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SPECTRAL CORRESPONDENCES FOR

RANK ONE LOCALLY SYMMETRIC SPACES:

THE CASE OF EXCEPTIONAL PARAMETERS

by Christian Arends & Joachim Hilgert

Abstract. — In this paper we complete the program of relating the Laplace spectrum for rank
one compact locally symmetric spaces with the first band Ruelle-Pollicott resonances of the
geodesic flow on its sphere bundle. This program was started in [FF03] by Flaminio and Forni for
hyperbolic surfaces, continued in [DFG15] for real hyperbolic spaces and in [GHW21] for general
rank one spaces. Except for the case of hyperbolic surfaces (see also [GHW18]) a countable set
of exceptional spectral parameters always remained untreated since the corresponding Poisson
transforms are neither injective nor surjective. We use vector valued Poisson transforms to treat
also the exceptional spectral parameters. For surfaces the exceptional spectral parameters lead
to discrete series representations of SL(2,R) (see [FF03, GHW18]). In general, the resulting
representations turn out to be the relative discrete series representations for associated non-
Riemannian symmetric spaces.

Résumé (Correspondances spectrales pour les espaces localement symétriques de rang 1 : le cas
des paramètres exceptionnels)

Dans cet article, nous complétons le programme sur la correspondance entre le spectre
du laplacien des espaces localement symétriques compacts de rang 1 et la première bande de
résonances de Ruelle-Pollicott de leur flot géodésique sur le fibré en sphères. Ce programme
a débuté dans [FF03] par Flaminio et Forni pour les surfaces hyperboliques, poursuivi dans
[DFG15] pour les espaces hyperboliques réels et dans [GHW21] pour les espaces généraux de
rang 1. À l’exception du cas des surfaces hyperboliques (voir aussi [GHW18]), un ensemble
dénombrable de paramètres spectraux exceptionnels n’a pas été traité, la raison étant que les
transformées de Poisson correspondantes ne sont ni injectives ni surjectives. Nous utilisons des
transformées de Poisson à valeurs vectorielles pour traiter ces paramètres spectraux exception-
nels. Pour les surfaces, les paramètres spectraux exceptionnels conduisent à des représentations
en série discrète de SL(2,R) (voir [FF03, GHW18]). En général, les représentations que l’on
obtient s’avèrent être les représentations en série discrète relatives pour les espaces symétriques
non riemanniens associés.
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1. Introduction

Dynamical systems with additional symmetry are surprisingly rigid. One manifes-
tation of this observation is the close connection between geodesic flows on locally
symmetric spaces and their quantizations, the Laplace-Beltrami wave kernels. This
was first observed for tori in the form of the Poisson summation formula and its
non-commutative analog, the Selberg trace formula, where the length spectrum of
closed geodesics and the spectrum of the Laplacian enter. In specific cases corre-
spondences on the level of eigenfunctions were established about twenty years ago
[LZ01, FF03, DH05, Müh06, Poh12].

In [DFG15] Dyatlov, Faure and Guillarmou showed that the spectrum of the
geodesic flow on compact hyperbolic manifolds essentially decomposes into bands,
the first of which is in one to one correspondence with the Laplace spectrum. For
these spectral values they also constructed linear isomorphisms between the corre-
sponding eigenspaces. In this context essentially means that there is a countable set
of explicitly known spectral values for which the methods do not apply.

In [GHW18] the very explicit information available for hyperbolic surfaces was used
to establish spectral correspondences also for the exceptional spectral values. In these
cases the quantum side turns out to be related to the discrete series representations
of SL(2,R), whereas the regular spectral values were related to irreducible unitary
spherical principal series representations.

The theory of quantum-classical spectral correspondences with spherical principal
series representations on the quantum side was extended to all rank one compact
locally symmetric spaces in [GHW21]. In this paper we complete the program for
these spaces by establishing quantum-classical spectral correspondences on the level
of eigenvectors for all exceptional spectral values.

We describe the setting in a little more detail. Let G be a non-compact simple
Lie group of real rank one and Γ be a co-compact discrete subgroup of G. For sim-
plicity we assume that G has finite center and Γ is torsion free. We fix a maxi-
mal compact subgroup K and observe that the locally symmetric space Γ\G/K
is a compact Riemannian manifold. Therefore its (elliptic) Laplace-Beltrami oper-
ator has discrete spectrum on L2(Γ\G/K) with smooth eigenfunctions lifting to
Γ-invariant eigenfunctions on G/K. Note that on G/K the Laplace-Beltrami op-
erator comes from a Casimir element and generates the algebra of G-invariant dif-
ferential operators. For generic spectral parameters µ the eigenfunctions generate
an irreducible G-representation which is equivalent to a spherical principal series
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representation Hµ. The corresponding intertwiner is the Poisson transform Pµ. So,
generically the Laplace-Beltrami eigenspaces ΓE−µ can be identified with the Γ-invari-
ant distribution vectors ΓH−∞

µ in the corresponding spherical principal series repre-
sentation, where the normalization of the spectral parameters is taken from [GHW21].

The word generic in the previous paragraph can be given a precise meaning. Let g0
be the Lie algebra of G and g the complexification of g0 (we use the analogous con-
vention for all subspaces of g0). The eigenvalues of the Laplace-Beltrami operator
on G/K are parameterized by elements of a∗ via the Harish-Chandra isomorphism,
where g = k+ p is the Cartan decomposition of the Lie algebra g fixed by the choice
of K and a0 is a maximal abelian subspace of p0. The parameters are unique up to
the action of the Weyl group W = NK(a)/ZK(a). A spectral parameter µ is generic if
and only if it is not a zero of the Harish-Chandra e-function which in turn is equiva-
lent to the bijectivity of the intertwining Poisson transform Pµ. Thus the exceptional
parameters alluded to in the title of the paper are the zeros of the e-function.

In the case of compact hyperbolic surfaces (see [GHW18]) the exceptional spectral
parameters are related to discrete series representations, which can be realized as
smooth (in fact, holomorphic or anti-holomorphic) sections of certain G-homogeneous
vector bundles over G/K. In these spaces of sections one has the action of a suitable
Bochner-Laplace operator (see [Olb94, Lem. 2.2]). While these representations are no
longer completely determined by the action of the Bochner-Laplacian, they are still
irreducible unitary representations of G obtained by a suitable vector valued Poisson
transform. This part can be generalized and we view the Γ-invariant sections, which
descend to the locally symmetric space, as part of the quantization of the cotangent
bundle of this space.

The cotangent bundle T ∗(Γ\G/K) = Γ\G ×K p∗0 of Γ\G/K is foliated into the
cosphere bundles Γ\G/ZK(a)× {r} with r ∈ a∗0 ≡ R determining the radius and the
zero section Γ\G/K. Each leaf of the foliation is invariant under the geodesic flow. On
the zero section it is trivial, whereas on the cosphere bundles it is given by the right
action Γ\G/M ×A→ Γ\G/M , (gM, a) 7→ gaM , where we use the standard abbrevi-
ation M for the centralizer ZK(a) and set A = exp(a0). This decomposition reduces
the spectral analysis of the geodesic flow to the A-action on Γ\G/M . This action is
Anosov as one sees from the Bruhat decomposition T (Γ\G/M) = G×M (n+0 +a0+n−0 ),
where g0 = k0 + a0 + n±0 are the two Iwasawa decompositions of g0 associated with
the two possible orderings of the set Σ of restricted roots in a∗0. The approach to
Ruelle-Pollicott resonances for the geodesic flow used in [GHW21] makes use of the
set D′

+(Γ\G/M) consisting of the distributions u ∈ D′(Γ\G/M) whose wavefront set
WF(u) is contained in the annihilator Γ\G×M (n+0 + a0)

⊥ ⊆ T ∗(Γ\G/M). Then the
set of resonant states for the spectral parameter µ ∈ a∗ is defined as

Res(µ) := {u ∈ D′
+(Γ\G/M) | ∀H ∈ a0 : H · u+ µ(H)u = 0},

where H acts as a left-invariant vector field on G/M descending to Γ\G/M . A spectral
parameter µ ∈ a∗ is called a Ruelle-Pollicott resonance if Res(µ) ̸= 0. The Ruelle-
Pollicott resonances form a discrete set and the corresponding spaces of resonant states
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are finite dimensional. A first band resonant state is a resonant state u which satisfies
X · u = 0, where X is any vector field on Γ\G/M which is a section of the subbundle
G ×M n−0 ⊆ T (Γ\G/M). We denote the space of first band resonant states for the
spectral parameter µ ∈ a∗ by Res0(µ). In the case of generic spectral parameters the
quantum-classical spectral correspondence says that the push-forward of the canonical
projection pr : Γ\G/M → Γ\G/K is a linear isomorphism π∗ : Res0(µ − ρ) → ΓEµ,
where ρ ∈ a∗0 is the usual half-sum of positive restricted roots counted with multiplicity
(see [GHW21, Th. 4.5]).

The strategy for our extension of the quantum-classical correspondence to excep-
tional spectral parameters is as follows. As in the generic case (see [GHW21, §3.2])
we start by lifting the first band Ruelle-Pollicott resonances to Γ-invariant distribu-
tions on the global symmetric space. The lifted spaces can be interpreted in terms of
spherical principal series (that part works for all spectral parameters, see [GHW21,
Prop. 3.8]) and the first band resonant states Res0(−µ − ρ) correspond to the space
ΓH−∞

µ of Γ-invariant distribution vectors of the corresponding principal series. For an
exceptional spectral parameter µ the corresponding principal series Hµ is no longer
irreducible. But it has a manageable composition series and it turns out that the
Γ-invariant distribution vectors are all contained in the socle (i.e., the sum of all
irreducible subrepresentations) of the representation, see Theorem. 4.1. In each of
the rank one cases except SO0(2, 1) (the case of surfaces, see [GHW18]) the socle
turns out to be irreducible with a unique minimal K-type τµ (see Theorem. 4.5) and
we can show that the vector valued Poisson transform associated with this K-type
(sum of K-types in the case of surfaces) is injective, see Proposition 3.11. The image
consists of spaces of Γ-invariant sections of vector bundles over Γ\G/K and we have
a quantum-classical correspondence as soon as we have characterized the image of
this Poisson transform.

We achieve the characterization of the image of the minimal K-type Poisson trans-
form via Fourier expansions of M -invariant functions with respect to M -spherical
K-representations. More precisely, we determine necessary and sufficient conditions
for a Fourier series to represent a distribution vector of the reducible spherical prin-
cipal series Hµ, see Theorem. 5.30, where the conditions are given in terms of gen-
eralized gradients (see [BÓØ96]). In each of the cases it is possible to determine a
G-invariant system of differential equations on the sections of the homogeneous bun-
dle G ×K Vτµ given by the minimal K-type (τµ, Vτµ) of the socle such that on the
space of Γ-invariant solutions we can write down an explicit boundary value on K/M
in terms of Fourier coefficients, see Theorems. 6.6, 6.8 and 6.10. Then our Fourier
characterization of H−∞

µ allows us to show that the boundary values are contained in
ΓH−∞

µ . In the case of SO0(n, 1) and for most exceptional spectral parameters in the
case of SU(n, 1) we have an alternative (and simpler) characterization of the vector
valued Poisson transform, which is based on techniques developed in [Mea89] to study
Cauchy-Szegö maps for SU(n, 1), see Theorems. 6.1 and 6.4.

We can explicitly determine the socle of all reducible spherical principal series
representations in rank one (see Theorem 4.5), and we see that the surface case,
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which so far was the only one known, is quite untypical. Not only is it the only case
where the socle is not irreducible, it is also one of the very few cases in which the rep-
resentation generated by the resonant states belongs to the discrete series of G. This is
only the case for SO0(2, 1) (surfaces), SU(2, 1), Sp(2, 1) and F4(−20), see Theorem 4.6.
On the other hand it turns out that all of these representations are unitarizable,
see Theorem 4.5. We can determine the Langlands parameters (see Theorem 4.6),
and in some cases geometric realizations, e.g. as solution spaces of differential equa-
tions are well-known (see [Olb94, Gai88]). But for most cases we did not find such
descriptions in the literature. From the detailed information on the K-types we can
actually identify the representations as relative discrete series representations of non-
Riemannian symmetric spaces G/H associated with G/K (Theorem 4.7). [TW89]
provides a geometric interpretation of a generating vector of such a representation in
terms of cohomology, but it gives no description of the representation space as such.
So our geometric realization as solution spaces of differential equations describing the
images of minimal K-type Poisson transforms might actually be new.

As mentioned above, our results complete the picture of first band quantum-
classical correspondences for compact locally symmetric spaces of rank one. In higher
rank an analogous quantum-classical correspondence for generic spectral parameters
has been established in [HWW23]. Extending that result to exceptional spectral para-
meters will be substantially harder as the information available on composition series
of spherical principal series is much less explicit in higher rank. Moreover, some of
the multiplicity one results we use (Propositions 2.1, 4.2, 5.19) or prove (Proposi-
tion 5.17) here are not always available in higher rank. As far as non-compact locally
symmetric spaces are concerned, one has to replace the (discrete) spectrum of the alge-
bra of invariant differential operators by a suitable concept of quantum resonances.
So far one only has quantum-classical correspondences for convex co-compact real
hyperbolic spaces and, for dimensions larger than two, only generic spectral parame-
ters [GHW18, Had20]. For locally symmetric spaces with cusps the results on record
are either very special (e.g. [LZ01, Müh06]) or else give only very rough information
(e.g. [DH05]). In view of [GBW22, Poh12], however, a quantum-classical correspon-
dence for surfaces seems to be within reach. Finally, we mention [KW21], where
quantum-classical correspondences for lifts of geodesic flows on compact locally sym-
metric spaces of rank one are treated for generic spectral parameters. That exceptional
spectral parameters occur also in such situations can be seen from [KW20], where the
authors have to leave out the case of three dimensional hyperbolic spaces because the
Gaillard Poisson transform they use is not bijective.

We conclude this introduction with a brief description of the way the paper is
structured. In Section 2 we collect the information on principal series representations
and their K-types. In Section 3 we recall the scalar Poisson transforms for symmetric
spaces and introduce the minimal K-type Poisson transforms. In Section 4 we show
that Γ-invariant distribution vectors in principal series representations have to be con-
tained in the socle of the representation. Moreover, we determine the socles and their
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minimal K-types in all cases. In Section 5 we study Fourier expansions of M -invariant
functions with respect to M -spherical K-representations. Apart from convergence is-
sues we deal with the technicalities needed to characterize the spherical principal
series representations in terms of Fourier expansions. In Section 6 we complete the
determination of the spectral correspondences by describing the Γ-invariant vectors
in the image of the minimal K-type Poisson transform. Appendix A is devoted to
the case by case calculations we could not avoid in proving the technical results of
Sections 4 and 5.

Acknowledgements. — We first thank Jan Frahm, without whom we might have over-
looked the connection to the non-Riemannian symmetric spaces (see Theorem 4.7).
Moreover, we thank Tobias Weich for numerous fruitful discussions and helpful re-
marks on the manuscript.

2. Reducible principal series

In this section we recall the main facts about principal series representations we
use in this paper.

2.1. Basic notation. — Let G be a noncompact, connected, real, semisimple Lie
group with finite center and Γ ⩽ G a co-compact, torsion free lattice. We denote
the Iwasawa decomposition of G by G = KAN . The K-, A-, or N -component in the
Iwasawa decomposition is denoted by kI , aI , or nI , respectively. Let M := ZK(A)

denote the centralizer of A in K. The corresponding Lie algebras will be denoted
by g0, k0, a0, n0,m0 with complexifications g, k, a, n,m. Moreover, let g = k ⊕ p be the
Cartan decomposition and denote the corresponding Cartan involution by θ. Asso-
ciated with the a0-action we define the restricted root spaces gα corresponding to
the restricted roots Σ ⊂ a∗0. Furthermore, we have the Bruhat decomposition given
by g0 = a0 ⊕ m0 ⊕

⊕
α∈Σ gα. The Iwasawa decomposition determines a positive sys-

tem Σ+ ⊂ Σ. The half-sum of positive roots is denoted by ρ := 1
2

∑
α∈Σ+ mαα with

the multiplicities mα := dimR gα. If log : A → a0 denotes the logarithm on A and
µ ∈ a∗ we define aµ := eµ(log a). By K̂ (resp. Ĝ, M̂) we denote the equivalence classes
of irreducible unitary representations of K (resp. G, M). The Weyl group of (g0, a0)
is denoted by W . Let κ denote the Killing form of g and U(g) denote the univer-
sal enveloping algebra of g. For H ∈ {K,M} and a finite-dimensional representation
(τ, Y ) of H we define the associated vector bundle G×HY as the quotient (G×Y )/ ∼,
where

∀ g ∈ G, h ∈ H, v ∈ Y : (g, v) ∼ (gh, τ(h−1)v).

We always identify the space of smooth sections of this bundle with

C∞(G×H Y ) := {f ∈ C∞(G, Y ) | ∀ g ∈ G, h ∈ H : f(gh) = τ(h−1)f(g)}.
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2.2. Realizations of spherical principal series representations. — Spherical prin-
cipal series representations can be realized in different ways (“pictures”) all of which
have their advantages. Let µ ∈ a∗ and denote by L2(K) the space of C-valued func-
tions which are L2 with respect to the normalized Haar measure dk on K.

In the induced picture the representation space Hµ is given by all measurable
functions f : G→ C such that

(1) f(gman) = aµ−ρf(g) for all g ∈ G,m ∈M,a ∈ A,n ∈ N ,
(2) f

∣∣
K
∈ L2(K).

The representation is given by

(πµ(g)f)(x) := f(g−1x), g, x ∈ G, f ∈ Hµ.

Endowed with the L2-norm ∥f∥2 :=
∫
K
|f(k)|2 dk this realization is a Hilbert space

representation. The parametrization is chosen such that Hµ is unitary if µ ∈ ia∗0 is
imaginary.

The Iwasawa decomposition shows that a function in Hµ is completely determined
by its restriction to K. Thus, the surjective isometry

(2.1) Hµ
∼= Hcpt

µ ,

where Hcpt
µ denotes the Hilbert space L2(K)M of all functions f ∈ L2(K) with

f(km) = f(k) for all k ∈ K, m ∈ M , gives another realization of the principal
series representation. This realization is called the compact picture. Note that the
representation space does not depend on µ. However, in this picture the G-action is
more complicated compared to the induced picture. It is induced by the action πµ via
the isometry above and given by

(2.2) (πcpt
µ (g)f)(k) := aI(g

−1k)µ−ρf(kI(g
−1k)),

where k ∈ K, g ∈ G and f ∈ Hcpt
µ . In the following, we will simply write Hµ for both

realizations for the sake of simplicity. Note that in the induced and compact picture,
respectively, the representation space naturally factors through the quotient G/M ,
respectively K/M , and we will use these realizations from now on.

2.3. Globalizations and infinitesimal character. — Let (π,H) denote a Hilbert
space realization of a (subrepresentation of a) principal series representation. In this
paragraph we define smooth and distribution vectors in (π,H). We call a vector v ∈ H

a smooth or C∞-vector for π if

G −→ H, g 7−→ π(g)v

is smooth. Let H∞ ⊆ H denote the vector space of all smooth vectors in H. For π =

πcpt
µ the smooth vectors are actually smooth functions (see e.g. [Vog08, Eq. (5.15)(a)]):

H∞ = {f : K → C smooth | ∀ k ∈ K, m ∈M : f(km) = f(k)} ∼= C∞(K/M).

We equip the space H∞ with its natural Fréchet topology (see e.g. [Vog08, p. 18]).
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The distributional vectors H−∞ are given by the elements of the dual representation
– with respect to the Fréchet topology – of the smooth vectors in the dual represen-
tation of (π,H). We give an alternative description which often is more convenient.
For this we use [Hel00, Ch. I, §5.3., Eq. (25)] to see that, for each µ ∈ a∗,

⟨· , ·⟩µ : Hµ ×H−µ −→ C, ⟨f1, f2⟩µ :=

∫
K

f2(k)(f1(k)) dk

is a nondegenerate, bilinear, and G-invariant pairing between Hµ and H−µ. By this
pairing, we see that the distributional vectors H−∞

µ of the spherical principal series
representation Hµ are given by the contragredient representation of H∞

−µ.
Note that the distributional vectors can be realized on D′(K/M) := C∞(K/M)′,

the space of distributions on K/M . We also define D′(G/M) := C∞
c (G/M)′, the space

of distributions on G/M . In rank one we have a unique H ∈ a0 such that α(H) = 1 for
the unique simple positive restricted root α of (g, a). In this case, the distributional
vectors in the induced picture of Hµ are given by

(2.3) R(µ− ρ)
:= {u ∈ D′(G/M) | (H − µ(H) + ρ(H))u = 0,∀U ∈ C∞(G×M n0) : Uu = 0},

equipped with the left regular representation, and there is a topological isomorphism

(2.4) Qµ : (D
′(K/M), πcpt

µ ) −→ R(µ− ρ),

which intertwines the G-actions and which extends, by duality, the isomorphism Hµ
∼=

Hcpt
µ from (2.1) (cf. [GHW21, Prop. 3.7]).
Note that we always have the linear embedding

ιµ : Hµ ↪−→ H−∞
µ , ιµ(f1)(f2) := ⟨f1, f2⟩µ ∀ f1 ∈ Hµ, f2 ∈ H∞

−µ.

By the G-invariance of the pairing ⟨· , ·⟩σ,µ, this embedding ensures that the action
of G on H−∞

µ extends the one on Hµ from Equation (2.2). However, note that test
functions f ∈ C∞(K/M) ∼= H∞

−µ are acted upon by π∗
µ
∼= π−µ.

For each subrepresentation V ⩽ Hµ we have the restricted pairing

V × (H−µ/V
⊥µ) −→ C, ⟨f1, f2 + V ⊥µ⟩µ :=

∫
K

f2(k)(f1(k)) dk,

where

(2.5) V ⊥µ := {f2 ∈ H−µ | ∀ f1 ∈ V : ⟨f1, f2⟩µ = 0}.

This implies that V −∞ is the contragredient representation of (H−µ/V
⊥µ)∞.

Any principal series representation has an infinitesimal character. In order to
describe the infinitesimal character of Hµ we first fix some notation. Let t ⩽ m denote
a θ-stable Cartan subalgebra of m and ρm denote the half-sum of positive roots for
(m, t) with respect to some ordering. Then Hµ has infinitesimal character ρm − µ

relative to h := a ⊕ t (cf. [Kna86, Prop. 8.22]). We recall the Casimir element Ωg,
an important element of the center Z(U(g)) of U(g). Let B be a fixed multiple of
the Killing form κ. For a basis X1, . . . , Xdim g0

of g0 let (gij)ij denote the inverse
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matrix of (B(Xi, Xj))i,j . Then the dual basis (Xi)i is given by Xi =
∑
gijXj and

the Casimir element is defined by

Ωg :=
∑

i
XiXi =

∑
i,j
gijXjXi ∈ Z(U(g)).

