict morphisms [LV12, §10.2.1]. It is shown in [RNW19b,
Cor. 5.4] that the assignments

Hom(−, id) : (∞-A∞-cog)op ×A∞- alg −→ A∞- alg,(5.1)
Hom(id,−) : (A∞- cog)op ×∞-A∞-alg −→ A∞- alg(5.2)

given by the convolution A∞-algebra extend to bifunctors. The authors also show
that these two bifunctors do not extend in general to a bifunctor

(5.3) Hom(−,−) : (∞-A∞-cog)op ×∞-A∞-alg −→∞-A∞-alg

as this assignment is not compatible with the composition of A∞-morphisms
[RNW19b, Th. 6.6]. Point (2) of Proposition 5.4 allows us to define the assign-
ment (5.3) directly, and Proposition 5.5 can be seen as a stronger version of
[RNW19b, Th. 6.6], in the special case of A∞-algebras.

The main result of [RNW19a] says that if a twisting morphism α ∈ Tw(BAs,ΩAs¡)

is Koszul, then the possible compositions of the two bifunctors (5.1) and (5.2) are
homotopic and that they extend to a bifunctor on the level of the homotopy categories
[RNW19a, Th. 3.6 and Cor. 3.8]. This should be seen as a statement analogous to
Point (3) of Proposition 4.26. It would be interesting to know how the results of
[RNW19b, RNW19a] can be interpreted from the viewpoint of diagonals, and if they
admit an interpretation on the level of polytopes.

5.3. Diagonals in symplectic topology

5.3.1. The work of Lipshitz, Oszváth and Thurston. — In [LOT20], R. Lipshitz,
P. Oszváth and D. Thurston also study diagonals on the dg operad A∞ and on the dg
operadic bimodule M∞. They however work exclusively on the dg level, constructing
abstract diagonals by using the fact that A∞ and M∞ are contractible, and do not
provide explicit formulas for these diagonals as in Proposition 4.15 and Proposi-
tion 4.18. The goal of their work is to study bordered Heegaard Floer homology
of 3-manifolds. Given a 3-manifold Y with two boundary components, they aim to
construct a bimodule twisted complex CFDD−(Y ), also called a type DD-bimodule.
The definition of such an object uses a diagonal on the dg operad A∞. A diagonal
on M∞ is then needed in order to relate the categories of bimodules defined with
different diagonals on A∞, which in turn is needed for properties like the associativity
of tensor products. They also expect that diagonals on M∞ could be needed in a
distant future to define A∞-morphisms between bimodule twisted complexes arising
from a cobordism between 3-manifolds Y1 and Y2. Thus, the explicit formula for
the diagonal defined in this paper could be used to compute invariants of 3 and
4-manifolds, via implementation in a computer program for instance.

5.3.2. Künneth theorems in Lagrangian Floer theory. — Let (M,ω) be a closed sym-
plectic manifold, i.e., a closed manifold M together with a closed non-degenerate
2-form ω on M . The Fukaya category Fuk(M,ω) of (M,ω) is defined to be the (curved
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filtered unital) A∞-category whose objects are (unobstructed) Lagrangian submani-
folds of M and higher compositions are defined by counting pseudo-holomorphic disks
with Lagrangian boundary conditions and marked points on their boundary, as rep-
resented in Figure 12. We refer for instance to [Smi15] and [Aur14] for introductions
to this subject. Given a closed spin Lagrangian submanifold L ⊂ M , K. Fukaya also
constructs in [Fuk10] a strictly unital A∞-algebra F(L), the Fukaya algebra of the
Lagrangian L, whose higher multiplications are again defined by counting pseudo-
holomorphic disks.

xn

xn−1

x1

x2

y

Ln−1L1

L0 Ln

M

xn

xn−1

x1

x2

y

Ln−1L1

L0 Ln

M0

M1

L01

Figure 12. On the left, a pseudo-holomorphic disk defining the A∞-
category structure on Fuk(M). On the right, a pseudo-holomorphic
quilted disk defining an A∞-functor Fuk(M0)⇝ Fuk(M1).

In [Amo17], L. Amorim shows that given two symplectic manifolds M1 and M2 to-
gether with Lagrangians Li ⊂ Mi, the Fukaya algebra of the product Lagrangian
L1 × L2 is quasi-isomorphic to the tensor product of their Fukaya algebras, i.e.,
F(L1×L2) ≃ F(L1)⊗F(L2). His proof relies on a theorem that he proves in [Amo16],
giving a criterion for an A∞-algebra C to be quasi-isomorphic to the tensor A∞-alge-
bra A ⊗ B (see Definition 4.17) of two commuting A∞-subalgebras A ⊂ C and
B ⊂ C, which he then applies to the two A∞-subalgebras F(L1) ⊂ F(L1 × L2)

and F(L2) ⊂ F(L1×L2). Fukaya generalizes this result in [Fuk17], working this time
on the level of Fukaya categories. He proves that for two closed symplectic manifolds
M0 and M1 there exists a unital A∞-functor

Fuk(M0)⊗ Fuk(M1) −→ Fuk(M−
0 ×M1)

which is a homotopy equivalence to its image.
Let now M0 and M1 be two compact symplectic manifolds. Define a Lagrangian

correspondence from M0 to M1 to be a Lagrangian submanifold L ⊂ M−
0 × M1.

In [MWW18], S. Mau, K. Wehrheim and C. Woodward associate to a Lagrangian cor-
respondence L (with additional technical assumptions) an A∞-functor

ΦL : Fuk(M0) Fuk(M1).

It is defined on objects as

ΦL(L0) := πM1(L0 ×M0 L),
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where πM1
denotes the projection M0×M−

0 ×M1 →M1 and ×M0
is the fiber product

over M0. The operations of ΦL are defined by counting pseudo-holomorphic quilted
disks with Lagrangian boundary conditions, seam condition on L and marked points
on their boundary, as represented in Figure 12. The tensor product of A∞-functors
defined in the present paper allows one to consider the A∞-functor ΦLM

⊗ ΦLN

associated to a pair of Lagrangian correspondences, raising the following question.

Problem. — Does the diagram

Fuk(M0)⊗ Fuk(N0) Fuk(M1)⊗ Fuk(N1)

Fuk(M0 ×N0) Fuk(M1 ×N1)

ΦLM
⊗ ΦLN

Φτ(LM×LN )

commute up to homotopy of A∞-functors?

In this diagram, LM ⊂M−
0 ×M1, LN ⊂ N−

0 ×N1 and the symplectomorphism τ

is defined by rearranging the factors of M−
0 × M1 × N−

0 × N1 into the factors of
M−

0 ×N−
0 ×M1 ×N1. In other words, we would like to know whether the algebraic

(tensor) product of geometric A∞-functors between Fukaya categories defined in this
paper is homotopic to the A∞-functor defined by the geometric product of the La-
grangian correspondences. We refer to [Fuk17, §13] for a discussion on two definitions
of the notion of a homotopy between A∞-functors.
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