Since B is nondegenerate, there are unique elements Xφ ∈ g0 for each φ ∈ g∗0 such
that φ(X) = B(X,Xφ) for each X ∈ g0. We put ⟨φ,ψ⟩ := B(Xφ, Xψ) for φ,ψ ∈ g∗0
resp. g∗. Let us extend the ordering on a to h such that Σ+ arises by restriction from
the positive roots of (g, h). By [Kna86, Lem. 12.28], the action of the Casimir element
is then given by the scalar

πµ(Ωg) = ⟨µ, µ⟩ − ⟨ρ+ ρm, ρ+ ρm⟩ = ⟨µ, µ⟩ − ⟨ρ, ρ⟩.

2.4. Reducibility. — We are particularly interested in principal series representa-
tions which are not irreducible, i.e., in the set

A′ := {µ ∈ a∗ | Hµ reducible}.

In this subsection we introduce the representation theoretic tools we need to describe
the structure of these reducible representations.

Composition series, minimal K-types and socle. — In general, principal series represen-
tations are not completely reducible. However, they are all of finite length (cf. [Kra78]).
This means, there exists a finite composition series, i.e., a chain of subrepresentations
of Hµ of the form

0 ⊊W1 ⊊ · · · ⊊Wn = Hµ

such that the quotients Wi+1/Wi, the composition factors, are irreducible. By the
Jordan-Hölder theorem, any two composition series have the same length and the
same composition factors up to permutation and isomorphism.

Let π denote an admissible Hilbert representation of G (i.e., a continuous represen-
tation such that each K-isotypic component has finite dimension) and fix a Cartan
subalgebra b0 of k0. With respect to some ordering, we define ρk as the half-sum of
the positive roots of (k, b). We say that Y ∈ K̂ with highest weight λ is a minimal
K-type of π if Y occurs in π restricted to K and

⟨λ+ 2ρk, λ+ 2ρk⟩

is minimal with respect to this property. The set of minimal K-types is independent
of the choice of the ordering and its cardinality is finite and at least one. For spherical
principal series representations πµ each minimal K-type of πµ occurs in πµ

∣∣
K

with
multiplicity one (cf. [Vog79, Th. 1.1]).

For any Hilbert representation (π,H) of G we define socπ, the socle of π, as the
closure (in the sense of [Kna86, Th. 8.9]) of the sum of all completely reducible (g,K)-
submodules of the underlying (g,K)-module of (π,H) (see [KV95, p. 538]).

J.É.P. — M., 2023, tome 10



344 C. Arends & J. Hilgert

Decomposition asK-representation andM-spherical functions. — We begin with a brief
discussion of the decomposition of πµ

∣∣
K

in general and then give some more pre-
cise results of this decomposition in the rank one case. For the decomposition as
K-representation we consider the compact picture Hcpt

µ . As K-representation this
coincides with the induced representation IndKM (trivM ) of trivM to K. By Frobenius
reciprocity we thus obtain for each Y ∈ K̂ that

HomK(Hcpt
µ , Y ) = HomK(IndKM (trivM ), Y ) ∼= HomM (C, Y ).

Let us denote the multiplicity of trivM in Y (and analogously for other groups and
representations) by

multM (C, Y ) := dimC HomM (C, Y ).

Then, writing
K̂M := {Y ∈ K̂ | multM (C, Y ) ̸= 0},

we have that, denoting equivalence as K-representations by ∼=K and the Hilbert space
direct sum by

⊕̂
,

Hcpt
µ
∼=K

⊕̂
Y ∈K̂M

multM (C, Y )Y.

If not stated otherwise, we realize each Y ∈ K̂M as a subrepresentation of Hcpt
µ =

L2(K/M). Note that L2(K/M) carries the left regular representation L. We denote
the derived representation of L by ℓ.

Let us now assume that G has real rank one. In this case some more precise results
can be achieved. Most importantly, (K,M) is a Gelfand pair in this case (cf. [Hel94,
Ch. II, §6, Cor. 6.8]). This implies the following

Proposition 2.1. — Let C denote the trivial M -representation. Then

(2.6) ∀Y ∈ K̂M : multK(Y,Hµ) = multM (C, Y ) = dimC Y
M = 1,

where
YM := {v ∈ Y | ∀m ∈M : m · v = v}

denotes the space of M -invariant elements in Y . In particular, the decomposition

Hµ
∼=K

⊕̂
Y ∈K̂M

Y

is multiplicity free.

Proof. — The first equality follows from Frobenius reciprocity and the second equality
follows from [Hel00, Ch. V, Th. 3.5(iv)]. □

Note that IndKM (trivM ) is given by the left regular representation of K on L2(K/M)

resp. L2(K)M , the M -invariant elements of L2(K) with respect to the right regular
representation. The following proposition describes the M -spherical elements YM for
each Y ∈ K̂M and is well-known to specialists. We give a proof for the convenience
of the reader.

Proposition 2.2 (cf. [Hel00, Intro., Prop. 3.2(ii)]). — Let 0 ̸= (τ, Y ) ⩽ L2(K)M be an
irreducible representation. Then
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(1) there exists a unique ϕY ∈ YM such that ϕY (e) = 1 and YM = CϕY ,
(2) φ(k)⟨ϕY , ϕY ⟩L2(K) = ⟨φ, τ(k)ϕY ⟩L2(K) for k ∈ K, φ ∈ Y ,
(3) ⟨ϕY , ϕY ⟩L2(K) = 1/dimY , ϕY (k−1) = ϕY (k), |ϕY (k)| ⩽ 1 for k ∈ K.

Proof
(1) By Equation (2.6) we have dimC Y

M = 1. Let 0 ̸= ψ ∈ Y and choose some
k ∈ K such that ψ(k) ̸= 0. Replacing ψ by τ(k−1)ψ we may assume that ψ(e) ̸= 0.
The function

Ψ : K −→ C, k 7−→
∫
M

τ(m)ψ(k) dm

is contained in YM with Ψ(e) = ψ(e) ̸= 0. This proves the first part.
(2) For each m ∈M we have by the K-invariance of the Haar measure

⟨φ, ϕY ⟩L2(K) =

∫
K

φ(k)ϕY (k) dk =

∫
K

φ(k)ϕY (m−1k) dk

=

∫
K

φ(mk)ϕY (k) dk =

∫
K

ϕY (k)

∫
M

φ(mk) dm dk.

Note that the map

θ : K −→ C, k 7−→
∫
M

φ(mk) dm =

∫
M

τ(m−1)φ(k) dm

is contained in VM = CϕY . We infer that θ = θ(e)ϕY = φ(e)ϕY and thus

⟨φ, ϕY ⟩L2(K) = φ(e)

∫
K

ϕY (k)ϕY (k) dk = φ(e)⟨ϕY , ϕY ⟩L2(K).

Replacing φ by τ(k−1)φ we obtain (2).
(3) By the Schur orthogonality relations we have

1

dimY
⟨φ,φ⟩L2(K)⟨ϕY , ϕY ⟩L2(K) =

∫
K

⟨τ(k)ϕY , φ⟩L2(K)⟨τ(k)ϕY , φ⟩L2(K) dk

(2)
=

∫
K

φ(k)⟨ϕY , ϕY ⟩L2(K)φ(k)⟨ϕY , ϕY ⟩L2(K) dk

= ⟨ϕY , ϕY ⟩2L2(K)

∫
K

φ(k)φ(k) dk

= ⟨ϕY , ϕY ⟩2L2(K)⟨φ,φ⟩L2(K).

This proves ⟨ϕY , ϕY ⟩L2(K) = 1/dimY . By (2) we deduce

ϕY (k) = dimY ⟨ϕY , τ(k)ϕY ⟩L2(K) = dimY ⟨ϕY , τ(k−1)ϕY ⟩L2(K) = ϕY (k−1)

and, using the Cauchy-Schwarz inequality,

|ϕY (k)| = dimY |⟨ϕY , τ(k)ϕY ⟩L2(K)| ⩽ dimY ⟨ϕY , ϕY ⟩L2(K) = 1. □
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Intertwiner. — Finally, we describe a procedure to obtain G-equivariant maps
between sections of associated vector bundles. These generalized gradients generalize
the classical raising and lowering operators of PSL(2,R).

The following fact allows the definition of generalized gradients.

Proposition 2.3 (cf. [Ørs00, Prop. 3.1]). — Let K act on p∗ by the coadjoint repre-
sentation. The following map is defined for every (τ, Y ) ∈ K̂:

∇ : C∞(G×K Y ) −→ C∞(G×K (Y ⊗ p∗)),

(∇f)(g) ∈ Hom(p, Y ) ∼= Y ⊗ p∗, (∇f)(g)(X) :=
d

dt

∣∣∣
t=0

f(g exp tX).

Moreover, it defines a G-equivariant covariant derivative with zero torsion.

Definition 2.4. — Let (τi, Yτi) ∈ K̂, i ∈ {1, 2}, with Yτ2 ⩽ Yτ1 ⊗ p∗ and let T ∈
HomK(Yτ1 ⊗ p∗, Yτ2). Then we define the generalized gradient

T ◦ ∇ : C∞(G×K Yτ1) −→ C∞(G×K Yτ2).

If not stated otherwise, we choose T = prτ2 , the orthogonal projection onto Yτ2 .

3. Poisson transforms

In this section we connect principal series representations with joint eigenspaces of
differential operators on vector bundles over G/K. We will first recall the standard
scalar Poisson transform and show how it is related to the exceptional parameters
of [DFG15] and [GHW21]. Then we introduce vector valued generalizations based
on [Olb94], discuss some mapping properties and relate them to specific generalized
gradients.

3.1. Invariant differential operators and eigenspaces. — Let (τ, Y ) ∈ K̂. A dif-
ferential operator D on C∞(G ×K Y ) is called invariant if it commutes with the
left regular representation L on C∞(G ×K Y ). Let D(G, τ) denote the algebra of all
invariant differential operators on C∞(G×K Y ).

For the trivial bundle we abbreviate D(G/K) := D(G, triv). This space is
isomorphic to U(g)K/(U(g)K ∩ U(g)k) and the Harish-Chandra homomorphism
χ : D(G/K)→ S(a0)

W allows us to identify D(G/K) with the W -invariants S(a0)W
of the symmetric algebra S(a0) of a0 (see [Hel00, Ch. II, Th. 4.3, 4.6, 5.18]). Moreover,
every character of D(G/K) is of the form

χµ : D(G/K) −→ C, χµ(D) := χ(D)(µ)

for some µ ∈ a∗ and χν = χµ if and only if ν ∈ Wµ (cf. [Hel00, Ch. III, Lem. 3.11]).
Let us denote the space of joint eigenfunctions of D(G/K) by

Eµ := {f ∈ C∞(G/K) | ∀D ∈ D(G/K) : Df = χµ(D)f},

and, with the Riemannian distance function dG/K on G/K, for each r ⩾ 0

(3.1) Eµ,r(G/K) := {f ∈ Eµ | supg∈G|e−rdG/K(eK,gK)f(g)| <∞}.

We put Eµ,∞(G/K) :=
⋃
r⩾0 Eµ,r(G/K), equipped with the direct limit topology.
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For arbitrary (τ, Y ) ∈ K̂ the right regular representation r of U(g) on C∞(G, Y )

induces an isomorphism U(g)K/(U(g)K∩U(g) opp(Iτ )) ∼= D(G, τ), where Iτ := ker τ ⊂
U(k) and opp : U(g)→ U(g) denotes the antihomomorphism defined by opp(X) :=−X
for X ∈ g (see [Min92, Th. 1.3]). As r is a representation, we can define for each µ ∈ a∗

a representation χτ,µ of D(G, τ) by
χτ,µ : D(G, τ) −→ End(HomK(Hµ, Y )), χτ,µ(r(u))(T ) := T ◦πµ(oppu), u ∈ U(g)K .

Note that χτ,µ is well-defined by the K-equivariance of each T ∈ HomK(Hµ, Y ).
In the case of multM (C, Y ) = 1 these representations are one dimensional and we can
define the space of joint eigensections

Eτ,µ := {f ∈ C∞(G×K Y ) | ∀D ∈ D(G, τ) : Df = χτ,µ(D)f},

where we identified End(HomK(Hµ, Y )) with C.

3.2. Mapping properties of scalar Poisson transforms. — The asymptotics of joint
eigenfunctions in Eµ can be described by a specific meromorphic function on a∗,
the Harish-Chandra c-function c(µ). We define its “denominator”, the meromorphic
function e(µ)−1, by (µ ∈ a∗)

e(µ)−1 :=
∏
α∈Σ+

Γ
(1
2

(1
2
mα + 1 +

⟨µ, α⟩
⟨α, α⟩

))
Γ
(1
2

(1
2
mα +m2α +

⟨µ, α⟩
⟨α, α⟩

))
,

see e.g. [Sch84, Eq. (5.17)]. Then e is an entire function on a∗ without zeros on the
closure of the positive Weyl chamber.

Definition 3.1 (cf. [vdBS87, Th. 10.6, 12.2]). — For µ ∈ a∗ define the scalar Poisson
transform

Pµ : D′(K/M) ∼= H−∞
µ −→ Eµ,∞(G/K),

Pµ(f)(gK) := ⟨f, π−µ(g)1K/M ⟩ = ⟨f, π∗
µ(g)1K/M ⟩ = ⟨πµ(g−1)f,1K/M ⟩,

where 1K/M ∈ H∞
−µ denotes the constant function 1 on K/M . Then Pµ is a topological

isomorphism if and only if e(µ) ̸= 0. If e(µ) = 0, then Pµ is neither injective nor
surjective.

Definition 3.2. — We call
Ex := {µ ∈ a∗ | e(µ) = 0}

the set of exceptional parameters.

Example 3.3. — The exceptional parameters are exactly the parameters which were
excluded in [DFG15] and [GHW21]. Indeed, let G be of real rank one. Then the
e-function is zero if and only if one of the Gamma functions has a pole which is the
case if and only if

µ ∈
(
−1

2
mα − 1− 2N0

)
α ∪

(
−1

2
mα −m2α − 2N0

)
α,

where α denotes the unique simple positive real root. Moreover, (see [Hel70, Ch. IV,
Th. 1.1])

Hµ irreducible ⇐⇒ e(µ)e(−µ) ̸= 0.

Therefore, irreducibility of Hµ is sufficient but not necessary for the bijectivity of Pµ.
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3.3. Vector valued Poisson transforms. — In this subsection we describe general-
ized Poisson transforms based on [Olb94], which will serve as a substitute for the
scalar Poisson transform for the exceptional parameters.

Definition 3.4 (cf. [Olb94, Def. 3.2/Satz 3.4]). — Let τ ∈ K̂ and µ ∈ a∗. Then we
define the (vector valued) Poisson transform by

(3.2)
P τµ : HomK(H−∞

µ , Vτ )⊗H−∞
µ −→ C∞(G×K Vτ ),

P τµ (T ⊗ f)(g) = T (πµ(g
−1)f).

If F : HomK(Hµ, Vτ ) ∼= HomM (C, Vτ ) denotes the Frobenius isomorphism we have

(3.3) P τµ (T ⊗ f)(g) =
∫
K

τ(k)F (T )(f(gk)) dk

for T ∈ HomK(Hµ, Vτ ), f ∈ Hµ and g ∈ G. By [Hel00, Ch. I, §5.3, Eq. (25)] we obtain

P τµ (T ⊗ f)(g) =
∫
K

aI(g
−1k)−2ρτ(kI(g

−1k))F (T )(f(gkI(g
−1k))) dk

=

∫
K

aI(g
−1k)−2ρτ(kI(g

−1k))F (T )(f(knI(g
−1k)−1aI(g

−1k)−1)) dk

=

∫
K

aI(g
−1k)−(µ+ρ)τ(kI(g

−1k))F (T )(f(k)) dk.

The image of P τµ is contained in Eτ,µ and P τµ is D(G, τ) × G-equivariant, where
D(G, τ) acts on HomK(Hµ, Vτ ) by χτ,µ: For all u ∈ U(g)K , f ∈ H−∞

µ , g, x ∈ G,
T ∈ HomK(H−∞

µ , Vτ ),

P τµ (χτ,µ(r(u))T ⊗ f)(g) = T (πµ(oppu)πµ(g
−1)f) = r(u)(P τµ (T ⊗ f))(g),

P τµ (T ⊗ πµ(x)f)(g) = T (πµ(g
−1)πµ(x)f) = P τµ (T ⊗ f)(x−1g).

Remark 3.5 (Scalar vs. vector valued). — When τ is the trivial representation of K
we have HomK(Hµ, Vτ ) ∼= HomM (C,C) ∼= C. Let t ∈ HomM (C,C) be the identity
and T := F−1(t) = prC. Then

P τµ (T ⊗ f)(g) =
∫
K

aI(g
−1k)−(µ+ρ)f(k) dk = Pµ(f)(gK).

The following lemma illustrates the naturality of Olbrich’s Poisson transforms.

Lemma 3.6 (cf. [Olb94, Rem. after Lem. 3.3]). — Let Ψ : Hµ → C∞(G ×K Vτ ) be a
G-equivariant map. Then

Ψ = P τµ (T ⊗ •)

where T ∈ HomK(Hµ, Vτ ) is defined by T (f) := Ψ(f)(e).

Proof. — For every k ∈ K we have

T (πµ(k)f) = Ψ(πµ(k)f)(e) = Ψ(f)(k−1) = τ(k)Ψ(f)(e) = τ(k)T (f)

and thus T ∈ HomK(Hµ, Vτ ). Moreover we have for every g ∈ G and f ∈ Hµ

P τµ (T ⊗ f)(g) = Ψ(πµ(g
−1)f)(e) = Ψ(f)(g). □
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This lemma admits the following important implications.

Corollary 3.7. — Let Ψ : Hµ → C∞(G ×K Vτ ) be a G-equivariant map where Vτ
does not contain the trivial M -representation. Then Ψ = 0.

Proof. — By Lemma 3.6 there exists T ∈ HomK(Hµ, Vτ ) such that Ψ = P τµ (T ⊗ •).
But HomK(Hµ, Vτ ) ∼= HomM (C, Vτ ) = 0 by Frobenius reciprocity. □

Corollary 3.8. — Let (τi, Vτi) ∈ K̂, i ∈ {1, 2}, be such that

multK(Vτi , Hµ) = dimC HomK(Hµ, Vτi) = 1

and let Φ : C∞(G ×K Vτ1) → C∞(G ×K Vτ2) be a G-equivariant map. By choosing
0 ̸= Ti ∈ HomK(Hµ, Vτi) we consider the Poisson transforms P τiµ as maps from Hµ

to C∞(G×K Vτi). Then there exists some c ∈ C such that

Φ ◦ P τ1µ = c · P τ2µ .

Proof. — Since
Φ ◦ P τ1µ (T1 ⊗ •) : Hµ −→ C∞(G×K Vτ2)

is a G-equivariant map there exists some T ∈ HomK(Hµ, Vτ2) such that

Φ ◦ P τ1µ (T1 ⊗ •) = P τ2µ (T ⊗ •)

by Lemma 3.6. Since dimC HomK(Hµ, Vτi) = 1 there exists some c ∈ C with T =

c · T2. □

3.4. Injectivity of vector valued Poisson transforms. — In this subsection we
investigate specific vector valued Poisson transforms. We will see that if we pick
a minimal K-type for each irreducible subspace of the representation, the direct
sum of the associated Poisson transforms is injective. By our rank one assumption
each spherical principal series representation Hµ decomposes multiplicity-freely as a
K-representation (see Proposition 2.1). Therefore we have the following

Lemma 3.9. — Let 0 ̸= (τ, V ) ⩽ Hµ be an irreducible K-representation and t ∈
HomM (C, V ). Denote the orthogonal projection onto V – which is well-defined by
Proposition 2.1 – by prV . Then

F−1(t) =
t(1)(e)

dimV
prV ,

where as above F denotes the Frobenius isomorphism.

Proof. — Let T := F−1(t) and T ∗ : V ∗ → H−µ denote its dual. Then, for f ∈ Hµ,
w ∈ V ∗,

⟨Tf,w⟩ = ⟨f, T ∗w⟩µ =

∫
K

f(k)(T ∗w)(k) dk =

∫
K

f(k)(T ∗(τ̃(k−1)w)(e)) dk

=

∫
K

⟨F (T )f(k), τ̃(k−1)w⟩dk =

∫
K

⟨τ(k)tf(k), w⟩dk.
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Since T and prV are both contained in the one-dimensional space HomK(Hµ, V ) they
are multiples of each other. To compute this multiple we calculate

T (ϕV )(e) =

∫
K

(τ(k)t(ϕV (k)))(e) dk =

∫
K

ϕV (k)(τ(k)t(1))(e) dk

=

∫
K

ϕV (k)(τ(k)t(1)(e)ϕV )(e) dk = t(1)(e)

∫
K

ϕV (k)ϕV (k
−1) dk

=
t(1)(e)

dimV
=
t(1)(e)

dimV
prV (ϕV )(e),

where we used Proposition 2.2 (1) to infer t(1) = t(1)(e)ϕV from t(1) ∈ VM = CϕV
and used Proposition 2.2 (3) in the last line. □

From now on we choose t ∈ HomM (C, V ) for each (τ, V ) ∈ K̂M by t(1) := ϕV and
define

P τµ : H−∞
µ −→ C∞(G×K V ), P τµ (f) := P τµ (F

−1(t)⊗ f).
Note that, by Lemma 3.9, we have for each f ∈ H−∞

µ and g ∈ G

(3.4) P τµ (f)(g) =
1

dimV
prV (πµ(g)

−1f).

Proposition 3.10. — Let [(τ, Vτ )] ∈ K̂M and µ ∈ a∗. Then the Poisson transform
P τµ : H−∞

µ −→ C∞(G×K V )

is injective if and only if every non-trivial G-invariant subspace of H−∞
µ contains τ .

Moreover, the kernel is given by the distributional elements in the closure of the sum
of all G-invariant subspaces V ⩽ Hµ with multK(τ, V ) = 0.

Proof. — Since P τµ is G-equivariant, the kernel kerP τµ is G-invariant. We claim that
it equals the closure of the sum of all invariant subspaces of Hµ which do not contain
the K-representation (τ, Vτ ):

If {0} ≠ W ⩽ Hµ is an invariant subspace of Hµ which does not contain the
K-representation τ , by (3.4) we have

P τµ (f)(g) =
1

dimVτ
prVτ

(πµ(g
−1)f) = 0

for every f ∈ W and g ∈ G since πµ(g−1)f ∈ W . Thus, f ∈ kerP τµ . This proves the
first inclusion because the kernel is closed.

Conversely, let f ∈ kerP τµ . Since the kernel is invariant, the distributional elements
in the G-cyclic space Wf of f are also contained in the kernel of P τµ . Therefore, f is
contained in an invariant space which does not contain τ (if Wf contains τ we can
choose g = e to get a contradiction to Wf ⊆ kerP τµ ). □

Proposition 3.11. — Let µ ∈ a∗ and Irr(µ) be the set of all non-zero irreducible
subrepresentations of Hµ. Then, if (τU , VτU ) is any non-zero K-type of U for U ∈
Irr(µ), the direct sum of the corresponding Poisson transforms

⊕U∈Irr(µ)P
τU
µ : H−∞

µ −→
⊕

U∈Irr(µ)

C∞(G×K VτU )

is injective. A natural choice of (τU , VτU ) is given by a minimal K-type of U .
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Proof. — Since the kernel of the direct sum ⊕U∈Irr(µ)P
τU
µ is the intersection of the

kernels of P τUµ , U ∈ Irr(µ), we can apply Proposition 3.10 to deduce

⊕U∈Irr(µ)P
τU
µ injective ⇐⇒ ∀{0} ≠ V ⩽ Hµ ∃U ∈ Irr(µ) : multK(τU , V ) ̸= 0.

Let {0} ̸= V ⩽ Hµ be a non-trivial (closed) G-invariant subspace. We claim that
there exists some U ∈ Irr(µ) such that multK(τU , V ) ̸= 0. In fact, since Hµ has a
composition series, V also has a composition series by [KV95, p. 815]. In particular,
there exists an irreducible subrepresentation {0} ≠ I ⩽ V . But I ∈ Irr(µ) by the
definition of Irr(µ) and multK(τI , V ) ̸= 0 since I ⩽ V . □

3.5. The role of generalized gradients. — In this subsection we use general-
ized gradients to connect different Poisson transforms associated with inequivalent
K-representations. We first introduce some notation.

Notation 3.12. — We define the inner product

⟨· , ·⟩ := − κ(·, θ·)
κ(H,H)

and identify
I : p −→ p∗, X 7−→ ⟨X, ·⟩.

For a basis X1, . . . , Xdim p of p we denote its dual basis with respect to ⟨· , ·⟩ by
X̃1, . . . , X̃dim p, i.e.,

I(X̃i)(Xj) = ⟨X̃i, Xj⟩ = δij .

Lemma 3.13. — For Y ∈ K̂M let dYV := TYV ◦ ∇ with TYV ∈ HomK(Y ⊗ p∗, V ),
where V ⩽ L2(K) denotes an irreducible subrepresentation of Y ⊗p∗, be a generalized
gradient and µ ∈ a∗. Choose a basis X1, . . . , Xdim p of p0 such that X1 ∈ a and
Xj ∈ k⊕ n (e.g. an orthonormal basis of p with X1 ∈ a). Let

pY,µ := (µ+ ρ)(X1)ϕY ⊗ I(X̃1)−
dim p∑
j=2

ℓ(kI(Xj))ϕY ⊗ I(X̃j) ∈ Y ⊗ p∗,

where kI(Xj) ∈ k denotes the k-component in the k⊕a⊕n-decomposition of Xj. Then
(1) pY,µ is independent of the basis and M -invariant,
(2) dYV ◦ PYµ = TYV (pY,µ)(e)P

V
µ if V is M -spherical, i.e., V ⩽ L2(K)M ,

(3) dYV ◦ PYµ = 0 if V is not M -spherical, i.e., VM = 0.

Proof
(1) Identifying

Y ⊗ p∗ ∼= Hom(p, Y ), f ⊗ λ 7−→ (X 7−→ λ(X)f),

the tensor pY,µ corresponds to the homomorphism given by

pY,µ(X) = (µ+ ρ)(X)ϕY ∀X ∈ a,

pY,µ(X) = ℓ(kI(X))ϕY ∀X ∈ p ∩ (k⊕ n),
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which is independent of the basis. For the M -invariance note first that the K-action
on Hom(p, Y ) is given by

(k · Φ)(X) = k · Φ(k−1 ·X) = L(k)Φ(Ad(k−1)X), X ∈ p, Φ ∈ Hom(p, Y ).

Since M stabilizes a and ϕY is M -invariant we have for each X ∈ a,

(m.pY,µ)(X) = L(m)pY,µ(Ad(m−1)X) = L(m)pY,µ(X)

= (µ+ ρ)(X)L(m)ϕY = (µ+ ρ)(X)ϕY = pY,µ(X).

Moreover, since M leaves k, a and n invariant, we have for each X ∈ p ∩ (k⊕ n),

(m.pY,µ)(X) = L(m)pY,µ(Ad(m−1)X) = L(m)ℓ(kI(Ad(m−1)X))ϕY

= L(m)ℓ(Ad(m−1)kI(X))ϕY

= L(m)L(m−1)ℓ(kI(X))L(m)ϕY

= ℓ(kI(X))ϕY = pY,µ(X).

This proves the first part.
(2), (3) Let δeM denote the Delta distribution at eM on K/M . Then

(3.5) PYµ (δeM )(g) = aI(g
−1)−(µ+ρ)τ(kI(g

−1))ϕY ∈ C∞(G×K Y ).

We first obtain

(∇ ◦ PYµ (δeM ))(e)(X1) =
d

dt

∣∣∣
t=0

PYµ (δeM )(exp tX1)

=
d

dt

∣∣∣
t=0

aI(exp−tX1)
−(µ+ρ)ϕY

=
d

dt

∣∣∣
t=0

et(µ+ρ)(X1)ϕY = (µ+ ρ)(X1)ϕY .

For j ∈ {2, . . . ,dim p} we write Xj = kI(Xj) + nI(Xj) ∈ k0 ⊕ n0 and obtain

(∇ ◦ PYµ (δeM ))(e)(Xj) = (∇ ◦ PYµ (δeM ))(e)(kI(Xj)) + (∇ ◦ PYµ (δeM ))(e)(nI(Xj))

= (∇ ◦ PYµ (δeM ))(e)(kI(Xj))

=
d

dt

∣∣∣
t=0

τ(exp−tkI(Xj))ϕY = −ℓ(kI(Xj))ϕY ,

where we used in the second step that PYµ (δeM )(n) = ϕY for n ∈ N by (3.5). Thus,

(∇ ◦ PYµ (δeM ))(e) = (µ+ ρ)(X1)ϕY ⊗ I(X̃1)−
dim p∑
j=2

ℓ(kI(Xj))ϕY ⊗ I(X̃j)

and therefore

(dYV ◦ PYµ (δeM ))(e) = TYV ((∇ ◦ PYµ (δeM ))(e))

= TYV

(
(µ+ ρ)(X1)ϕY ⊗ I(X̃1)−

dim p∑
j=2

ℓ(kI(Xj))ϕY ⊗ I(X̃j)

)
.
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By Corollary 3.7 and 3.8, dYV ◦ PYµ has to be a multiple of PVµ if V is M -spherical
and 0 otherwise. In particular, we deduce that

TYV

(
(µ+ ρ)(X1)ϕY ⊗ I(X̃1)−

dim p∑
j=2

ℓ(kI(Xj))ϕY ⊗ I(X̃j)

)
is a multiple of PVµ (δeM )(e) = ϕV . Since ϕV (e) = 1 this multiple is given by

TYV

(
(µ+ ρ)(X1)ϕY ⊗ I(X̃1)−

dim p∑
j=2

ℓ(kI(Xj))ϕY ⊗ I(X̃j)

)
(e). □

4. Γ-invariant elements

In this section we investigate which principal series representations admit Γ-invari-
ant distributional elements and, if the representation is reducible, in which composi-
tion factors they can occur. We do not have to assume that the co-compact lattice
Γ ⩽ G is torsion free in this section.

Theorem 4.1 (Location of Γ-invariant elements). — Let µ ∈ a∗. Assume that the socle
of Hµ decomposes multiplicity-freely. Then

ΓH−∞
µ
∼= Γ(socHµ)

−∞ =
⊕

V⩽Hµ irred.

ΓV −∞,

where the sum on the right hand side is finite. Moreover, for each irreducible V ⩽ Hµ,
the existence of Γ-invariant distributional elements in V implies that V is infinitesi-
mally unitary.

Proof. — Note first that Hµ has finitely many irreducible subrepresentations by the
finite length of Hµ and our multiplicity one assumption. We claim that the dual
principal series representation H−µ has finitely many irreducible quotients. Indeed,
let H−µ/V , for some subrepresentation V ⩽ H−µ, denote an irreducible quotient
of H−µ. Then we have that V ⊥−µ ⩽ Hµ is a subrepresentation (see Equation (2.5)
for the notation). Moreover, V ⊥−µ ⩽ Hµ is the dual representation of H−µ/V and
therefore irreducible. If H−µ/V1 ̸= H−µ/V2 are two different irreducible quotients, we
obtain two different irreducible subrepresentations V ⊥−µ

1 ̸= V
⊥−µ

2 ⩽ Hµ by the non-
degeneracy of ⟨· , ·⟩−µ. Since there are only finitely many of the latter, H−µ resp. H∞

−µ
has finitely many irreducible quotients H−µ/Vj , j = 1, . . . , n resp. H∞

−µ/V
∞
j , j =

1, . . . , n.
By definition we have that H−∞

µ = HomC(H
∞
−µ,C) is the space of continuous linear

maps from H∞
−µ to C, equipped with the dual representation of H∞

−µ. This implies
that
(4.1) ΓH−∞

µ = ΓHomC(H
∞
−µ,C) = HomΓ(H

∞
−µ,C).

Note that H∞
−µ is a nuclear Fréchet space (consider the compact picture and see

e.g. [CHM00, §2]) and a differentiable G-module. Moreover, C is a differentiable nu-
clear Γ-module. Therefore we may use Frobenius reciprocity to obtain (see [Zuc78,
Lem. 1.3])

ΓH−∞
µ = HomΓ(H

∞
−µ,C) ∼= HomG(H

∞
−µ, Ind

G,∞
Γ (C)),
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where IndG,∞Γ (C) ∼= C∞(Γ\G) denotes the representation smoothly induced by the
trivial representation of Γ. By [GGPS69, Th., Ch. 1, §2.3], there exists a countable
subset ĜΓ ⊂ Ĝ such that IndGΓ (C) decomposes as a direct sum

IndGΓ (C) ∼=
⊕̂

π∈ĜΓ
mΓ(π)π,

where each multiplicity mΓ(π) ⩾ 1 is finite. Therefore, if 0 ̸= φ ∈ ΓH−∞
µ with

corresponding φF ∈ HomG(H
∞
−µ, Ind

G,∞
Γ (C)), there exists some π ∈ ĜΓ such that

prπ ◦φF ̸= 0, where prπ denotes the orthogonal projection onto one copy of π in
IndGΓ (C). Since φF and prπ are continuous and linear they are smooth. Therefore,
prπ ◦φF mapsH∞

−µ into π∞. By [War72, §4.4, p. 253],H∞
−µ and π∞ are smooth Fréchet

representations. Therefore, the image of prπ ◦φF is closed and a topological summand
of π∞ [Wal92, Lem. 11.5.1 (moderate growth), Th. 11.6.7(2)]. Since π is irreducible,
π∞ is irreducible (see e.g. [War72, p. 254]) and therefore prπ ◦φF is surjective. Now
[Die70, Th. 12.16.8] implies that the canonical factorization H∞

−µ/ ker(prπ ◦φF )→ π∞

is a topological isomorphism. Since π∞ is irreducible, H∞
−µ/ ker(prπ ◦φF ) is irre-

ducible. It follows that ker(prπ ◦φF ) = V∞
j for some j ∈ {1, . . . , n}. Thus we proved

that if prπ ◦φF ̸= 0, then it factors through an irreducible quotient of H∞
−µ.

Consider the finite set

F := {π ∈ ĜΓ | ∃ j ∈ {1, . . . , n} : π∞ ∼= H∞
−µ/V

∞
j }.

For π ∈ F with π∞ ∼= H∞
−µ/V

∞
j we set j(π) := j. Moreover, let

IΓ := {j ∈ {1, . . . , n} | ∃πj := π ∈ F : j(π) = j}.

Then

HomG(H
∞
−µ, Ind

G,∞
Γ (C)) = HomG(H

∞
−µ,

⊕
π∈F

mΓ(π)π)

∼=
⊕
π∈F

mΓ(π)⊕
k=1

HomG(H
∞
−µ, π)

∼=
⊕
π∈F

mΓ(π)⊕
k=1

HomG(H
∞
−µ/V

∞
j(π), π)

∼=
⊕
π∈F

HomG(H
∞
−µ/V

∞
j(π),mΓ(π)π)

∼=
⊕
j∈IΓ

HomG(H
∞
−µ/V

∞
j ,mΓ(πj)πj)

∼=
⊕
j∈IΓ

HomG(H
∞
−µ/V

∞
j , IndG,∞Γ (C))

∼=
⊕
j∈IΓ

HomΓ(H
∞
−µ/V

∞
j ,C)

∼=
⊕
j∈IΓ

HomΓ((H−µ/Vj)
∞,C).

Note that the dual representation of H−µ/Vj is given by Wj := V
⊥−µ

j ⩽ Hµ. There-
fore, as in (4.1), ⊕

j∈IΓ
HomΓ((H−µ/Vj)

∞,C) =
⊕
j∈IΓ

ΓW−∞
j .
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ia∗0

a∗0−ρ ρ

ia∗0

a∗0−ρ −ρ+2α ρ−2α ρ

Figure 1. Parameters µ for which Hµ has a unitarizable subrepre-
sentation (red) resp. is reducible (dots) for G = SO0(n, 1), n ⩾ 2,
(left) resp. G = Sp(n, 1), n ⩾ 2, (right). The exceptional set is given
by the red dots except for µ = ρ.

This proves the first part. We now prove the second part concerning the infinitesimal
unitarity. Let φF and π as above. Then, denoting the K-finite elements by ·K , we have
(cf. [Wal92, Cor. 11.6.8]) (

H∞
−µ/ ker(prπ ◦φF )

)
K
∼= πK

as (g,K)-modules. Since π is unitary we infer thatH−µ/ ker(prπ ◦φF ) is infinitesimally
unitary. □

Note that Theorem 4.1 applies if Hµ is irreducible. The following proposition shows
that the hypotheses of Theorem 4.1 are in particular satisfied in the rank one case.

Proposition 4.2. — Let G be of real rank one. Then the socle of Hµ decomposes
multiplicity-freely for each µ ∈ a∗.

Proof. — See [Col85, Th. (6.1.3)]. □

Example 4.3. — Figure 1 describes the spherical principal series representations which
can possibly contain Γ-invariant elements for G = SO0(n, 1), n ⩾ 2, and G = Sp(n, 1),
n ⩾ 2. The unitary principal series is given by µ ∈ ia∗0 in both cases and the
complementary series consists of the parameters µ with µ(H) ∈ ] − ρ(H), ρ(H)[

resp. µ(H) ∈ ] − ρ(H) + 2, ρ(H) − 2[, where H ∈ a0 as before denotes the unique
element with α(H) = 1 for the unique simple positive real root α. Moreover, Hµ is
reducible if and only if µ ∈ ±(ρ+ N0α) resp. µ ∈ ±(ρ+ (2N0 − 2)α) and µ is excep-
tional if and only if Hµ ̸= Hρ is reducible and has a unitarizable subrepresentation.
In each case, the constant functions form an irreducible subspace of Hρ and thus
Γ(socHρ)

−∞ ̸= {0}.

Remark 4.4. — Recall from Theorem 4.1 that
ΓH−∞

µ =
⊕

U∈Irr(µ)

ΓU−∞.
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Choosing (τU , VτU ) as in Proposition 3.11 (e.g. a minimal K-type of U) we have by
Proposition 3.10 that each P τUµ

∣∣
U−∞ is injective and therefore

ΓH−∞
µ
∼=

⊕
U∈Irr(µ)

ΓP τUµ (U−∞) ⊆
⊕

U∈Irr(µ)

ΓC∞(G×K VτU ).

We describe the socle in more detail.

Theorem 4.5. — Denoting the set of minimal K-types by τmin and the Harish-Chandra
module of soc(Hµ) by soc(Hµ)K we have (see Appendix A for the notation)

G Ex = {µℓ | ℓ ∈ N0} soc(Hµℓ
)K τmin(soc(Hµℓ

))

SO0(2, 1) µℓ = −ρ− ℓα
⊕

k⩾ℓ+1 Yk ⊕ Y−k {Y−(ℓ+1), Y(ℓ+1)}
SO0(n, 1), n ⩾ 3 µℓ = −ρ− ℓα

⊕∞
k=ℓ+1 Yk {Yℓ+1}

SU(n, 1), n ⩾ 2 µℓ = −ρ− 2ℓα
⊕∞

p,q=ℓ+1 Yp,q {Yℓ+1,ℓ+1}
Sp(n, 1), n ⩾ 2 µℓ = −ρ− (2ℓ− 2)α

⊕
a⩾b⩾ℓ+1 Va,b {Vℓ+1,ℓ+1}

F4(−20) µℓ = −ρ− (2ℓ− 6)α
⊕

m−k⩾2ℓ+2
m≡k mod 2

Vm,k {V2ℓ+2,0}

In each case, every irreducible subrepresentation of soc(Hµ) is unitarizable and has a
unique minimal K-type. For G ̸= SO0(2, 1) the socle is irreducible for all exceptional
parameters. For G = SO0(2, 1) the socle decomposes into two irreducible subrepresen-
tations which are given by discrete series representations.

Proof. — The exceptional parameters can be computed by Example 3.3 and Table 1.
Using [JW77, Th. 5.1(2-4)] resp. [Joh76, Th. 5.2(2)] with ν = (ρ−µℓ)(H) we have that
soc(Hµℓ

) is irreducible and can determine its K-module structure for G ̸= SO0(2, 1).
Moreover, [JW77, Th. 6.3(1-3)] resp. [Joh76, Th. 5.3(2)] show that these socles are
unitarizable. For G = SO0(2, 1) the decomposition of the socle follows from [Kna86,
p. 38] with n = 2(ℓ+1), where two (unitary, irreducible) discrete series representations
D+

2(ℓ+1) and D−
2(ℓ+1) occur. The K-types of these representations are determined in

[Kna86, p. 40]. The highest weights of the K-representations needed for the compu-
tation of the minimal K-types are determined in Appendix A. □

Theorem 4.6 (Langlands parameters). — We have the Langlands parameters in the
table below for soc(Hµℓ

), µℓ ∈ Ex (see Theorem 4.5), in the notation of [Kna86,
Th. 8.54].(1) Here, the highest weight of the M -representation ω is denoted as in
[Bal79, Lem. 4.3, 5.3] for G ∈ {SU(n, 1),Sp(n, 1)} and as in Appendix A for G =

SO0(n, 1) (then M ∼= SO(n − 1)). By definition, if S = G, the socle soc(Hµℓ
) is

tempered. Moreover, in these cases, it is a discrete series representation if and only
if µℓ(H) ⩽ −ρ(H). The Blattner parameter of the discrete series (see [Kna86, Ter-
minology p. 310]) is given by its minimal K-type. If µℓ(H) > −ρ(H), the socle is
a limit of discrete series representation (this case only occurs for G = Sp(2, 1) and
G = F4(−20)).

(1)In the table M = ZK(A), as before, denotes the reductive part of the minimal parabolic in
each case.
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G S ω ∈ M̂ ν ∈ a∗

SO0(n, 1), n ⩾ 2
G if n = 2 − −
P if n ̸= 2 (ℓ+ 1)e1 ((n− 3)/2)α

SU(n, 1), n ⩾ 2
G if n = 2 − −
P if n ̸= 2 (ℓ+ 1)(ε2 − εn) (n− 2)α

Sp(n, 1), n ⩾ 2
G if n = 2 − −
P if n ̸= 2 (ℓ+ 1)(ε2 + ε3) (2n− 3)α

F4(−20) G − −

Proof. — Using the branching rules described in [Bal79] and [Kna02, Th. 9.16] we first
try to find ω ∈ M̂ such that the minimal K-type of soc(Hµℓ

) is also minimal for the
induced representation IndKM (ω). To determine ν ∈ a∗ we compare the infinitesimal
character of the socle, which is the same as that ofHµℓ

, with the infinitesimal character
of the principal series representation corresponding to the pair (ω, ν). They have to
coincide up to the action of an element of the Weyl group and can be calculated
using [Kna86, Prop. 8.22]. If one of the two steps above does not work, we must have
S = G, i.e., the socle is tempered. In this case [KZ82, Th. 14.2] shows that it has to be
a discrete series representation or a limit of discrete series representation depending on
the infinitesimal character being regular or singular. The connection to the Blattner
parameter follows from [Kna86, Ch. XV, §1, Ex. (1)]. □

Theorem 4.7. — There is a one-to-one correspondence between the representations
soc(Hµℓ

), µℓ ∈ Ex (see Theorem 4.5), and the relative discrete series of the associ-
ated pseudo-Riemannian symmetric spaces G/H. More precisely, each of these repre-
sentations corresponds to a minimal closed invariant subspace of L2(G/H) with H =

SO0(n−1, 1), S(U(1)×U(n− 1, 1)) ∼= U(n− 1, 1), Sp(1)× Sp(n− 1, 1), or Spin(1, 8)

respectively.

Proof. — In the classical cases the Plancherel formula for G/H is determined in
[Far79, Th. 10 (q = 1)], where the representations occurring in its discrete part are
described in [Far79, proof of Th. 9.2] (note that c(s)c(−s) = 0 for s > 0 iff µ(H) := −s
defines an exceptional parameter). Comparing the K-types one recovers our socle
representations, where Yℓm in [Far79, p. 399] corresponds to our Yℓ, Yp,q ⊕ Yq,p with
2p := ℓ+m, 2q := ℓ−m, or Va,b with 2a := ℓ+m, 2b := ℓ−m, for G = SO0(n, 1), n ⩾ 3,
or G = SU(n, 1), Sp(n, 1), n ⩾ 2, respectively (note that O(n, 1), U(n, 1) are used
instead of SO0(n, 1), SU(n, 1) in [Far79]). For G = SO0(2, 1) the Yℓm = Y 2

ℓ ⊗ Y 1
m in

[Far79] is two-dimensional (Y 2
ℓ is spanned by (x± iy)ℓ) and corresponds to Yℓ ⊕ Y−ℓ

in our notation. For the exceptional case the Plancherel formula can be found in
[Kos83, p. 85], where θr should also occur for r = 0. Again, the exceptional points
correspond to the discrete part of this formula and thus again lead to relative dis-
crete series representations by [Kos83, Th. 3.12.1] (in [Kos83, Rem. 3.13.4] ζ5 and −θ0
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are missing). By the definitions of the spherical distributions θr and ζs in [Kos83,
pp. 62, 81] we see that their associated representations are subquotients of spherical
principal series representations and, comparing the occurring K-types (see [Kos83,
Prop. 3.9.4, pp. 71, 82]), that they are given by our socle representations. □

5. Fourier series

In this section we consider spherical principal series representations for exceptional
parameters in the rank one case. Our aim is to find explicit realizations of the uni-
tary irreducible subrepresentations occurring in Theorem 4.1 in the space of smooth
sections of a specific vector bundle. For this purpose we determine conditions the
images of Γ-invariant elements under the injective vector valued Poisson transforms
from Section 3.4 have to satisfy (Lemma 5.21). We then prove that these conditions
suffice to describe the image (Theorem 5.30) and use this characterization to give
explicit descriptions of the images in each of the cases listed in Section 6.

5.1. Fourier expansions. — In the following we describe a generalized Fourier series
that is closely related to the Poisson transform and essentially gives that, properly
interpreted, each f ∈ Hµ is the sum of all its Poisson transform images.

Definition 5.1. — For each Y ∈ K̂M , realized in L2(K/M) (see p. 344), let

πY : C∞(G×K Y ) ↪−→ C∞(G/M), πY (φ)(gM) := φ(g)(eM).

Moreover, let D′(G ×K Y ) denote the dual of C∞
c (G ×K Ỹ ), where we realize the

dual representation Ỹ of Y as the complex conjugate representation of Y . We embed
C∞(G/M) into D′(G/M) by

ιG/M : C∞(G/M) ↪−→ D′(G/M), ιG/M (f)(φ) :=

∫
G

f(gM)φ(gM) dg

and C∞(G×K Y ) into D′(G×K Y ) by

ιY : C∞(G×K Y ) ↪−→ D′(G×K Y ), ιY (f)(φ) :=

∫
G

πY (f)(g)πỸ (φ)(g) dg.

If it is clear from the context we omit the embeddings ι∗ for the sake of readability.
We further define the pullback

π∗
Y : D′(G/M) −→ D′(G×K Y ), π∗

Y (f)(φ) := f(πỸ (φ)).

Lemma 5.2. — Let f ∈ C∞(G/M) and

prYτ
: L2(K/M) −→ Yτ

denote the orthogonal projection onto Yτ ∈ K̂M . For every fixed g ∈ G, the series∑
τ∈K̂M

prYτ
(f(g•)),

where f(g•) ∈ C∞(K/M) is defined by

f(g•) : K/M −→ C, kM 7−→ f(gkM),
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converges absolutely and uniformly to f(g•). Moreover, we can uniquely decompose

f =
∑
τ∈K̂M

fYτ

with fYτ
∈ πYτ

(C∞(G×KYτ )) where the series converges pointwise. The functions fYτ

are given by
fYτ = πYτ (g 7−→ prYτ

(f(g•))).

Proof. — By [Hel00, Ch. V, Th. 3.5(iii)] we can decompose, for each g ∈ G,

f(g•) =
∑
τ∈K̂M

prYτ
(f(g•)),

where the series converges absolutely and uniformly. In particular, we obtain

f(gM) = f(g•)(eM) =
∑
τ∈K̂M

prYτ
(f(g•))(eM) =

∑
τ∈K̂M

fYτ
(gM).

Note that (g 7→ prYτ
(fg)) ∈ C∞(G×K Yτ ); indeed, for each k̃, x ∈ K,

prYτ
(f(gk̃•))(xM) = dimYτ

∫
K

χτ (k)f(gk̃k
−1xM) dk

= dimYτ

∫
K

χτ (k̃
−1kk̃)f(gk−1k̃xM) dk = prYτ

(f(g•))(k̃xM),

where χτ denotes the character of τ . For the uniqueness let f =
∑
τ∈K̂M

πYτ
(φτ ) for

some φτ ∈ C∞(G×K Yτ ). Then we calculate for each τ1 ∈ K̂M

prYτ1
(f(g•))(xM) = dimYτ1

∑
τ∈K̂M

∫
K

χτ1(k)πYτ (φτ )(g•)(k
−1xM) dk

= dimYτ1
∑
τ∈K̂M

∫
K

χτ1(k)φτ (g)(xk
−1M) dk = φτ1(g)(xM). □

Notation 5.3. — Let

πY : D′(G×K Y ) −→ D′(G/M), πY (f)(φ) := f(π∗
Ỹ
(φ)).

In Lemma 5.4 (3) we will see that this extends the definition of πY from Definition
5.1.

Lemma 5.4. — Let Y ∈ K̂M and recall the maps ιG/M , ιY from Definition 5.1.
(1) π∗

Y (f)(g) = prY (f(g•)) for each f ∈ C∞(G/M), g ∈ G, so that

π∗
Y (C

∞(G/M)) ⊆ C∞(G×K Y ) and π∗
Y (C

∞
c (G/M)) ⊆ C∞

c (G×K Y ),

(2) f =
∑
τ∈K̂M

πYτ
(π∗
Yτ
(f)) pointwise for each f ∈ C∞(G/M),

(3) πY (ιY (f)) = ιG/M (πY (f)) for each f ∈ C∞(G×K Y ) and
(4) ∀µ ∈ a∗ : PYµ = (1/dimY )π∗

Y ◦ Qµ on D′(K/M).
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Proof
(1) By Lemma 5.2 we can write f =

∑
τ∈K̂M

πYτ
(uτ ), where uτ ∈ C∞(G ×K Yτ )

is given by uτ (g) = prYτ
(f(g•)). For each φ ∈ C∞

c (G×K Ỹ ) we use the orthogonality
of the Yτ to obtain

π∗
Y (f)(φ) = f(πỸ (φ)) =

∫
G

πỸ (φ)(g)f(g) dg

=

∫
G/K

∫
K

πỸ (φ)(gk)f(gk) dk dgK

=

∫
G/K

∫
K

φ(g)(k)
∑
τ∈K̂M

πYτ
(uτ )(gk) dk dgK

=

∫
G/K

∑
τ∈K̂M

∫
K

φ(g)(k)uτ (g)(k) dk dgK

=

∫
G/K

∫
K

φ(g)(k)uY (g)(k) dk dgK

=

∫
G/K

∫
K

πỸ (φ)(gk)πY (uY )(gk) dk dgK

=

∫
G

πỸ (φ)(g)πY (uY )(g) dg = ιY (uY )(φ).

Note that if f has compact support supp f ⊂ G/M and pr : G → G/M denotes
the canonical projection, we have that supp(π∗

Y (f)) ⊆ pr−1(supp f) · K is compact
since M is compact.

(2) follows from Lemma 5.2 and (1).
(3) Let f ∈ C∞(G×K Y ) and φ ∈ C∞

c (G/M). By (2) we decompose

φ =
∑
τ∈K̂M

πYτ
(π∗
Yτ
(φ)),

where π∗
Y (φ) ∈ C∞(G×K Y ). By the orthogonality of the Yτ we have

ιG/M (πY (f))(φ) =

∫
G

πY (f)(gM)φ(gM) dg =

∫
G/K

∫
K

πY (f)(gkM)φ(gkM) dk dgK

=

∫
G/K

∑
τ∈K̂M

∫
K

f(g)(kM)π∗
Yτ
(φ)(g)(k) dk dgK

=

∫
G/K

∫
K

f(g)(kM)π∗
Ỹ
(φ)(g)(k) dk dgK

=

∫
G

πY (f)(g)πỸ (π
∗
Ỹ
(φ))(g) dg = ιY (f)(π

∗
Ỹ
(φ)) = πY (ιY (f))(φ).

(4) By continuity (recall Equation (2.4)) we restrict our attention to smooth functions
ϕ ∈ C∞(K/M). Then the equality follows from Lemma 3.9 and (1) (recall that
ϕYτ (e) = 1). □
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5.2. Convergence of generalized Fourier series. — In the following we will prove
that the convergence in Lemma 5.4 (2) is uniform on compact sets and that the same
is true for each derivative. Therefore the convergence is a convergence in C∞

c (G/M)

for f ∈ C∞
c (G/M), where we equip C∞

c (G/M) with the inductive limit topology
C∞
c (G/M) = limC⊆G/M C∞

C (G/M), where the limit runs over all compact subsets
C ⊆ G/M and we denote by C∞

C (G/M) ⊆ C∞
c (G/M) the subset of all functions

which are supported in C.
Let B := {X1, . . . , Xn} ⊆ g0 be a basis of g0. For ℓ ∈ N0 and C ⊂ G compact we

introduce the following norm on C∞(G/M)

∥f∥Hℓ(C) :=

ℓ∑
k=0

∑
X1,...,Xk∈B

sup
g∈C
|(X1 · · ·Xkf)(gM)|,

where X ∈ g0 acts on f ∈ C∞(G/M) by the derived left regular representation

∀ g ∈ G : (Xf)(gM) :=
d

dt

∣∣∣
t=0

f(exp(−tX)gM).

The summand for k = 0 is understood as not differentiating, i.e., as supg∈C |f(gM)|.
We have the following lemma related to the Riemann-Lebesgue lemma.

Lemma 5.5. — Let f ∈ C∞(G/M). For each C ⊂ G compact, ℓ ∈ N0 and N ∈ N
there exists a constant Cf,C,N,ℓ > 0 independent of Yτ such that

∀Yτ ∈ K̂M : ∥πYτ
(π∗
Yτ
(f))∥Hℓ(C) ⩽ Cf,C,N,ℓ · (1 + ∥τ∥2)−N ,

where ∥τ∥ denotes the length of the highest weight of Yτ . Moreover, if fn → 0 in
C∞(G/M) we can find Cfn,C,N,ℓ such that limn→∞ Cfn,C,N,ℓ = 0.

Proof. — For each g ∈ G we have f(g•) ∈ C∞(K/M). By a slight abuse of notation we
will write τ also for the highest weight of (τ, Yτ ). Applying [Hel00, Ch. V, Lem. 3.2]
to C∞(K/M) with the uniform norm ∥•∥∞ and the left regular representation λ

we obtain

(5.1) ∀Yτ ∈ K̂M , ∀m ∈ N : ∥π∗
Yτ
(f)(g)∥∞ ⩽ C1c

−m
τ dim(Yτ )

2∥λ(Ωm)f(g•)∥∞,

where
(1) Ω is a bi-invariant differential operator on K with

Ωχτ = cτχτ

for the character χτ of Yτ (cf. proof of [Hel00, Th. V.3.1]),
(2) cτ ⩾ 1 + ⟨τ + ρ[k,k], τ + ρ[k,k]⟩ − ⟨ρ[k,k], ρ[k,k]⟩ = 1 + ⟨τ, τ + 2ρ[k,k]⟩, where ρ[k,k]

denotes the half-sum of positive roots in the semisimple part [k, k] of k, (see [Hel00,
Ch. V, Eq. (16) & proof of Lem. 3.2])

(3) C1 > 0 is some constant independent of f, C,N, ℓ and g given by the continuity
of λ on C∞(K/M).
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By the Weyl dimension formula we have

dim(Yτ ) =
∏

α∈∆+
[k,k]

⟨τ + ρ[k,k], α⟩
⟨ρ[k,k], α⟩

,

where ∆+
[k,k] denotes the positive roots in [k, k]. Therefore we can conclude that there

exists a constant C̃ depending only on k such that, for m ⩾ mN ∈ N large enough,

c−mτ dim(Yτ )
2 ⩽ C̃ · (1 + ∥τ∥2)−N

and thus by Equation (5.1)

∀Yτ ∈ K̂M : ∥π∗
Yτ
(f)(g)∥∞ ⩽ C1C̃∥λ(ΩmN )f(g•)∥∞ · (1 + ∥τ∥2)−N .

Taking the supremum over C on both sides we hence infer

∀Yτ ∈ K̂M : sup
g∈C
∥π∗

Yτ
(f)(g)∥∞ ⩽ C1C̃ sup

g∈C
∥λ(ΩmN )f(g•)∥∞ · (1 + ∥τ∥2)−N .

Note that since the map g 7→ ∥λ(ΩmN )f(g•)∥∞ from G to R⩾0 is continuous by the
smoothness of f , the suprema are actually finite. We abbreviate

Cf,C,N,0 := C1C̃ sup
g∈C
∥λ(ΩmN )f(g•)∥∞ <∞.

Note that the procedure above also works forX1· · ·Xkf instead of f forX1, . . . , Xk∈B
and 0 ⩽ k ⩽ ℓ. We set

Cf,C,N,ℓ := max{Cφ,C,N,0 | ∃ 0 ⩽ k ⩽ ℓ, ∃X1, . . . , Xk ∈ B : φ = X1 · · ·Xkf}.

By the definition of π∗
Yτ

we have π∗
Yτ
(X1 · · ·Xkf) = X1 · · ·Xkπ

∗
Yτ
(f) for all X1, . . . , Xk

as above. Finally we obtain that for each Yτ ∈ K̂M

sup
g∈C
|(X1 · · ·XkπYτ

(π∗
Yτ
(f)))(g)| = sup

g∈C
|(π∗

Yτ
(X1 · · ·Xkf))(g)(e)|

⩽ sup
g∈C
∥π∗

Yτ
(X1 · · ·Xkf)(g)∥∞

⩽ Cf,C,N,ℓ · (1 + ∥τ∥2)−N .

This proves the first part and the second part follows from the definition of Cf,C,N,ℓ.
□

Lemma 5.6. — Let f ∈ C∞
c (G/M). Then

(5.2)
∑
τ∈K̂M

πYτ
(π∗
Yτ
(f))

is absolutely convergent with respect to each ∥•∥Hℓ(C) and converges to f in C∞
c (G/M).

Proof. — Let pr: G → G/M denote the canonical projection. By the definition of
the inductive limit topology on C∞

c (G/M) we have to find a compact set C ⊂ G/M

such that supp(πYτ
(π∗
Yτ
(f))) ⊆ C for each Yτ ∈ K̂M and such that for each ℓ ∈ N0

we have that
∑
τ∈K̂M

πYτ
(π∗
Yτ
(f)) converges to f with respect to ∥•∥Hℓ(pr−1(C)). As in

the proof of Lemma 5.4 (1) we see that the condition on the supports is fulfilled if we

J.É.P. — M., 2023, tome 10



Spectral correspondences for rank one locally symmetric spaces 363

choose C := supp(f) ·K. Let ℓ ∈ N0 and N ∈ N be fixed. By Lemma 5.5 there exists
a constant Cf,C,N,ℓ independent of Yτ such that

∀Yτ ∈ K̂M : ∥πYτ
(π∗
Yτ
(f))∥Hℓ(C) ⩽ Cf,C,N,ℓ · (1 + ∥τ∥2)−N .

Thus we have for each finite subset F ⊆ K̂M that

(5.3)

∥∥∥∑
τ∈F

πYτ (π
∗
Yτ
(f))

∥∥∥
Hℓ(pr−1(C))

⩽
∑
τ∈F
∥πYτ (π

∗
Yτ
(f))∥Hℓ(pr−1(C))

⩽ Cf,C,N,ℓ
∑
τ∈F

(1 + ∥τ∥2)−N .

Let ε > 0. Note that the weight lattice of [k, k] is a lattice in the finite dimensional
space (it0)

∗, where t0 denotes the Lie algebra of a maximal torus T in K̃, the analytic
subgroup of [k0, k0]. Therefore, we may identify K̂M with a subset of Zd in Rd with
d := dim t0. We infer that if N is large enough, there exists a finite set F0 ⊆ K̂M such
that the right hand side of (5.3) is smaller than ε for each finite set F ⊆ K̂M with
F ∩ F0 = ∅. Therefore, for each such F ,

∥
∑
τ∈F

πYτ
(π∗
Yτ
(f))∥Hℓ(pr−1(C)) ⩽

∑
τ∈F
∥πYτ

(π∗
Yτ
(f))∥Hℓ(pr−1(C)) ⩽ Cf,C,N,ℓ · ε.

Hence, the series in (5.2) converges absolutely and to its pointwise limit f (see Lemma
5.4 (2)) with respect to ∥•∥Hℓ(pr−1(C)). □

We can also decompose distributions.

Lemma 5.7. — Let u ∈ D′(G/M) be a distribution. Then the sum∑
τ∈K̂M

πYτ
(π∗
Yτ
(u))

converges absolutely when evaluated at a test function and to u in the weak sense.

Proof. — Let f ∈ C∞
c (G/M). For each Yτ ∈ K̂M we have (see Definition 5.1 and

Notation 5.3)

πYτ (π
∗
Yτ
(u))(f) = π∗

Yτ
(u)(π∗

Ỹ
(f)) = u

(
πỸ (π

∗
Ỹ
(f))

)
and therefore, by Lemma 5.6 and the continuity of u,∑

τ∈K̂M

πYτ
(π∗
Yτ
(f)) = f in C∞

c (G/M) =⇒
∑
τ∈K̂M

u(πỸ (π
∗
Ỹ
(f))) = u(f).

For the absolute convergence note that u restricted to C∞(supp(f)K) is of finite order
(see [Hör90, Def. 2.1.1]), i.e., there exist ℓ ∈ N0 and C > 0 with

∀φ ∈ C∞(supp(f)K) : |u(φ)| ⩽ C∥φ∥Hℓ(supp(f)K).

Then
|πYτ

(π∗
Yτ
(u)(f))| = |u(πỸ (π

∗
Ỹ
(f)))| ⩽ C∥πỸ (π

∗
Ỹ
(f))∥Hℓ(supp(f)K).

The absolute convergence now follows from Lemma 5.5. □
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Lemma 5.8. — Fix c > 0 and N ∈ N. If ψτ ∈ C∞(G×K Yτ ) for τ ∈ K̂M are chosen
such that

ιG/M (πYτ (ψτ ))(πỸτ
(ψτ )) ⩽ c · (1 + ∥τ∥2)N ,

then ψ :=
∑
τ∈K̂M

ιG/M (πYτ (ψτ )) is absolutely convergent when evaluated at a test
function and defines a distribution on G/M .

Proof. — We first prove the pointwise convergence of ψ on C∞
c (G/M). For each test

function f ∈ C∞
c (G/M) we have by Lemma 5.4 (3), Notation 5.3 and Definition 5.1

ιG/M (πYτ
(ψτ ))(f) = πYτ

(ιYτ
(ψτ ))(f) = ιYτ

(ψτ )(π
∗
Ỹτ
(f))

=

∫
G

πYτ (ψτ )(g)πỸτ
(π∗
Ỹτ
(f))(g)dg.

The Cauchy-Schwarz inequality thus implies that

|ιG/M (πYτ (ψτ ))(f)|2 ⩽
∫
G

|πYτ (ψτ )(g)|2 dg ·
∫
G

|πỸτ
(π∗
Ỹτ
(f))(g)|2 dg.

For the first factor we obtain∫
G

|πYτ (ψτ )(g)|2 dg = ιG/M (πYτ (ψτ ))(πỸτ
(ψτ )) ⩽ c · (1 + ∥τ∥2)N .

For the second factor Lemma 5.5 implies that for each m ∈ N there exists a constant
C̃ := Cφ,pr−1(supp(f))K,m,0 independent of Yτ such that

∀Yτ ∈ K̂M : ∥πYτ
(π∗
Yτ
(f))∥H0(pr−1(supp(f))K) ⩽ C̃ · (1 + ∥τ∥2)−m.

Choosing m sufficiently large we thus obtain that∑
τ∈K̂M

|ιG/M (πYτ
(ψτ ))(f)| <∞

converges absolutely. We now prove the continuity of ψ. Let C ⊂ G be a compact set
and (fn)n∈N be a sequence of functions fn ∈ C∞

c (G/M) such that supp(fn) ⊆ CM

for each n ∈ N and ∥fn∥Hℓ(CM) converges to 0 for each fixed ℓ ∈ N0. We have to
prove that ψ(fn) → 0 (see [Hör90, Th. 2.1.4]). Again by Lemma 5.5 we may choose
for each m ∈ N constants C̃n independent of Yτ such that

∀Yτ ∈ K̂M : ∥πYτ (π
∗
Yτ
(fn))∥H0(CM) ⩽ C̃n · (1 + ∥τ∥2)−m.

Moreover, by the second part of Lemma 5.5 we may choose the constants C̃n such
that limn→∞ C̃n = 0. Proceeding as above we arrive at∑

τ∈K̂M

|ιG/M (πYτ
(ψτ ))(fn)| ⩽

√
c · C̃n

∑
τ∈K̂M

(1 + ∥τ∥2)(N−m)/2 −→ 0,

since the series on the right hand side converges for m large enough. □
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5.3. Tensor product decompositions. — In this section we prove a number of techni-
cal results on the K-type decomposition of Y ⊗p for Y ∈ K̂. Some of the calculations
have to be done case by case. Those calculations we put into Appendix A to make
the arguments presented in this subsection more transparent.

Notation 5.9. — For V , Y ∈ K̂ we write

V ↔ Y :⇐⇒ V ⩽ Y ⊗ p ⇐⇒ Y ⩽ V ⊗ p,

where the second equivalence follows from [BÓØ96, Rem. 2.8].

Definition 5.10. — Define the K-equivariant map

ω : p −→ C∞(K/M), ω(X)(kM) := ⟨Ad(k−1)X,H⟩,

where H ∈ a0 is defined on page 342. Note that ω(H)(eM) = 1. For each Y ∈ K̂M

we further define the K-equivariant map

ωY : Y ⊗ p −→ C∞(K/M), ωY (φ⊗X) := ω(X)φ.

Let V ∈ K̂ with V ↔ Y . We write

V
ω←→ Y :⇐⇒ V ⩽ ωY (Y ⊗ p)

Note that V ω←→ Y implies V ∈ K̂M since the image of ωY is contained in C∞(K/M).
By [BÓØ96, Lem. 4.4(c)] we have

V
ω←→ Y ⇐⇒ Y

ω←→ V.

We realize V ⩽ L2(K/M) and define TYV ∈ HomK(Y ⊗ p∗, V ) by

TYV : Y ⊗ p∗ −→ V, TYV (φ⊗ ψ) := prV (ωY (φ⊗ I−1(ψ))),

where prV denotes the orthogonal projection

prV : L2(K/M) ∼=
⊕̂

W∈K̂M
W −→ V.

If V ↔ Y but not V ω←→ Y we define

TYV : Y ⊗ p∗ −→ V, TYV := prV ◦ (idY ⊗ I−1),

with the orthogonal projection prV : Y ⊗ p → V . Since the tensor product decom-
poses multiplicity-freely by Proposition 5.17, there exist uniquely determined homo-
morphisms ιVY ∈ HomK(V, Y ⊗ p∗) such that

TYV ◦ ιVY = idV and TYV ◦ ιWY = 0

for each W ↔ Y with V ̸∼=W . In Proposition 5.14 we give an explicit formula for ιVY
in the case V ∈ K̂M .

Remark 5.11. — By definition we have for each Y ∈ K̂M∑
V

ω←→Y

TYV = ωY ◦ (idY ⊗ I−1).

In the following we will describe the embeddings ιVY from Definition 5.10 in more
detail.
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Lemma 5.12. — Let Y, V ∈ K̂M with V ↔ Y . Then the operator

Φ : V −→ Y ⊗ p∗, Φ(f) :=

dim p∑
j=1

prY (ω(Xj)f)⊗ I(X̃j)

is independent of the basis and K-equivariant. Moreover, the map

V −→ V, f 7−→
dim p∑
j=1

prV (ω(X̃j) prY (ω(Xj)f))

is a multiple of the identity. We denote the corresponding scalar by λ(V, Y ).

Proof. — Let k ∈ K and consider Y ⊗ p∗ as Hom(p, Y ) by

Y ⊗ p∗ ∼= Hom(p, Y ), f ⊗ λ 7−→ (X 7→ λ(X)f).

Then, for f ∈ V ,

Φ(k · f)(Xi) =

dim p∑
j=1

prY (ω(Xj)(k · f))I(X̃j)(Xi) = prY (ω(Xi)(k · f)).

By linearity we obtain Φ(k · f)(X) = prY (ω(X)(k · f)) for each X ∈ p. Note that this
expression and thus Φ is independent of the basis. On the other hand, note that

k · Φ(f) =
dim p∑
j=1

k · prY (ω(Xj)f)⊗Ad∗(k)I(X̃j)

and thus

(k · Φ(f))(Ad(k)Xi) = k · prY (ω(Xi)f) = prY ((k · ω(Xi))(k · f))
= prY (ω(Ad(k)Xi)(k · f)).

Since Ad(k)X1, . . . ,Ad(k)Xdim p is a basis of p we have (k·Φ(f))(X)=prY (ω(X)(k·f))
for each X ∈ p. This proves Φ(k · f) = k · Φ(f) and thus the first part of the lemma.
From Definition 5.10 we recall that

Ψ := prV ◦ωY ◦ (idY ⊗I−1) : Y ⊗ p∗ −→ V

is K-equivariant. The map in the lemma is given by the composition Ψ◦Φ. It is scalar
by Schur’s lemma. □

The scalar λ(V, Y ) has the following properties.

Proposition 5.13 (cf. [BÓØ96, Lem. 4.4, Th. 4.6]). — Let V, Y∈K̂M such that V ↔Y .
Then

(1) λ(V, Y ) ⩾ 0,
(2) V ω←→ Y ⇐⇒ λ(V, Y ) ̸= 0 ⇐⇒ λ(Y, V ) ̸= 0,
(3)

∑
W

ω←→Y
λ(Y,W ) = 1,

(4) λ(V, Y ) dimV = λ(Y, V ) dimY .
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Proposition 5.14. — Let Y, V ∈ K̂M with V ω←→ Y . Then we have for each f ∈ V

(5.4) ιVY (f) =
1

λ(V, Y )

dim p∑
j=1

prY (ω(Xj)f)⊗ I(X̃j).

Proof. — By Lemma 5.12 we know that the rand hand side of (5.4) is K-equivariant
as a function in f . The scalar λ(V, Y ) is non-zero by Proposition 5.13. For each
W ∈ K̂ with W ↔ Y and V ̸∼= W , the map TYW ◦ ιVY is an intertwiner between V

and W and thus zero by Schur’s lemma. The normalization by λ(V, Y ) ensures that
TYV ◦ ιVY is the identity on V . This finishes the proof since we have multiplicity one by
Proposition 5.17. □

The following lemma gives a method to calculate the scalars λ(V, Y ) (see Appen-
dix A).

Lemma 5.15. — The scalar λ(V, Y ) from Lemma 5.12 is given by
λ(V, Y ) = prY (ω(H)ϕV )(eM).

Proof. — If H = X1, . . . , Xdim p is as in Lemma 3.13 and H = X̃1, . . . , X̃dim p its dual
basis (see Notation 3.12) we may write, for each f ∈ V ,

(5.5) ιVY (f) =

dim p∑
j=1

fj ⊗ I(X̃j) ∈ Y ⊗ p∗

for some f1, . . . , fdim p ∈ Y . In particular, we have ιVY (f)(H)(eM) = f1(eM) by con-
sidering ιVY (f) as an element of Hom(p, Y ). By Definition 5.10 and Remark 5.11
we infer

f =
∑

W
ω←→Y

TYW (ιVY (f)) = ωY ((idY ⊗ I−1)(ιVY (f))) =

dim p∑
j=1

ωY (fj⊗ X̃j) =

dim p∑
j=1

ω(X̃j)fj .

Note that, since Xj ∈ k⊕n for j = 2, . . . ,dim p and X1 ∈ a, the orthogonality of a and
k⊕n with respect to ⟨· , ·⟩ implies ω(X̃j)(eM) = ⟨X̃j , H⟩ = 0 for each j = 2, . . . ,dim p

and therefore

f(eM) =

dim p∑
j=1

ω(X̃j)(eM)fj(eM) = f1(eM) = ιVY (f)(H)(eM).

In particular, we have for f = ϕV

ιVY (ϕV )(H)(eM) = ϕV (eM) = 1.

On the other hand, Proposition 5.14 shows that

ιVY (ϕV )(H)(eM) =
1

λ(V, Y )
prY (ω(H)ϕV )(eM). □

Note that, in the situation of Lemma 3.13, we have for V, Y ∈ K̂M with V
ω←→ Y

that
(5.6) TVY (pV,µ)(e) = (µ+ ρ)(H)λ(V, Y ) + ν(V, Y ) with ν(V, Y ) := TVY (pV,−ρ)(e).

The following lemma allows us to compute the scalars TVY (pV,µ)(e) from Lemma 3.13
explicitly in all the rank one cases (see Appendix A).
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Lemma 5.16. — Let V, Y ∈ K̂M such that V ω←→ Y . If {0} ≠ U ⩽ Hµ is a closed
G-invariant subspace such that multK(Y,U) ̸= 0 and multK(V,U) = 0 we have
TVY (pV,µ)(e) = 0 and thus

ν(V, Y ) = −(µ+ ρ)(H)λ(V, Y ).

Moreover, for V ∈ K̂M with V ω←→ C we have

TVC (pV,µ)(e) = 0 ⇐⇒ µ(H) = ρ(H).

Proof. — Let 0 ̸= f ∈ Y ⩽ U . Then, by Equation (3.4), we have PYµ (f)(e) =

(1/dimY ) prV (f) ̸= 0. On the other hand Proposition 3.10 implies that PVµ (f) = 0.
Therefore,

0 = dVY (P
V
µ (f))(e) = TVY (pV,µ)(e)P

Y
µ (f)(e)

implies that TVY (pV,µ)(e) = 0. For µ(H) = ρ(H) we have that the constant functions
form an invariant subspace, proving one direction. For the equivalence note that for
each V ∈ K̂M with V

ω←→ C, TVC (pV,µ)(e) = ν(V,C) + (µ + ρ)(H)λ(V,C) is an affine
map in µ(H) with λ(V,C) ̸= 0 (by Proposition 5.13.2). □

We have the following multiplicity one result.

Proposition 5.17. — Let Y ∈ K̂. Then Y ⊗ p∗ decomposes multiplicity-freely.

Proof. — By [Kna02, Ch. IX.8, Probl. 15] it suffices to prove that all weights of
p ∼=K p∗ have multiplicity one, i.e., if t0 ⩽ k0 is a maximal torus we have that t

acts multiplicity-freely on p.
Let us first assume that the ranks rk k0 and rk g0 coincide. Then t ⩽ k ⩽ g is a

Cartan subalgebra of g and we have the root-space decomposition

g = t⊕
⊕

α∈∆(g,t)

gα,

where each gα is one-dimensional. We note that the root spaces gα are invariant under
the (C-linear continuation of the) Cartan involution θ; indeed we have for each X ∈ gα

∀H ∈ t : [H, θX] = θ[θH,X] = θ[H,X] = α(H)θ =⇒ θX ∈ gα.

Therefore, writing X = (X + θX)/2+(X − θX)/2, we obtain gα = (k∩gα)⊕ (p∩gα)
and thus

p =
⊕

α∈∆(g,t)

(p ∩ gα).

Since dimC(p ∩ gα) ∈ {0, 1} we see that t acts multiplicity-freely on p.
Let us now consider the case rk k0 < rk g0. By [Kna02, Prop. 6.60] the centralizer

h0 := Zg0
(t0) = t0 ⊕ Zp0

(t0) is a θ-stable Cartan subalgebra of g0. Our real rank one
assumption shows that a0 := Zp0

(t0) is one-dimensional. For α ∈ ∆ we first note that

X ∈ gα =⇒ θX ∈ gθα,

where we define (θα)(H) := α(θH). Thus, gα+ gθα is θ-stable and decomposes into a
k- and p-part.
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We claim that if α, α′ ∈ ∆ are two roots with α
∣∣
t
= α′

∣∣
t
, then α′ = α or α′ = θα.

If this is true we obtain the result as follows. Let β ∈ t∗. For β = 0 the weight space
of β in p is given by a, which is one-dimensional. For β ̸= 0 the weight space of β in p

is given by ∑
α∈∆
α|t=β

π(gα + gθα),

where π : g → p, X 7→ (X − θX)/2 denotes the projection onto p. Then our claim
implies that there are at most two roots α, θα ∈ ∆ with α|t = θα|t = β. Therefore,
the weight space of β in p is given by the one-dimensional space π(gα + gθα).

Let us finally prove our claim in the rank one case. By the classification of real
forms it suffices to consider the groups SO0(n, 1) with n = 2p + 1 odd (recall that
we are in the case rk k0 < rk g0). In this case all roots have the same length and
this implies our claim since every root α ∈ ∆ is determined by its restrictions to t

and a. □

Remark 5.18. — Note that the proof above requires the rank-one assumption only
when rk g0 > rk k0. If rk g0 = rk k0, more can be said.

Proposition 5.19. — Let rk g = rk k and Yτ ∈ K̂ with highest weight τ . Denote the
non-compact roots by ∆n. Then the tensor product Yτ ⊗ p∗ decomposes into

Yτ ⊗ p∗ ∼=
⊕

β∈∆n

m(β)Yτ,β ,

where the multiplicities m(β) are at most 1 and Yτ,β has weight τ + β. Moreover,
we have

m(β) = 1 =⇒ β ∈ S,
with S := {β ∈ ∆n | τ + β dominant} ⊆ ∆n.

Proof. — First we note that p ∼=K p∗ by the Killing form. By [Kna02, Prop. 9.72] the
highest weight of each irreducible constituent of Yτ ⊗ p is of the form τ + β, where β
is a weight of p, i.e., β ∈ ∆n. Moreover each irreducible constituent occurs at most
with multiplicity one by [Kna02, Ch. IX.8, Probl. 15] since the weight spaces of p have
multiplicity one by the root space decomposition. Since the highest weight τ + β has
to be dominant we can restrict the sum to the subset S ⊆ ∆n. □

Proposition 5.20. — Let Y ∈ K̂M and V ∈ K̂ with V ↔ Y . Then, for each µ ∈ a,
dYV ◦ PYµ ̸= 0 =⇒ V

ω←→ Y.

Proof for G ̸= SO0(3, 1)
(2). — By Lemma 3.13 (3) we see that dYV ◦ PYµ ̸= 0 implies

that V ∈ K̂M . Using Proposition 5.13.2, Lemma 5.15 and Lemma A.4, A.9, A.12
resp. A.15 we infer that V ω←→ Y if and only if V ↔ Y and V ∈ K̂M . □

(2)For G = SO0(3, 1) we have, for k ∈ N0, Yk ↔ Yk but Yk
ω←→/ Yk by Proposition A.6

and Lemma A.4. Realizing Yk explicitly as a subrepresentation of Yk ⊗ p∗ one can prove that
prYk

((idY ⊗ I−1)(pYk,µ))(e) = 0 for each µ ∈ a and thus d
Yk
Yk
◦ PYk

µ = 0 by Lemma 3.13 (2). Thus,
Proposition 5.20 is also valid for G = SO0(3, 1).

J.É.P. — M., 2023, tome 10



370 C. Arends & J. Hilgert

5.4. Computations for the Fourier characterization. — The aim of this subsection
is proving the converse direction in Lemma 3.13, i.e., we want to prove that if the
equations derived from Lemma 3.13 are satisfied for some distribution f ∈ D′(G/M)

we already have f ∈ H−∞
µ . The precise result is given in Theorem 5.30. It provides

a technique to determine images for Poisson transforms. We start with the following
reformulation of Lemma 3.13.

Lemma 5.21. — Assume the setting from Lemma 3.13. Then for each f ∈ H−∞
µ

(1) (dYV ◦π∗
Y )(f)=T

Y
V (pY,µ)(e)

dimY
dimV π

∗
V (f) if V is M -spherical, i.e., V ⩽L2(K)M ,

(2) (dYV ◦ π∗
Y )(f) = 0 if V is not M -spherical, i.e., VM = 0.

Proof. — This is a direct consequence of Lemma 3.13 and Lemma 5.4 (4). □

We consider the a0- and n0-action separately and start with the first one.

Lemma 5.22. — Let µ ∈ a∗ and f =
∑
τ∈K̂M

πYτ
(π∗
Yτ
(f)) ∈ D′(G/M) (recall Lem-

ma 5.7) with π∗
Yτ
(f) ∈ C∞(G ×K Yτ ) such that the equations from Lemma 5.21 (1)

and (2) hold for f for every irreducible constituent of Yτ ⊗ p∗ and every Yτ ∈ K̂M .
Let X ∈ a0. For each V, Yτ ∈ K̂M with V ↔ Yτ we define

fV,τ,X ∈ C∞(G/M), fV,τ,X(gM) := ιYτ

V (π∗
Yτ
(f)(g))(X)(e).

Then, in the weak sense,

r(X)f =
∑
τ∈K̂M

∑
V

ω←→Yτ

V ∈K̂M

dimV

dimYτ
TVYτ

(pV,µ)(e)fV,τ,X ,

where r denotes the right regular representation of a0 on D′(G/M).

Proof. — We first prove that fV,τ,X ∈ C∞(G/M). For each g ∈ G and m ∈ M

we have
ιYτ

V (π∗
Yτ
(f)(gm))(X)(e) = ιYτ

V (τ(m−1)π∗
Yτ
(f)(g))(X)(e)

since π∗
Yτ
(f) ∈ C∞(G×K Yτ ). As ιYτ

V is K-equivariant we obtain

ιYτ

V (τ(m−1)π∗
Yτ
(f)(g))(X)(e) = ιYτ

V (π∗
Yτ
(f)(g))(m ·X)(m)

which equals ιYτ

V (π∗
Yτ
(f)(g))(X)(e), since M acts trivially on a0 and each element of V

is right M -invariant.
For each φ ∈ C∞

c (G/M) we have (denoting ιG/M (f)(φ) by ⟨f, φ⟩)

⟨r(X)f, φ⟩ = −⟨f, r(X)φ⟩ = −
∑
τ∈K̂M

⟨πYτ
(π∗
Yτ
(f)), r(X)φ⟩

=
∑
τ∈K̂M

⟨r(X)πYτ
(π∗
Yτ
(f)), φ⟩.
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In particular, by the absolute convergence from Lemma 5.7, we obtain that∑
τ∈K̂M

r(X)πYτ (π
∗
Yτ
(f))

converges absolutely to r(X)f in the weak sense. We will now compute the summands
explicitly. Note first that for each g ∈ G

(5.7)
(
r(X)πYτ

(π∗
Yτ
(f))

)
(g) =

d

dt

∣∣∣
t=0

π∗
Yτ
(f)(g exp tX)(e)

=
(
((∇ ◦ π∗

Yτ
(f))(g))(X)

)
(e).

We claim that

(∇ ◦ π∗
Yτ
(f))(g) =

∑
V↔Yτ

(ιVYτ
◦ TYτ

V )
(
(∇ ◦ π∗

Yτ
(f))(g)

)
.

Indeed, both sides are elements of Yτ ⊗ p∗ and by Definition 5.10 they are equal if

TYτ

W

(
(∇ ◦ π∗

Yτ
(f))(g)

)
= TYτ

W

( ∑
V↔Yτ

(ιVYτ
◦ TYτ

V )
(
(∇ ◦ π∗

Yτ
(f))(g)

))
for each irreducible subrepresentation W with W ↔ Yτ . But this follows from the
definition of the ιVYτ

.
Note that, since dYτ

V = TYτ

V ◦ ∇ (see Lemma 3.13),∑
V↔Yτ

(ιVYτ
◦ TYτ

V )
(
(∇ ◦ π∗

Yτ
(f))(g)

)
=

∑
V↔Yτ

ιVYτ

(
dYτ

V (π∗
Yτ
(f))(g)

)
.

The equations from Lemma 5.21 yield

(∇ ◦ π∗
Yτ
(f))(g) =

∑
V↔Yτ

ιVYτ

(
dYτ

V (π∗
Yτ
(f))(g)

)
=

∑
V↔Yτ

V ∈K̂M

ιVYτ

(dimYτ
dimV

TYτ

V (pYτ ,µ)(e)π
∗
V (f)(g)

)

=
∑
V↔Yτ

V ∈K̂M

dimYτ
dimV

TYτ

V (pYτ ,µ)(e)ι
V
Yτ
(π∗
V (f)(g)).

By Proposition 5.20 it suffices to sum over all V ∈ K̂M with V
ω←→ Yτ . Using Equa-

tion (5.7) we thus obtain(
r(X)πYτ

(π∗
Yτ
(f))

)
(g) =

∑
V

ω←→Yτ

V ∈K̂M

dimYτ
dimV

TYτ

V (pYτ ,µ)(e)
(
(ιVYτ

(π∗
V (f)(g)))(X)

)
(e)

=
∑

V
ω←→Yτ

V ∈K̂M

dimYτ
dimV

TYτ

V (pYτ ,µ)(e)fYτ ,V,X(gM)
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and r(X)f =
∑
τ∈K̂M

r(X)πYτ
(π∗
Yτ
(f)) equals∑

τ∈K̂M

∑
V

ω←→Yτ

V ∈K̂M

dimYτ
dimV

TYτ

V (pYτ ,µ)(e)fYτ ,V,X =
∑

V ∈K̂M

∑
V

ω←→Yτ

τ∈K̂M

dimYτ
dimV

TYτ

V (pYτ ,µ)(e)fYτ ,V,X .

□

In order to compute the sums occurring in the proof of Lemma 5.22 we write

(5.8) pYτ ,µ = (µ+ ρ)(H)ϕY ⊗ I(H) + pYτ ,−ρ.

We first consider the contribution of the first summand in this decomposition.

Lemma 5.23. — Let Y ∈ K̂M , X ∈ p and φ ∈ Y . Then∑
V

ω←→Y

dimV

dimY
TVY (ϕV ⊗ I(H))(e)ιYV (φ)(X)(e) = (ω(X)φ)(e).

Proof. — By Definition 5.10 and Lemma 5.15 we have for each V ∈ K̂ with V
ω←→ Y

TVY (ϕV ⊗ I(H))(e) = prY (ω(H)ϕV )(e) = λ(V, Y ).

Using Proposition 5.13 4 and 5.14 we calculate∑
V

ω←→Y

dimV

dimY
TVY (ϕV ⊗ I(H))(e)ιYV (φ)(X)(e)

=
∑

V
ω←→Y

λ(Y, V )

λ(V, Y )
λ(V, Y )

1

λ(Y, V )

dim p∑
j=1

prV (ω(Xj)φ)(e)I(X̃j)(X)

=
∑

V
ω←→Y

dim p∑
j=1

prV (ω(Xj)φ)(e)I(X̃j)(X)

=
∑

V
ω←→Y

prV (ω(X)φ)(e) = (ω(X)φ)(e). □

For the contribution of the second summand in (5.8) we need some preparation.
This is the content of the following three lemmas.

Lemma 5.24. — Let g0 be a semisimple Lie algebra, B be some non-zero multiple of
the Killing form κ and θ be a Cartan involution. If X1, . . . , Xdim(p0/a0) is a basis of
p0∩ (k0⊕n0) let X̃1, . . . , X̃dim(p0/a0) denote the dual basis defined by B(X̃i, Xj) = δij.
Then

∑dim(p0/a0)
j=1 [X̃j , kI(Xj)] ∈ a0 and

dim(p0/a0)∑
j=1

B([X̃j , kI(Xj)], H) = 2ρ(H) ∀H ∈ a0.

Proof of Lemma 5.24. — We first claim that
∑dim(p0/a0)
j=1 [X̃j , kI(Xj)] ∈ p0 is indepen-

dent of the basis. Let X ′
1, . . . , X

′
dim(p0/a0)

be another basis with base change ma-
trix (aij), i.e., X ′

j =
∑
m amjXm. If (bij) denotes the inverse of (aij) we claim that
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X̃ ′
j =

∑
ℓ bjℓX̃ℓ. Indeed,

B(
∑
ℓ

bjℓX̃ℓ, X
′
i) = B

(∑
ℓ

bjℓX̃ℓ,
∑
m

amiXm

)
=

∑
m

bjmami = δij .

Thus,∑
j

[X̃ ′
j , kI(X

′
j)] =

∑
j

[∑
ℓ

bjℓX̃ℓ, kI

(∑
m

amjXm

)]
=

∑
m

∑
ℓ

[X̃ℓ, kI(Xm)]
∑
j

amjbjℓ

=
∑
m

∑
ℓ

[X̃ℓ, kI(Xm)]δmℓ =
∑
m

[X̃m, kI(Xm)]

is independent of the basis.
We will now construct a convenient basis of p0∩ (k0⊕n0). Let Σ+ denote the set of

positive restricted roots. We may assume that B is a positive multiple of the Killing
form (otherwise −B is of this form and the signs of the X̃j ’s are flipped). For each
λ ∈ Σ+ we choose a basis Y λ1 , . . . , Y λdim gλ of the restricted root space gλ such that
B(Y λj , θY

λ
k ) = − 1

2δjk and define

Xλ
j := Y λj − θY λj , j ∈ {1, . . . ,dim gλ}.

Note that, since

B(Xλ
j , X

µ
k ) = −2B(Y λj , θY

µ
k ) = −2B(Y λj , θY

µ
k )δλµ,

we have that the Xλ
j ’s are orthonormal, i.e., X̃λ

j = Xλ
j . By the restricted root space

decomposition, every X ∈ p0 ∩ (k0 ⊕ n0) is of the form
∑
λ∈Σ+ Xλ − θXλ for some

Xλ ∈ gλ. Therefore, the Xλ
j , λ ∈ Σ+, form a basis of p0 ∩ (k0 ⊕ n0). Note that

Xλ
j = 2Y λj − (Y λj + θY λj ) ∈ n0 ⊕ k0 =⇒ kI(X

λ
j ) = −(Y λj + θY λj ).

By the invariance of the Killing form we deduce for each H ∈ a0

B([X̃λ
j , kI(X

λ
j )], H) = B(X̃λ

j , [kI(X
λ
j ), H]) = B(X̃λ

j , [H,Y
λ
j + θY λj ])

= B(X̃λ
j , λ(H)(Y λj − θY λj )) = λ(H)B(X̃λ

j , X
λ
j ) = λ(H).

Thus, ∑
λ∈Σ+

dim gλ∑
j=1

B([X̃λ
j , kI(X

λ
j )], H) =

∑
λ∈Σ+

λ(H) dim gλ = 2ρ(H).

Moreover,

[X̃λ
j , kI(X

λ
j )] = [Xλ

j , kI(X
λ
j )] = [Y λj − θY λj ,−(Y λj + θY λj )] = 2[θY λj , Y

λ
j ] ∈ g0 ∩ p0

implies that [X̃λ
j , kI(X

λ
j )] ∈ a0 since g0 = m0 ⊕ a0. □

Lemma 5.25. — Let X1, . . . , Xdim p be as in Lemma 3.13. Then
dim p∑
j=2

ℓ(kI(Xj))ω(X̃j) = −2ρ(H)ω(H).
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Proof. — Since ω : p→ C∞(K/M) is K-equivariant we have
dim p∑
j=2

ℓ(kI(Xj))ω(X̃j) =

dim p∑
j=2

ω([kI(Xj), X̃j ]).

By Lemma 5.24,
∑dim p
j=2 [kI(Xj), X̃j ] is an element of a0 and therefore a multiple of H.

Let λ ∈ R denote this multiple. Then Lemma 5.24 implies that

λ = ⟨λH,H⟩ =
dim p∑
j=2

⟨[kI(Xj), X̃j ], H⟩ = −2ρ(H). □

Lemma 5.26. — Let Y ∈ K̂M and X ∈ p. Then∑
V

ω←→Y

dimV

dimY
TVY (pV,−ρ)(e)ι

V
Y (ϕV )(X) =

{
−2ρ(H)ϕY : X = H,

ℓ(kI(X))ϕY : X ⊥ a,

where the bar denotes complex conjugation.

Proof. — For each ψ ∈ L2(K/M) we have by orthogonality and Proposition 2.2 (2),

(5.9) prY (ψ)(e) =
〈
prY (ψ),

ϕY
⟨ϕY , ϕY ⟩L2(K)

〉
L2(K)

=
〈
ψ,

ϕY
⟨ϕY , ϕY ⟩L2(K)

〉
L2(K)

.

Therefore, since ω(X), X ∈ p0, is real valued (third step) and using the product rule
and Lemma 5.25 (fourth step), TVY (pV,−ρ)(e) equals

−
dim p∑
j=2

prY (ω(X̃j)ℓ(kI(Xj))ϕV )(e)

= −
〈dim p∑
j=2

ω(X̃j)ℓ(kI(Xj))ϕV ,
ϕY

⟨ϕY , ϕY ⟩L2(K)

〉
L2(K)

= −
dim p∑
j=2

〈
ℓ(kI(Xj))ϕV , ω(X̃j)

ϕY
⟨ϕY , ϕY ⟩L2(K)

〉
L2(K)

=
〈
ϕV ,−2ρ(H)ω(H)

ϕY
⟨ϕY , ϕY ⟩L2(K)

〉
L2(K)

+
〈
ϕV ,

dim p∑
j=2

ω(X̃j)ℓ(kI(Xj))
ϕY

⟨ϕY , ϕY ⟩L2(K)

〉
L2(K)

.

Applying Equation (5.9) for V and Proposition 2.2 (3) we infer dimV ·TVY (pV,−ρ)(e) =

dimY · TYV (−pY,ρ)(e) and thus∑
V

ω←→Y

dimV

dimY
TVY (pV,−ρ)(e)ι

V
Y (ϕV )(X) =

∑
V

ω←→Y

TYV (−pY,ρ)(e)ιVY (ϕV )(X).

Note that TYV (−pY,ρ) ∈ V is left M -invariant since pY,ρ is left M -invariant by Lemma
3.13 (1) and TYV : Y ⊗ p∗ → V is K-equivariant. Therefore it is a multiple of ϕV and

J.É.P. — M., 2023, tome 10



Spectral correspondences for rank one locally symmetric spaces 375

we have TYV (−pY,ρ) = TYV (−pY,ρ)(e)ϕV . We infer that∑
V

ω←→Y

TYV (−pY,ρ)(e)ιVY (ϕV )(X) =
∑

V
ω←→Y

ιVY (T
Y
V (−pY,ρ))(X) = −pY,ρ(X).

The lemma now follows from the definition of pY,ρ(X). □

We are now able to compute the contribution of the second part in (5.8).

Lemma 5.27. — Let Y ∈ K̂M , X ∈ p and φ ∈ Y . Then

∑
V

ω←→Y

dimV

dimY
TVY (pV,−ρ)(e)ι

Y
V (φ)(X)(e) =

{
−2ρ(H)φ(e) : X = H,

−(ℓ(kI(X))φ)(e) : X ⊥ a.

Proof. — Note first that Proposition 5.14 implies that∑
V

ω←→Y

dimV

dimY
TVY (pV,−ρ)(e)ι

Y
V (φ)(X)(e) =

∑
V

ω←→Y

dimV

dimY
TVY (pV,−ρ)(e)

prV (ω(X)φ)(e)

λ(Y, V )
.

By Equation (5.9) we infer that∑
V

ω←→Y

dimV

dimY
TVY (pV,−ρ)(e)

1

λ(Y, V )
prV (ω(X)φ)(e)

=
∑

V
ω←→Y

dimV

dimY
TVY (pV,−ρ)(e)

1

λ(Y, V )

〈
ω(X)φ,

ϕV
⟨ϕV , ϕV ⟩L2(K)

〉
L2(K)

=
〈
φ,

∑
V

ω←→Y

dimV

dimY
TVY (pV,−ρ)(e)

1

λ(Y, V )
ω(X)

ϕV
⟨ϕV , ϕV ⟩L2(K)

〉
L2(K)

= ⟨φ,prY
( ∑
V

ω←→Y

dimV

dimY
TVY (pV,−ρ)(e)

1

λ(Y, V )
ω(X)

ϕV
⟨ϕV , ϕV ⟩L2(K)

)〉
L2(K)

,

where the last equation follows from φ ∈ Y and the orthogonality of the K-types.
Using Proposition 5.14 and Proposition 5.13 we deduce that

prY

( ∑
V

ω←→Y

dimV

dimY
TVY (pV,−ρ)(e)

1

λ(Y, V )
ω(X)

ϕV
⟨ϕV , ϕV ⟩L2(K)

)
=

∑
V

ω←→Y

dimV

dimY
TVY (pV,−ρ)(e)

1

λ(Y, V )
prY

(
ω(X)

ϕV
⟨ϕV , ϕV ⟩L2(K)

)
=

∑
V

ω←→Y

dimV

dimY
TVY (pV,−ρ)(e)

λ(V, Y )

λ(Y, V )
ιVY

( ϕV
⟨ϕV , ϕV ⟩L2(K)

)
(X)

=
∑

V
ω←→Y

TVY (pV,−ρ)(e) ι
V
Y

( ϕV
⟨ϕV , ϕV ⟩L2(K)

)
(X).
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Finally Proposition 2.2 (3) and Lemma 5.26 imply that∑
V

ω←→Y

TVY (pV,−ρ)(e) ι
V
Y

( ϕV
⟨ϕV , ϕV ⟩L2(K)

)
(X)

=
1

⟨ϕY , ϕY ⟩L2(K)

∑
V

ω←→Y

⟨ϕY , ϕY ⟩L2(K)

⟨ϕV , ϕV ⟩L2(K)
TVY (pV,−ρ)(e) ι

V
Y (ϕV )(X)

=
1

⟨ϕY , ϕY ⟩L2(K)

∑
V

ω←→Y

dimV

dimY
TVY (pV,−ρ)(e) ι

V
Y (ϕV )(X)

=
1

⟨ϕY , ϕY ⟩L2(K)

{
−2ρ(H)ϕY : X = H,

ℓ(kI(X))ϕY : X ⊥ a.

Summarizing, we have for X = H∑
V

ω←→Y

dimV

dimY
TVY (pV,−ρ)(e) ι

Y
V (φ)(X)(e) = −2ρ(H)

〈
φ,

ϕY
⟨ϕY , ϕY ⟩L2(K)

〉
L2(K)

= −2ρ(H)φ(e)

and for X ∈ p with X ⊥ a∑
V

ω←→Y

dimV

dimY
TVY (pV,−ρ)(e) ι

Y
V (φ)(X)(e) =

〈
φ, ℓ(kI(X))

ϕY
⟨ϕY , ϕY ⟩L2(K)

〉
L2(K)

= −
〈
ℓ(kI(X))φ,

ϕY
⟨ϕY , ϕY ⟩L2(K)

〉
L2(K)

= −(ℓ(kI(X))φ)(e). □

We are now ready to prove the Theorem 5.30.

Proposition 5.28. — In the setting of Lemma 5.22 we have

r(H)f = (µ− ρ)(H)f.

Proof. — By Lemma 5.22 and Proposition 5.20 we have

r(H)f =
∑
τ∈K̂M

∑
V

ω←→Yτ

dimV

dimYτ
TVYτ

(pV,µ)(e)fV,τ,H ,

with (for g ∈ G) fV,τ,H(gM) := ιYτ

V (π∗
Yτ
(f)(g))(H)(e). Lemma 5.23 and 5.27 imply

that ∑
V

ω←→Yτ

dimV

dimYτ
TVYτ

(pV,µ)(e) ι
Yτ

V

(
π∗
Yτ
(f)(g)

)
(H)(e)

= (µ+ ρ)(H)π∗
Yτ
(f)(g)(e)− 2ρ(H)π∗

Yτ
(f)(g)(e)

= (µ− ρ)(H)π∗
Yτ
(f)(g)(e)

= (µ− ρ)(H)πYτ
(π∗
Yτ
(f))(g).

Thus, r(H)f =
∑
τ∈K̂M

(µ− ρ)(H)π∗
τ (π

∗
Yτ
(f)) = (µ− ρ)(H)f . □
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Proposition 5.29. — Let µ ∈ a∗ and f =
∑
τ∈K̂M

πYτ
(π∗
Yτ
(f)) ∈ D′(G/M) (recall

Lemma 5.7) with π∗
Yτ
(f) ∈ C∞(G ×K Yτ ). Suppose that the equations of Lem-

ma 5.21 (1) and (2) hold for f for every irreducible constituent of Yτ ⊗ p∗ and every
Yτ ∈ K̂M . Let U+ ∈ C∞(G×M n) be a smooth section. Then U+f = 0.

Proof. — Note first that

U+f =
∑
τ∈K̂M

U+πYτ (π
∗
Yτ
(f)).

Let X1, . . . , Xdim n be a basis of n0. Then there exist functions κj ∈ C∞(G) such that

U+(g) =

dim n∑
j=1

κj(g)Xj ∀ g ∈ G.

Writing kC(Xj) resp. pC(Xj) for the k- resp. p-part of the Cartan decomposition of Yj ,
we define

U k
+(g) :=

dim n∑
j=1

κj(g)kC(Xj), Up
+(g) :=

dim n∑
j=1

κj(g)pC(Xj).

Note that, by definition of U+ and since M preserves the Cartan decomposition,
we have

U+(gm) = Ad(m−1)U+(g), U
k
+(gm) = Ad(m−1)U k

+(g), U
p
+(gm) = Ad(m−1)Up

+(g)

for each g ∈ G and m ∈M . We have

U k
+πYτ

(π∗
Yτ
(f))(gM) =

dim n∑
j=1

κj(g)
d

dt

∣∣∣
t=0

πYτ
(π∗
Yτ
(f))(g exp tkC(Xj)M)

=

dim n∑
j=1

κj(g)
d

dt

∣∣∣
t=0

π∗
Yτ
(f)(g exp tkC(Xj))(e)

= −
dim n∑
j=1

κj(g)(ℓ(kC(Xj))π
∗
Yτ
(f)(g))(e).(5.10)

For the p-part we obtain

Up
+πYτ

(π∗
Yτ
(f))(gM) =

dim n∑
j=1

κj(g)
d

dt

∣∣∣
t=0

πYτ
(π∗
Yτ
(f))(g exp tpC(Xj)M)

=

dim n∑
j=1

κj(g)
d

dt

∣∣∣
t=0

π∗
Yτ
(f)(g exp tpC(Xj))(e)

=

dim n∑
j=1

κj(g)(((∇ ◦ π∗
Yτ
(f))(g))(pC(Xj)))(e).
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As in the proof of Lemma 5.22 we infer that

Up
+πYτ (π

∗
Yτ
(f))(gM)

=

dim n∑
j=1

κj(g)
∑

V
ω←→Yτ

dimYτ
dimV

TYτ

V (pYτ ,µ)(e)ι
V
Yτ
(π∗
V (f)(g))(pC(Xj))(e).

If we define

ΨV,Yτ
∈ C∞(G/M), ΨV,Yτ

(gM) :=

dim n∑
j=1

κj(g)ι
V
Yτ
(π∗
V (f)(g))(pC(Xj))(e)

we thus have

Up
+πYτ (π

∗
Yτ
(f)) =

∑
V

ω←→Yτ

dimYτ
dimV

TYτ

V (pYτ ,µ)(e)ΨV,Yτ
.

Therefore

Up
+f =

∑
Yτ∈K̂M

Up
+πYτ

(π∗
Yτ
(f)) =

∑
τ∈K̂M

∑
V

ω←→Yτ

dimYτ
dimV

TYτ

V (pYτ ,µ)(e)ΨV,Yτ

=
∑

V ∈K̂M

∑
V

ω←→Yτ

dimYτ
dimV

TYτ

V (pYτ ,µ)(e)ΨV,Yτ .

Finally Lemma 5.23 and 5.27 imply that, for V ∈ K̂M fixed,∑
V

ω←→Yτ

dimYτ
dimV

TYτ

V (pYτ ,µ)(e)ΨV,Yτ (gM)

=

dim n∑
j=1

κj(g)
∑

V
ω←→Yτ

dimYτ
dimV

TYτ

V (pYτ ,µ)(e)ι
V
Yτ
(π∗
V (f)(g))(pC(Xj))(e)

=

dim n∑
j=1

κj(g)(−ℓ(kI(pC(Xj)))π
∗
V (f)(g))(e)

=

dim n∑
j=1

κj(g)(ℓ(kC(Xj))π
∗
V (f)(g))(e).

(5.11)

Combining Equation (5.10) and (5.11) we infer

U+f = U k
+f + Up

+f =
∑

V ∈K̂M

U k
+πV (π

∗
V (f)) +

∑
V

ω←→Yτ

dimYτ
dimV

TYτ

V (pYτ ,µ)(e)ΨV,Yτ = 0.

□

Theorem 5.30 (Fourier characterization of spherical principal series)
Let µ ∈ a∗ and f =

∑
τ∈K̂M

πYτ
(π∗
Yτ
(f)) ∈ D′(G/M) (recall Lemma 5.7) with

π∗
Yτ
(f) ∈ C∞(G×K Yτ ). Suppose that the equations of Lemma 5.21 (1) and (2) hold

for f for every irreducible constituent of Yτ⊗p∗ and every Yτ ∈ K̂M . Then f ∈ H−∞
µ .

J.É.P. — M., 2023, tome 10



Spectral correspondences for rank one locally symmetric spaces 379

Proof. — This follows from Proposition 5.28, Proposition 5.29 and the characteriza-
tion R(µ− ρ) of H−∞

µ from (2.3). □

Lemma 5.31. — Let Y ∈ K̂M and f ∈ C∞(G×K Y ). Then, for each g ∈ G,

∑
V

ω←→Y

dYV (f)(g) =

dim p∑
j=1

ω(X̃j)(r(Xj)f)(g).

Proof. — By definition we have (∇f)(g) =
∑dim p
j=1 (r(Xj)f)(g) ⊗ I(X̃j) ∈ Y ⊗ p∗.

Therefore,

(ωY ◦ (idY ⊗I−1))((∇f)(g)) =
dim p∑
j=1

ω(X̃j)(r(Xj)f)(g)

and by Remark 5.11 and the definition of the generalized gradients dYV = TYV ◦ ∇
we obtain ∑

V
ω←→Y

dYV (f)(g) =

dim p∑
j=1

ω(X̃j)(r(Xj)f)(g). □

Lemma 5.32. — Let V, Y ∈K̂M with V ω←→ Y , φ∈C∞(G×K Y ) and ψ∈C∞(G×K V ).
Then, if one side exists,

⟨πY (φ), πY (dVY (ψ))⟩L2(G) = −⟨πV (dYV (φ)), πV (ψ)⟩L2(G).

Proof. — Note first that if Y ̸=W ∈ K̂ and η ∈ C∞(G×K W ) we have

⟨πV (φ), πW (η)⟩L2(G) = 0

by splitting the integral into G/K and K. Therefore we obtain

⟨πY (φ), πY (dVY (ψ))⟩L2(G) =
〈
πY (φ),

∑
W

ω←→V

πW (dVW (ψ))
〉
L2(G)

.

Evaluating Lemma 5.31 at eM ∈ K/M yields (since ω(X̃j)(eM) = 0 for j ⩾ 2)∑
W

ω←→V

πW (dVW (ψ)) = r(H)πV (ψ).

Together we conclude that

⟨πY (φ), πY (dVY (ψ))⟩L2(G) = ⟨πY (φ), r(H)πV (ψ)⟩L2(G) = −⟨r(H)πY (φ), πV (ψ)⟩L2(G),

where we used the right-invariance of the Haar measure on G. The same argument
yields

⟨r(H)πY (φ), πV (ψ)⟩L2(G) = ⟨πV (dYV (φ)), πV (ψ)⟩L2(G). □
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6. Spectral Correspondence

In this section we describe the image of the minimal K-type Poisson transforms
occurring in Proposition 3.11 restricted to the socle. This will yield a quantum-
classical correspondence for the first band by Remark 4.4. The characterization of
the Poisson images require some case by case calculations to decompose certain ten-
sor products. We put these calculations into Appendix A to make the arguments
presented in this section more transparent.

6.1. The Case of G = SO0(n, 1), n ⩾ 3. — By Propositions A.6 and A.7 we have for
each k ∈ N0

Yk ⊗ p∗ ∼= Yk−1 ⊕ Yk+1 ⊕ Vk if n ̸= 3, Yk ⊗ p∗ ∼= Yk−1 ⊕ Yk+1 ⊕ Yk if n = 3,

where Vk, with highest weight ke1 + e2, is not M -spherical. We define generalized
gradients dYk

V := TYk

V ◦ ∇ with TYk

V ∈ HomK(Yk ⊗ p∗, V ) as in Definitions 2.4, 5.10
and abbreviate

d± := dYk

Yk±1
, D := dYk

Vk
resp. D := dYk

Yk

for n ̸= 3 resp. n = 3. Let µ = −ρ − ℓα ∈ Ex, see Theorem 4.5, be an exceptional
parameter and recall the structure and properties of soc(Hµ) from Theorem 4.5. Using
Proposition 5.20, Proposition 5.13.2 and Remark A.5 we infer for each k ∈ N0

V
ω←→/ Yk =⇒ dYk

V ◦ P
Yk
µ = 0 and V

ω←→ Yk ⇐⇒ V ∈ {Yk−1, Yk+1}

if Yk−1 exists(3). Therefore,
D ◦ PYk

µ = 0.

By Theorem 4.5 the minimal K-type of soc(Hµ) is Yℓ+1. Since

d− ◦ PYℓ+1
µ = T

Yℓ+1

Yℓ
(pYℓ+1,µ)(e)P

Yℓ
µ

by Lemma 3.13 (2), and since Proposition 3.10 implies that PYℓ
µ

∣∣
(soc(Hµ))−∞ = 0,

we obtain
d− ◦ PYℓ+1

µ

∣∣
(soc(Hµ))−∞ = 0.

Summarizing, we have

PYℓ+1
µ : (soc(Hµ))

−∞ −→ {f ∈ C∞(G×K Yℓ+1) | d−f = 0, Df = 0}.

We will now investigate which K-types µ with highest weight µ1e1 + · · · + µmem,
m := rk k = ⌊n/2⌋, occur on the right hand side. Applying [DGK88, Th. 6] to the
minimal K-type τ := Yℓ+1 (with highest weight (ℓ + 1)e1) of soc(Hµ), we find that
µj = 0 for j > 1, µ1 ⩾ ℓ+1 and that each µ of this form occurs with multiplicity one.
Therefore, the highest weights of the K-types in {f ∈ C∞(G ×K Yℓ+1) | d−f = 0,
Df = 0} are given by ke1 for k ⩾ ℓ+1. Since Yk has highest weight ke1, these K-types
are exactly the same as the K-types of soc(Hµ) (see Theorem 4.5). Hence, we have

(soc(Hµ))K ∼= {f ∈ C∞(G×K Yℓ+1) | d−f = 0, Df = 0}K ,

(3)For k = 0 we only have Y1 on the right hand side of the second equivalence.
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where the K in the index denotes the Harish-Chandra module. We can now use the
Casselman-Wallach globalization as in [Olb94, Satz 4.13] to lift this isomorphism to
distributions; since the reference is not readily available we added the proof in The-
orem B.3. We infer that the Poisson transform P

Yℓ+1
µ yields an isomorphism (similar

to the scalar case, see Equation (3.1), Definition 3.1) from (soc(Hµ))
−∞ to

{f ∈ C∞(G×KYℓ+1) | d−f = 0, Df = 0,∃ r ⩾ 0: supg∈G|e−rdG/K(eK,gK)f(g)| <∞}.

In particular, we have the following correspondence for the Γ-invariant elements.

Theorem 6.1 (Spectral Correspondence). — Let Ex ∋ µ = −(ρ + ℓα), ℓ ∈ N0, be an
exceptional parameter. Then the socle soc(Hµ) of Hµ is irreducible, unitary and its
K-types are given by Yk for k ⩾ ℓ + 1. The minimal K-type is Yℓ+1 and the corre-
sponding Poisson transform induces an isomorphism

PYℓ+1
µ : Γ(soc(Hµ))

−∞ ∼= Γ{f ∈ C∞(G×K Yℓ+1) | d−f = 0, Df = 0}.

Proof. — This follows from the discussion above and the fact that each Γ-invariant
function fulfills the growth condition (for each r ⩾ 0)

sup
g∈G
|e−rdG/K(eK,gK)f(g)| = sup

g∈F

|e−rdG/K(eK,gK)f(g)| <∞,

where F denotes a fundamental domain of Γ\G (note that the latter is compact by
assumption). □

Example 6.2. — For the first exceptional parameter µ = −ρ we get (Y1 ∼= p∗)

PY1
−ρ :

Γ(soc(H−ρ))
−∞ ∼= {f ∈ C∞(Λ1(Γ\G/K)) | δf = 0, df = 0},

where Λ1(Γ\G/K) denotes the bundle of one forms and (δ resp. ) d is the (co)-
differential. The dimension is given by the first Betti number b1(Γ\G/K) in this case.

Remark 6.3. — Given the previous example, a general geometric characterization of
the occurring generalized gradients would be desirable. At the moment, in general
we can only describe them in terms of Schur orthogonality.

6.2. The Case of G = SU(n, 1), n ⩾ 2. — By Proposition 5.19 and Remark A.11
we have for p, q ∈ N0

Yp,q ⊗ p∗ ∼=
⊕
β∈S

Yp,q,β ,

where S := {±(e1 − en+1), e2 − en+1,−en−1 + en+1,±(en − en+1)} ⊆ ∆n. The
representations V1 resp. V2 with highest weights qe1 + e2 − pen + (p − q − 1)en+1

resp. qe1− en−1−pen+(p− q+1)en+1 are not M -spherical. In this notation we have

Yp,q ⊗ p∗ ∼= Yp−1,q ⊕ Yp+1,q ⊕ Yp,q−1 ⊕ Yp,q+1 ⊕ V1 ⊕ V2
whenever these representations exist (i.e., whenever the corresponding weights of
Yp,q,β are indeed dominant). We define generalized gradients d

Yp,q

V := T
Yp,q

V ◦ ∇ with
T
Yp,q

V ∈ HomK(Yp,q ⊗ p∗, V ) as in Definition 5.10 and abbreviate

d±,1 := d
Yp,q

Yp±1,q
, d±,2 := d

Yp,q

Yp,q±1
, Dj := d

Yp,q

Vj
, j = 1, 2.
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Let µ = −(ρ+2ℓα) ∈ Ex, ℓ ∈ N0, be an exceptional parameter and recall the structure
and properties of soc(Hµ) from Theorem 4.5. Using Proposition 5.20, Proposition
5.13.2 and Remark A.10 we infer
V

ω←→/ Yp,q =⇒ d
Yp,q

V ◦ PYp,q
µ = 0 and V

ω←→ Yp,q ⇐⇒ V ∈ {Yp±1,q, Yp,q±1}

whenever the occurring representations exist. Therefore, for j ∈ {1, 2},
(6.1) Dj ◦ PYp,q

µ = 0.

The minimal K-type of soc(Hµ) is given by Yℓ+1,ℓ+1 (see Theorem 4.5). By Lemma
3.13 (2),

d−,1 ◦ P
Yℓ+1,ℓ+1
µ = T

Yℓ+1,ℓ+1

Yℓ,ℓ+1
(pYℓ+1,ℓ+1,µ)(e)P

Yℓ,ℓ+1
µ ,

d−,2 ◦ P
Yℓ+1,ℓ+1
µ = T

Yℓ+1,ℓ+1

Yℓ+1,ℓ
(pYℓ+1,ℓ+1,µ)(e)P

Yℓ+1,ℓ
µ .

Since Proposition 3.10 implies that PYℓ,ℓ+1
µ |(soc(Hµ))−∞ =0 and PYℓ+1,ℓ

µ |(soc(Hµ))−∞ =0,
we obtain that, for j ∈ {1, 2},

d−,j ◦ P
Yℓ+1,ℓ+1
µ

∣∣∣
(soc(Hµ))−∞

= 0.

Summarizing, we have

(6.2) P
Yℓ+1,ℓ+1
µ : (soc(Hµ))

−∞

−→ {f ∈ C∞(G×K Yℓ+1,ℓ+1) | d−,jf = 0, Djf = 0, j ∈ {1, 2}}.

We will first present a method similar to the case of G = SO0(n, 1). For this method
we have to assume n ̸= 2 and ℓ ̸= 0. Then [Mea89, Eq. (2.7.3), (2.7.4), Lem. 6.2.1,
Prop. 6.4.6] imply that the highest weights of the K-types on the right hand side
of (6.2) are given by p′e1 − q′en + (q′ − p′)en+1 with p′ ⩾ ℓ + 1 and q′ ⩾ ℓ+ 1, each
occurring with multiplicity at most one. By definition, the corresponding representa-
tions are Yp,q for p, q ⩾ ℓ + 1. Since the Poisson transform P

Yℓ+1,ℓ+1
µ is injective by

Proposition 3.11, each K-type of the socle (see Theorem 4.5) has to occur in its image
(restricted to the socle). Therefore the K-types of

{f ∈ C∞(G×K Yℓ+1,ℓ+1) | d−,jf = 0, Djf = 0, j ∈ {1, 2}}

are given by Yp,q, p, q ⩾ ℓ + 1, each one occurring with multiplicity one. Hence,
we obtain

(soc(Hµ))K ∼= {f ∈ C∞(G×K Yℓ+1,ℓ+1) | d−,jf = 0, Djf = 0, j ∈ {1, 2}}K .

Proceeding as in the case of G = SO0(n, 1) we find

Theorem 6.4 (Spectral Correspondence 1). — Let n ̸= 2 and Ex ∋ µ = −(ρ+2ℓα),
ℓ ∈ N0, be an exceptional parameter with ℓ ̸= 0. Then the socle soc(Hµ) of Hµ is
irreducible, unitary and its K-types are given by Yp,q for p, q ⩾ ℓ + 1. The minimal
K-type is Yℓ+1,ℓ+1 and the corresponding Poisson transform induces an isomorphism

P
Yℓ+1,ℓ+1
µ : Γ(soc(Hµ))

−∞

∼= Γ{f ∈ C∞(G×K Yℓ+1,ℓ+1) : d−,jf = 0, Djf = 0, j ∈ {1, 2}}.

Proof. — See Theorem 6.1. □
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In order to treat the remaining parameters (n = 2 or ℓ = 0) we will use the Fourier
characterization of the principal series. The following lemma is based on Lemma 5.8.

Lemma 6.5. — Let µ := −(ρ + 2ℓα), ℓ ∈ N0, an exceptional parameter. Let ψp,q ∈
C∞(G×KYp,q) for p, q ⩾ ℓ+1 be such that the equations from Lemma 5.21 are fulfilled
(with ψp,q instead of π∗

Yp,q
(f)). Assume that πYℓ+1,ℓ+1

(ψYℓ+1,ℓ+1
) ∈ C∞(G) has finite

L2-norm. Then the formal sum
f :=

∑
p,q⩾ℓ+1

ιG/M (πYp,q
(ψp,q))

defines a distribution on G/M .

Proof. — We abbreviate T p1,q1p2,q2
:= T

Yp1,q1

Yp2,q2
(pYp1,q1,µ

)(e) ∈ C. It suffices to prove the
estimate in Lemma 5.8. Using Lemma 5.32 (second step) and the equations from
Lemma 5.21 (first and third step) we infer for the L2 inner product

∥πYp,q (ψp,q)∥2 =
dimYp,q

dimYp−1,q

1

T p−1,q
p,q

〈
πYp,q (ψp,q), πYp,q (d+,1ψp−1,q)

〉
= − dimYp,q

dimYp−1,q

1

T p−1,q
p,q

〈
πYp−1,q

(d−,1ψp,q), πYp−1,q
(ψp−1,q)

〉
= −

( dimYp,q
dimYp−1,q

)2 T p,qp−1,q

T p−1,q
p,q

〈
πYp−1,q

(ψp−1,q), πYp−1,q
(ψp−1,q)

〉
.

By Proposition A.18, Remark A.10 and Remark A.11 this equals
(n+ p− 2)(n+ p+ q − 1)

p(n+ p+ q − 2)

n+ p

p− 1− ℓ
∥πYp−1,q (ψp−1,q)∥2.

Iteratively applying this equation we find that for each m ∈ N0

∥πYℓ+m,q
(ψℓ+m,q)∥2

=

m∏
r=2

(n+ ℓ+ r − 2)(n+ ℓ+ r + q − 1)

(ℓ+ r)(n+ ℓ+ r + q − 2)

n+ ℓ+ r

r − 1
∥πYℓ+1,q

(ψℓ+1,q)∥2.

The latter product equals
(n+ ℓ+m+ q − 1)(n+ ℓ+m− 2)!(ℓ+ 1)!(n+ ℓ+m)!

(n+ ℓ+ q)(n+ ℓ− 1)!(ℓ+m)!(m− 1)!(n+ ℓ+ 1)!
∥πYℓ+1,q

(ψℓ+1,q)∥2,

which grows polynomially in m (in fact it is O(m2n+ℓ)). Interchanging the roles of p
and q this proves the estimate in Lemma 5.8 and therefore the lemma. □

Theorem 6.6 (Spectral Correspondence 2). — Let Ex ∋ µ = −(ρ + 2ℓα), ℓ ∈ N0,
be an exceptional parameter. Then the socle soc(Hµ) of Hµ is irreducible, unitary and
its K-types are given by Yp,q for p, q ⩾ ℓ+1. The minimal K-type is Yℓ+1,ℓ+1 and the
corresponding Poisson transform induces an isomorphism from : Γ(soc(Hµ))

−∞ onto
Γ{u ∈ C∞(G×K Yℓ+1,ℓ+1) | properties (i)–(vi) below},

where the properties are as follows.
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For u ∈ C∞(G×K Yℓ+1,ℓ+1) let ψℓ+1,ℓ+1 := dimYℓ+1,ℓ+1 · u and define recursively
for p, q ⩾ ℓ+ 1 (see Lemma 5.21)

ψp,ℓ+1 :=
dimYp,ℓ+1

dimYp−1,ℓ+1

1

T p−1,ℓ+1
p,ℓ+1

d+,1ψp−1,ℓ+1,

ψp,q :=
dimYp,q

dimYp,q−1

1

T p,q−1
p,q

d+,2ψp,q−1,

where we abbreviate T p1,q1p2,q2
:= T

Yp1,q1

Yp2,q2
(pYp1,q1,µ)(e) ∈ C. Then we define the properties

d+,1ψp,q = T p,qp+1,q

dimYp,q
dimYp+1,q

ψp+1,q, (p ⩾ ℓ+ 1, q ⩾ ℓ+ 2),(i)

d−,1ψp,q = T p,qp−1,q

dimYp,q
dimYp−1,q

ψp−1,q, (p ⩾ ℓ+ 2, q ⩾ ℓ+ 1),(ii)

d−,1ψℓ+1,q = 0, (q ⩾ ℓ+ 1),(iii)

d−,2ψp,q = T p,qp,q−1

dimYp,q
dimYp,q−1

ψp,q−1, (p ⩾ ℓ+ 1, q ⩾ ℓ+ 2),(iv)

d−,2ψp,ℓ+1 = 0, (p ⩾ ℓ+ 1),(v)
Djψp,q = 0, (p, q ⩾ ℓ+ 1, j ∈ {1, 2}).(vi)

Proof. — We first prove that the Poisson transform maps into the claimed space.
If u = P

Yℓ+1,ℓ+1
µ (f) for some f ∈ (soc(Hµ))

−∞ we have ψℓ+1,ℓ+1 = π∗
Yℓ+1,ℓ+1

(f)

by Lemma 5.4 (4). Properties (i), (ii), (iv) and (vi) are exactly the equations from
Lemma 5.21. To prove the third property we note that

d−,1ψℓ+1,q = d−,1π
∗
Yℓ+1,q

(f) = T ℓ+1,q
ℓ,q

dimYℓ+1,q

dimYℓ,q
π∗
Yℓ,q

(f) = 0,

since the socle does not contain the K-type Yℓ,q. Similarly we see that property (v)
is fulfilled. Since the Poisson transform is G-equivariant it preserves Γ-invariant ele-
ments.

For the surjectivity let u ∈ ΓC∞(G×K Yℓ+1,ℓ+1) with the desired properties. Define
f :=

∑
p,q⩾ℓ+1

ιG/M (πYp,q (ψp,q)).

By Lemma 6.5, f defines a distribution on G/M (note that, since Γ is co-compact,
the norm ∥πYℓ+1,ℓ+1

(ψYℓ+1,ℓ+1
)∥L2(G) is finite). By Theorem 5.30 we have f ∈ H−∞

µ

and since there are only terms for p, q ⩾ ℓ + 1 in the defining sum for f we also
have f ∈ (soc(Hµ))

−∞. Since each ψp,q is Γ-invariant and each involved map is G-
equivariant, f is also Γ-invariant. The orthogonality of the K-types implies

π∗
Yℓ+1,ℓ+1

( ∑
p,q∈J

ιG/M (πYp,q
(ψp,q))

)
=

∑
p,q∈J

ιG/M (πYp,q
(ψp,q)) ◦ πYℓ+1,ℓ+1

= 0

for J := {(p, q) ∈ N2
0 : (p, q) ̸= (ℓ+ 1, ℓ+ 1)} and

π∗
Yℓ+1,ℓ+1

(
ιG/M (πYℓ+1,ℓ+1

(ψℓ+1,ℓ+1))
)
= ιYℓ+1,ℓ+1

(ψℓ+1,ℓ+1)

(see Definition 5.1 for the relevant definitions). Using Lemma 5.4 (4) again we obtain

P
Yℓ+1,ℓ+1
µ (f) =

1

dimYℓ+1,ℓ+1
π∗
Yℓ+1,ℓ+1

(f) =
1

dimYℓ+1,ℓ+1
ψℓ+1,ℓ+1 = u. □
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6.3. The Case of G = Sp(n, 1), n ⩾ 2. — By Proposition 5.19 and Remark A.14
we have for each a, b ∈ N0 with a ⩾ b

Va,b ⊗ p∗ ∼= Va+1,b ⊕ Va−1,b ⊕ Va,b+1 ⊕ Va,b−1 ⊕
⊕
β∈S

Va,b,β ̸∈K̂M

Va,b,β .

We define generalized gradients d
Va,b

V := T
Va,b

V ◦ ∇ with T
Va,b

V ∈ HomK(Va,b ⊗ p∗, V )

as in Definition 5.10 and abbreviate

d1,± := d
Va,b

Va±1,b
, d2,± := d

Va,b

Va,b±1
, Dβ := d

Va,b

Va,b,β

for each β ∈ S with Va,b,β ̸∈ K̂M . Let µ = −(ρ + (2ℓ − 2)α) ∈ Ex be an exceptional
parameter and recall the structure and properties of soc(Hµ) from Theorem 4.5. Using
Proposition 5.20, Proposition 5.13.2 and Remark A.13 we infer for each a, b ∈ N0 with
a ⩾ b

V
ω←→/ Va,b =⇒ d

Va,b

V ◦ PVa,b
µ = 0

V
ω←→ Va,b ⇐⇒ V ∈ {Va+1,b, Va−1,b, Va,b+1, Va,b−1}and

whenever the occurring representations exist. The minimal K-type of soc(Hµ) is given
by Vℓ+1,ℓ+1 (see Theorem 4.5).

The spectral correspondence in the quaternionic case is established by using the
Fourier characterization of the principal series (see Theorem 5.30). By Lemma 5.8 we
obtain the following result.

Lemma 6.7. — Let µ := −(ρ + (2ℓ − 2)α), ℓ ∈ N0, an exceptional parameter. Let
ψa,b ∈ C∞(G ×K Va,b) for a, b ⩾ ℓ + 1 be such that the equations from Lemma 5.21
are fulfilled (with ψa,b instead of π∗

Va,b
(f)). Assume that πVℓ+1,ℓ+1

(ψVℓ+1,ℓ+1
) ∈ C∞(G)

has finite L2-norm. Then the formal sum

f :=
∑

a⩾b⩾ℓ+1

ιG/M (πVa,b
(ψa,b))

defines a distribution on G/M .

Proof. — We abbreviate T a1,b1a2,b2
:= T

Va1,b1

Va2,b2
(pVa1,b1,µ

)(e) ∈ C. It suffices to prove the
estimate in Lemma 5.8. Using Lemma 5.32 (second step) and the equations from
Lemma 5.21 (first and third step) we infer for the L2-norm as in Lemma 6.5

∥πVa,b
(ψa,b)∥2 = −

( dimVa,b
dimVa−1,b

)2 T a,ba−1,b

T a−1,b
a,b

∥πVa−1,b
(ψa−1,b)∥2.

By Equation (5.6), Proposition A.18 and Proposition 5.13.4 we have

T a,ba−1,b

T a−1,b
a,b

=
−2n+ 1− a− ℓ

a− ℓ
λ(Va,b, Va−1,b)

λ(Va,b, Va−1,b)
=
−2n+ 1− a− ℓ

a− ℓ
dimVa−1,b

dimVa,b

and thus

∥πVa,b
(ψa,b)∥2 =

2n− 1 + a+ ℓ

a− ℓ
dimVa,b

dimVa−1,b
∥πVa−1,b

(ψa−1,b)∥2.
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Iteratively applying this equation we infer that for each m ∈ N0

∥πVℓ+m,b
(ψℓ+m,b)∥2 =

m∏
r=2

2n− 1 + 2ℓ+ r

r

dimVℓ+r,b
dimVℓ+r−1,b

∥πVℓ+1,b
(ψℓ+1,b)∥2

=
dimVℓ+m,b
dimVℓ+1,b

m∏
r=2

2n− 1 + 2ℓ+ r

r
∥πVℓ+1,b

(ψℓ+1,b)∥2.

Note that
m∏
r=2

2n− 1 + 2ℓ+ r

r
=

(2n− 1 + 2ℓ+m)!

m!(2n+ 2ℓ)!

is O(m2n−1+2ℓ). Moreover, the dimension formula from Remark A.14 shows that
dimVℓ+m,b grows at most polynomially in m. A similar argument works for the b-vari-
able. □

Theorem 6.8 (Spectral Correspondence). — Let Ex ∋ µ = −(ρ+ (2ℓ− 2)α), ℓ ∈ N0,
be an exceptional parameter. Then the socle soc(Hµ) of Hµ is irreducible, unitary and
its K-types are given by Va,b for a ⩾ b ⩾ ℓ+ 1. The minimal K-type is Vℓ+1,ℓ+1 and
the corresponding Poisson transform induces an isomorphism from : Γ(soc(Hµ))

−∞

onto
Γ{u ∈ C∞(G×K Vℓ+1,ℓ+1) : properties (i)–(v) below},

where the properties are as follows. For u ∈ C∞(G ×K Vℓ+1,ℓ+1) let ψℓ+1,ℓ+1 :=

dimVℓ+1,ℓ+1 · u and define recursively for a ⩾ b ⩾ ℓ+ 1 (see Lemma 5.21)

ψa,ℓ+1 :=
dimVa,ℓ+1

dimVa−1,ℓ+1

1

T a−1,ℓ+1
a,ℓ+1

d+,1ψa−1,ℓ+1,

ψa,b :=
dimVa,b

dimVa,b−1

1

T a,b−1
a,b

d+,2ψa,b−1,

where we abbreviate T a1,b1a2,b2
:= T

Va1,b1

Va2,b2
(pVa1,b1,µ

)(e) ∈ C. Then we define the properties

d+,1ψa,b = T a,ba+1,b

dimVa,b
dimVa+1,b

ψa+1,b, (a ⩾ b ⩾ ℓ+ 2),(i)

d−,1ψa,b = T a,ba−1,b

dimVa,b
dimVa−1,b

ψa−1,b, (a ⩾ ℓ+ 2, b ⩾ ℓ+ 1),(ii)

d−,2ψa,b = T a,ba,b−1

dimVa,b
dimVa,b−1

ψa,b−1, (a ⩾ b ⩾ ℓ+ 2),(iii)

d−,2ψa,ℓ+1 = 0, (a ⩾ ℓ+ 1),(iv)

d
Va,b

V ψa,b = 0, (a ⩾ b ⩾ ℓ+ 1, V ↔ Va,b, V ̸∈ K̂M ).(v)

Proof. — The proof is analogous to the prove of Theorem 6.6. □
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6.4. The Case of G = F4(−20). — By Proposition 5.19 and Remark A.17 we have for
each m, k ∈ N0 with m ⩾ k and m ≡ k mod 2

Vm,k ⊗ p∗ ∼= Vm+1,k+1 ⊕ Vm−1,k−1 ⊕ Vm+1,k−1 ⊕ Vm−1,k+1 ⊕
⊕
β∈S

Vm,k,β ̸∈K̂M

Vm,k,β .

We define generalized gradients dVm,k

V := T
Vm,k

V ◦∇ with TVm,k

V ∈ HomK(Vm,k⊗p∗, V )

as in Definition 5.10 and abbreviate

d1,± := d
Vm,k

Vm±1,k±1
, d2,± := d

Vm,k

Vm±1,k∓1
, Dβ := d

Vm,k

Vm,k,β

for each β ∈ S with Vm,k,β ̸∈ K̂M . Let µ = −(ρ + (2ℓ − 6)α) ∈ Ex, ℓ ∈ N0,
be an exceptional parameter and recall the structure and properties of soc(Hµ) from
Theorem 4.5. Using Proposition 5.20, Proposition 5.13.2 and Remark A.16 we infer
for each m ⩾ k ∈ N0 with m ≡ k mod 2

V
ω←→/ Vm,k =⇒ d

Vm,k

V ◦ PVm,k
µ = 0 and V

ω←→ Vm,k ⇐⇒ V ∈ {Vm±1,k±1}

whenever the occurring representations exist. The minimal K-type of soc(Hµ) is given
by V2ℓ+2,0 (see Theorem 4.5).

As in the quaternionic case we use Theorem 5.30 to prove a spectral correspondence.
By Lemma 5.8 we obtain

Lemma 6.9. — Let µ := −(ρ + (2ℓ − 6)α), ℓ ∈ N0, an exceptional parameter. Let
ψm,k ∈ C∞(G ×K Vm,k) for m ≡ k mod 2, m − k ⩾ 2(ℓ + 1), be such that the
equations from Lemma 5.21 are satisfied (with ψm,k instead of π∗

Vm,k
(f)). Assume

that πV2ℓ+2,0
(ψV2ℓ+2,0

) ∈ C∞(G) has finite L2-norm. Then the formal sum

f :=
∑

m−k⩾2ℓ+2
m≡k mod 2

ιG/M (πVm,k
(ψm,k))

defines a distribution on G/M .

Proof. — We abbreviate Tm1,k1
m2,k2

:= T
Vm1,k1

Vm2,k2
(pVm1,k1,µ

)(e) ∈ C. It suffices to prove the
estimate in Lemma 5.8. Using Lemma 5.32 (second step) and the equations from
Lemma 5.21 (first and third step) we infer for the L2-norm as in Lemma 6.5

∥πVm,k
(ψm,k)∥2 = −

( dimVm,k
dimVm−1,k−1

)2 Tm,km−1,k−1

Tm−1,k−1
m,k

∥πVm−1,k−1
(ψm−1,k−1)∥2.

By Equation (5.6), Proposition A.18 and Proposition 5.13.4 we have

Tm,km−1,k−1

Tm−1,k−1
m,k

=
−14− 2ℓ−m− k
4− 2ℓ+m+ k

λ(Vm,k, Vm−1,k−1)

λ(Vm,k, Vm−1,k−1)

=
−14− 2ℓ−m− k
4− 2ℓ+m+ k

dimVm−1,k−1

dimVm,k

and thus

∥πVm,k
(ψm,k)∥2 =

14 + 2ℓ+m+ k

4− 2ℓ+m+ k

dimVm,k
dimVm−1,k−1

∥πVm−1,k−1
(ψm−1,k−1)∥2.
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Iteratively applying this equation we infer for a(m, k) := m+k
2 and p := a(m, k)−(ℓ+1)

∥πVm,k
(ψm,k)∥2=

p−1∏
r=1

7 + ℓ+ a(m, k)− r
2− ℓ+ a(m, k)− r

dimVm−r,k−r

dimVm−r−1,k−r−1
∥πVm−p,k−p

(ψm−p,k−p)∥2

=
dimVm,k

dimVm−p,k−p

p−1∏
r=1

7 + ℓ+ a(m, k)− r
2− ℓ+ a(m, k)− r

∥πVm−p,k−p
(ψm−p,k−p)∥2,

with a(m− p, k − p) = ℓ+ 1. Note that
p−1∏
r=1

7 + ℓ+ a(m, k)− r
2− ℓ+ a(m, k)− r

=
(7 + 2ℓ+ p)! · 6

(7 + 2ℓ+ 1)! · (2 + p)!

is O(p7+2ℓ−2). Moreover, the dimension formula from Remark A.17 shows that
dimVm,k grows at most polynomially in m and k. A similar argument works for the
step from Vm,k with a(m, k) = ℓ + 1 to V2(ℓ+1),0 by decreasing b(m, k) := (m− k)/2
(by going from Vm,k to Vm−1,k+1). □

Theorem 6.10 (Spectral Correspondence). — Let Ex ∋ µ = −(ρ+(2ℓ−6)α), ℓ ∈ N0,
be an exceptional parameter. Then the socle soc(Hµ) of Hµ is irreducible, unitary and
its K-types are given by Vm,k for m ≡ k mod 2, m − k ⩾ 2(ℓ + 1). The minimal
K-type is V2ℓ+2,0 and the corresponding Poisson transform induces an isomorphism
from : Γ(soc(Hµ))

−∞ onto
Γ{u ∈ C∞(G×K V2ℓ+2,0) : properties (i)–(v) below},

where the properties are as follows. Let a(m, k) :=(m+ k)/2 and b(m, k) :=(m− k)/2.
For u ∈ C∞(G ×K V2ℓ+2,0) let ψℓ+1,ℓ+1 := dimV2ℓ+2,0 · u and define recursively for
m ≡ k mod 2, m− k ⩾ 2(ℓ+ 1) (see Lemma 5.21)

ψa,ℓ+1 :=
dimVm,m−2ℓ−2

dimVm−1,m−2ℓ−3

1

T a−1,ℓ+1
a,ℓ+1

d+,1ψa−1,ℓ+1,

ψa,b :=
dimVm,k

dimVm−1,k+1

1

T a,b−1
a,b

d+,2ψa,b−1,

where we abbreviate T a1,b1a2,b2
:= T

Va1+b1,a1−b1

Va2+b2,a2−b2
(pVa1+b1,a1−b1,µ

)(e) ∈ C. Then we define
the properties

d+,1ψa,b = T a,ba+1,b

dimVa,b
dimVa+1,b

ψa+1,b, (a ⩾ b ⩾ ℓ+ 2),(i)

d−,1ψa,b = T a,ba−1,b

dimVa,b
dimVa−1,b

ψa−1,b, (a ⩾ ℓ+ 2, b ⩾ ℓ+ 1),(ii)

d−,2ψa,b = T a,ba,b−1

dimVa,b
dimVa,b−1

ψa,b−1, (a ⩾ b ⩾ ℓ+ 2),(iii)

d−,2ψa,ℓ+1 = 0, (a ⩾ ℓ+ 1),(iv)

d
Va,b

V ψa,b = 0, (a ⩾ b ⩾ ℓ+ 1, V ↔ Vm,k, V ̸∈ K̂M ).(v)

Proof. — The proof is analogous to the prove of Theorem 6.6. □
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Appendix A. Computations of scalars relating Poisson transforms

Table 1. Structural data of rank one groups (recall that α(H) = 1

for the unique simple positive restricted root α of (g, a)). The iso-
morphism of K/M with a sphere is given by the adjoint action of K
on H ∈ a0 ⊆ p.

G K K/M mα m2α ρ(H)

SO0(n, 1), n ⩾ 2 S(O(n)×O(1)) ∼= SO(n) Sn−1 n− 1 0 (n− 1)/2

SU(n, 1), n ⩾ 2 S(U(n)×U(1)) ∼= U(n) S2n−1 2n− 2 1 n

Sp(n, 1), n ⩾ 2 Sp(n)× Sp(1) S4n−1 4n− 4 3 2n+ 1

F4(−20) Spin(9) S15 8 7 11

In order to compute the scalars TYV (pY,µ) occurring in Lemma 3.13 we first com-
pute the scalars λ(V, Y ) in each case and then conclude by using Lemma 5.16 and
Equation (5.6). For the explicit calculations we will use hypergeometric functions.

Definition A.1. — The (Gaussian, ordinary)hypergeometric function F (of type (2,1))
is defined by (if the series converges)

F (a, b, c, z) :=

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

where a, b, c, z ∈ R, c > 0, and

(q)n :=

{
1 : n = 0

q(q + 1) . . . (q + n− 1) : n > 0

denotes the Pochhammer symbol. Note that F is a polynomial in z if a or b is a non-
positive integer.

Lemma A.2 (cf. [JW77, Lem. 4.1]). — Assume |z| < 1 or a ∈ −N0 or b ∈ −N0. Then F
has the following properties:

d

dz
F (a, b, c, z) =

ab

c
F (a+ 1, b+ 1, c+ 1, z),(i)

(c− b− a)F (a, b, c, z) = (c− b)F (a, b− 1, c, z) + a(z − 1)F (a+ 1, b, c, z),(ii)
(c− b− a)F (a, b, c, z) = (c− a)F (a− 1, b, c, z) + b(z − 1)F (a, b+ 1, c, z),(iii)

F (a, b+ 1, c, z)− F (a, b, c, z) = az

c
F (a+ 1, b+ 1, c+ 1, z),(iv)

F (a+ 1, b, c, z)− F (a, b, c, z) = bz

c
F (a+ 1, b+ 1, c+ 1, z).(v)
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A.1. The Case of G = SO0(n, 1), n ⩾ 3. — Considering the compact picture and the
isomorphism K/M ∼= Sn−1 we see that Hµ decomposes as the Hilbert space direct
sum

(A.1) Hµ
∼=K L2(K/M) ∼=K L2(Sn−1) ∼=K

⊕̂
ℓ∈N0

Yℓ,

where Yℓ denotes the space of all harmonic, homogeneous polynomials of degree ℓ
restricted to Sn−1.

Remark A.3. — For G = SO0(2, 1) we have Hµ
∼=K

⊕̂
ℓ∈ZYℓ, with Yℓ := C · zℓ ⊂

C∞(S1).

We choose a Cartan subalgebra t of k as in [Kna02, §II.1 Ex. 2, 4] with roots

∆k = {±ei ± ej | 1 ⩽ i ̸= j ⩽ m} ∪ {±ei | 1 ⩽ i ⩽ m},
∆k = {±ei ± ej | 1 ⩽ i ̸= j ⩽ m},resp.

if K ∼= SO(2m + 1) resp. K ∼= SO(2m) for some m ∈ N. We choose the positive
systems

∆+
k = {ei ± ej | 1 ⩽ i < j ⩽ m} ∪ {ei : 1 ⩽ i ⩽ m},

∆+
k = {ei ± ej | 1 ⩽ i < j ⩽ m}.resp.

The corresponding half sum of positive roots is given by

ρc =
(
m− 1

2

)
e1 +

(
m− 3

2

)
e2 + · · ·+

1

2
em resp. ρc = (m− 1)e1 + · · ·+ em−1.

The highest weight of Yℓ is ℓe1 (see e.g. [Kna02, Ex. 1 of §V.1, p. 277]). Introducing
the angular coordinates

x1 = r cos(ξ), xi = r sin(ξ)ωi, i ⩾ 2,

where
∑n
i=2 ω

2
i = 1, 0 ⩽ ξ ⩽ π, we infer by [JW77, Th. 3.1(2)] that

ϕYk
= cosk(ξ)F

(
−k
2
,
1− k
2

,
n− 1

2
,− tan2(ξ)

)
.

In order to compute the scalars λ(V, Y ) for Y, V ∈ K̂M = {[Yℓ] | ℓ ∈ N0} it suffices
to decompose ω(H)ϕV by Lemma 5.15.

Lemma A.4. — For each k ∈ N0 we have

ω(H)ϕYk
=

k

n+ 2k − 2
ϕYk−1

+
n+ k − 2

n+ 2k − 2
ϕYk+1

.

Proof. — Recall that the identification from Equation (A.1) comes from the K-action
on p, where e1 ∈ Sn−1 corresponds to H ∈ a. This implies that

ω(H) = x1 = cos(ξ)

as a function in C∞(Sn−1). Therefore,

ω(H)ϕYk
= cosk+1(ξ)F

(
−k
2
,
1− k
2

,
n− 1

2
,− tan2 ξ

)
.
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By Lemma A.2 (ii) with a = −k/2, b = (1− k)/2, c = (n− 1)/2 and z = − tan2 ξ

we infer that (n+ 2k − 2)F (−k/2, (1− k)/2, (n− 1)/2, z) equals

(n+ k − 2)F
(
−k + 1

2
,−k

2
,
n− 1

2
, z
)
+

k

cos2 ξ
F
(1− k

2
,
2− k
2

,
n− 1

2
, z
)
.

Multiplying by cosk+1 ξ yields the result. □

Remark A.5. — Note that Lemma 5.15 implies that

λ(Yk, Yk+1) = prYk+1
(ω(H)ϕYk

)(eM) =
n+ k − 2

n+ 2k − 2
ϕYk+1

(eM) =
n+ k − 2

n+ 2k − 2
.

Similarly, we have λ(Yk, Yk−1) = k/(n+ 2k − 2). The scalars TYk

Yk±1
(pYk,µ)(e) will be

computed in Proposition A.18.

In order to describe the generalized gradients properly we will now decompose the
relevant tensor products.

Proposition A.6. — Let K = SO(2m + 1), m ⩾ 1. For m > 1 the tensor product
Yk ⊗ p∗ decomposes for k ∈ N into

Yk ⊗ p∗ ∼= Yk−1 ⊕ Yk+1 ⊕ Vk,

where Vk is the K-representation with highest weight ke1 + e2. Moreover we have
Yk ⊗ p∗ ∼= Yk−1 ⊕ Yk ⊕ Yk+1 if m = 1.

Proof. — The coadjoint representation of K on p∗ ∼= C2m+1 is equivalent to the
defining representation (as well as Y1) and has weights ±ei, i ∈ {1, . . . ,m}, and 0.
Writing

Yk ⊗ p∗ ∼= Yk ⊗ Y1 ∼=
⊕

Λi∈K̂
LiΛi,

where Li := mult(Λi, Yk ⊗ Y1) denotes the multiplicity, we have by [FS97, p. 274]

Li =
∑
w∈W

sign(w)multY1
(w(Λi + ρc)− ρc − ke1),

where multY1(µ) ∈ N0 denotes the multiplicity of the weight µ in Y1 andW denotes the
Weyl group of k. If Li ̸= 0 there has to exist some w ∈W such that w(Λi+ρc)−ρc−ke1
is a weight of Y1, i.e.,

w(Λi + ρc)− ρc − ke1 = ±ej ⇐⇒ Λi = w−1(ρc + ke1 ± ej)− ρc

for some j ∈ {1, . . . ,m} or

w(Λi + ρc)− ρc − ke1 = 0 ⇐⇒ Λi = w−1(ρc + ke1)− ρc.

Let us first consider the case m ̸= 1. Since Λi is a highest weight it is dominant. Thus,
ρc + ke1 ± ej resp. ρc + ke1 must not lie on the boundary of any Weyl chamber. This
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is the case if and only if the weight of Y1 is contained in {0,±e1, e2,−em}. In the first
three cases we obtain for Λi + ρc

w−1(ρc + ke1) = w−1
((
k +m− 1

2

)
e1 +

(
m− 3

2

)
e2 + · · ·+

1

2
em

)
w−1(ρc + ke1 ± e1) = w−1

((
k ± 1 +m− 1

2

)
e1 +

(
m− 3

2

)
e2 + · · ·+

1

2
em

)
w−1(ρc + ke1 + e2) = w−1

((
k +m− 1

2

)
e1 +

(
m− 1

2

)
e2 + · · ·+

1

2
em

)
which is dominant if and only if w = id yielding Λi = ke1, (k ± 1)e1, ke1 + e2 respec-
tively. For Λi + ρc = w−1(ρc + ke1 − em) we have

Λi + ρc = w−1
((
k +m− 1

2

)
e1 +

(
m− 3

2

)
e2 + · · ·+

3

2
em−1 −

1

2
em

)
which is dominant if and only if w = sem is the reflection along em. For this w we have
Λi = ke1. Altogether we have

mult(ke1, Yk ⊗ Y1) =
∑
w∈W

sign(w)multY1(w(Λi + ρc)− ρc − ke1)

= sign(id)multY1
(0) + sign(sem)multY1

(−em) = 0

and similarly that the representations with highest weights (k ± 1)e1 resp. ke1 + e2
occur with multiplicity one. For m = 1 the weights of Y1 are −e1, 0 and e1. We get
Λi = (k − 1)e1, ke1 resp. (k + 1)e1 in this case, each with multiplicity one. □

Proposition A.7. — Let K = SO(2m), m ⩾ 2. The tensor product Yk⊗p∗ decomposes
for k ∈ N into

Yk ⊗ p∗ ∼= Yk−1 ⊕ Yk+1 ⊕ Vk,
where Vk is the K-representation with highest weight ke1 + e2.

Proof. — The coadjoint representation of K on p∗ ∼= C2m is equivalent to the defining
representation (as well as Y1) and has weights ±ei, i ∈ {0, . . . ,m − 1}. Each weight
occurs with multiplicity one. We can now decompose Yk ⊗ p∗ ∼= Yk ⊗ Y1 using the
Racah-Speiser algorithm. Let

Yk ⊗ Y1 ∼=
⊕

Λi∈K̂
LiΛi

with Li := mult(Λi, Yk⊗Y1) =
∑
w∈W sign(w)multY1

(w(Λi+ρc)−ρc−ke1) as in the
odd case. Since w(Λi+ρc)−ρc−ke1 = ±ei if and only if Λi = w−1(ρc+ke1±ei)−ρc
and as Λi has to be dominant (since Λi is a highest weight), the weight ρc + ke1 ± ei
must not lie on the boundary of any Weyl chamber. This is the case if and only if
the weight ±ei is ±e1 or e2. In these cases the weight ρc + ke1 ± ei is dominant, so
w = id. Moreover, the weight w−1(ρc+ ke1± ei)− ρc is given by ke1± e1 = (k± 1)e1
resp. ke1 + e2. □

Remark A.8. — Using the Weyl dimension formula we see that

dimYk =

(
n+ k − 3

k

)
n/2 + k − 1

n/2− 1
=

(
n+ k − 3

k

)
n+ 2k − 2

n− 2
.
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A.2. The Case of G = SU(n, 1), n ⩾ 2. — Using the isomorphism K/M ∼= S2n−1

we see that Hµ decomposes as the Hilbert space direct sum
(A.2) Hµ

∼=K L2(K/M) ∼=K L2(S2n−1) ∼=K
⊕̂

p,q∈N0
Yp,q,

where
(A.3) Yp,q := {f ∈ Yp+q | f(αz) = αpαqf(z) ∀α ∈ C, |α| = 1, z ∈ S2n−1}

with f(z) := f(Re(z1), Im(z1), . . . ,Re(zn), Im(zn)). Let t0 denote the diagonal matri-
ces in su(n, 1). Then t0 = z(k0)⊕h0 where h0 is a Cartan subalgebra of [k0, k0] ∼= su(n)

(traceless diagonal matrices). Denoting the dual basis of the standard diagonal matrix
basis Eii, 1 ⩽ i ⩽ n+ 1, by (ei)i we obtain that the roots ∆k of (k, t) resp. ∆ of (g, t)
are given by
(A.4) ∆k = {ei − ej | 1 ⩽ i ̸= j ⩽ n} resp. ∆ = {ei − ej | 1 ⩽ i ̸= j ⩽ n+ 1}.

We choose the positive system ∆+
k = {ei − ej | 1 ⩽ i < j ⩽ n} with

ρc =
(n− 1

2

)
e1 +

(n− 3

2

)
e2 + · · · −

n− 1

2
en.

The highest weight of Yp,q is given by qe1−pen+(p−q)en+1 (see e.g. [Kna02, Ex. 1 of
§V.1, p. 276], the en+1-part accounts for the trivial action of the center). Introducing
the angular coordinates (on Cn ∼= R2n)

z1 = r cos(ξ)eiφ, zj = r sin(ξ)ωj , 2 ⩽ j ⩽ n,

where
∑n
j=2|ωj |2 = 1, 0 ⩽ φ ⩽ 2π and 0 ⩽ ξ ⩽ π/2 we have (see [JW77, Th. 3.1(3)])

ϕYp,q
= ei(p−q)φ cosp+q(ξ)F (−p,−q, n− 1,− tan2(ξ)).

Lemma A.9. — For each p, q ∈ N0 we have

2(p+ q + n− 1)ω(H)ϕYp,q
= (p+ n− 1)ϕYp+1,q

+ qϕYp,q−1
+ (q + n− 1)ϕYp,q+1

+ pϕYp−1,q
.

Proof. — Write ϕYp,q
= ei(p−q)φhp,q(ξ). In the angular coordinates introduced above

we have
ω(H) = Re(z1) = cos(ξ) cos(φ)

as a function in C∞(S2n−1). Therefore,

ω(H)ϕYp,q
= cos(ξ) cos(φ)ei(p−q)φhp,q(ξ)

=
cos(ξ)hp,q(ξ)

2
ei(p−q+1)φ +

cos(ξ)hp,q(ξ)

2
ei(p−q−1)φ.(A.5)

Lemma A.2 (iii) implies that

(A.6) cos(ξ)hp,q(ξ) =
p+ n− 1

p+ q + n− 1
hp+1,q(ξ) +

q

p+ q + n− 1
hp,q−1(ξ)

and Lemma A.2 (ii) implies that

(A.7) cos(ξ)hp,q(ξ) =
q + n− 1

p+ q + n− 1
hp,q+1(ξ) +

p

p+ q + n− 1
hp−1,q(ξ).

Combining the equations (A.5), (A.6) and (A.7) yields the result. □
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Remark A.10. — As in Remark A.5, Lemma A.9 determines the scalars λ(Yp,q, V )

for each V ∈ K̂M with V ↔ Yp,q.

To decompose the relevant tensor products we use Proposition 5.19. By Equa-
tion (A.4) we infer that the non-compact roots are given by

∆n = {±(ei − en+1) | 1 ⩽ i ⩽ n}.

The following remark ensures that each representation Yτ,β , β ∈ S, in Proposition 5.19
actually occurs.

Remark A.11. — Using the Weyl dimension formula we see that

dimYp,q =

(
q + n− 2

n− 2

)(
p+ n− 2

n− 2

)
n+ p+ q − 1

n− 1
= dimYq,p,

dimYp,q,−en−1+en+1
=

(
q + n− 1

q

)(
p+ n− 2

p

)
(n+ p+ q − 1)p(n− 2)

(n+ q − 2)(p+ 1)

= dimYq,p,e2−en+1 .

For n = 2 this has to be read as dimYp,0,−e1+e3 = p = dimY0,p,e2−e3 . We get that∑
β∈S⊆∆n

dimYp,q,β = dim p · dimYp,q = 2n · dimYp,q,

which implies that m(β) = 1 if and only if the corresponding formula for the dimension
of Yp,q,β in not zero.

A.3. The Case of G = Sp(n, 1), n ⩾ 2. — In this case we have K = Sp(n) × Sp(1)

and g = sp(n, 1)C = sp(n+1,C). We choose a Cartan subalgebra of sp(n,C)×sp(1,C)
and introduce notation as in [Kna02, §II.2 Ex. 3] such that we have for the roots ∆k

of (k, h) resp. ∆ of (g, h)

(A.8)
∆k = {±ei ± ej | 1 ⩽ i ̸= j ⩽ n} ∪ {±2ei | 1 ⩽ i ⩽ n+ 1}
∆ = {±ei ± ej | 1 ⩽ i ̸= j ⩽ n+ 1} ∪ {±2ei | 1 ⩽ i ⩽ n+ 1}.

We choose the positive system

∆+
k = {ei ± ej | 1 ⩽ i < j ⩽ n} ∪ {2ei | 1 ⩽ i ⩽ n+ 1}.

The corresponding half sum of positive roots is given by

ρc = ne1 + (n− 1)e2 + · · ·+ 2en−1 + en + en+1.

By the isomorphism K/M ∼= S4n−1 and [Kna02, Ch. IX.8, Probl. 12] we see that Hµ

decomposes as the Hilbert space direct sum

(A.9) Hµ
∼=K L2(K/M) ∼=K L2(S4n−1) ∼=K

⊕̂
a⩾b⩾0Va,b,

where Va,b has highest weight ae1 + be2 + (a − b)en+1. We now introduce angular
coordinates on Hn ∼= R4n as in [JW77, Th. 3.1(4)]. For (w1, . . . , wn) ∈ Hn we write

w1 = r cos(ξ)(cos(t) + y sin(t)), wi = r sin(ξ)qi, i ⩾ 2,
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where qi, y ∈ H such that |y|2 = 1 =
∑n
i=2|qi|2, Re(y) = 0 and 0 ⩽ ξ ⩽ π/2, 0 ⩽ t ⩽ π.

Then we have by [JW77, Th. 3.1(4)](4) (our Va,b corresponds to V p,q of [JW77] with
p := a+ b and q := a− b by [JW77, Lem. 3.3])

ϕVa,b
=

1

a− b+ 1

sin((a− b+ 1)t)

sin(t)
cosa+b(ξ)F

(
−b,−(a+ 1), 2(n− 1),− tan2(ξ)

)
,

where the normalizing factor 1/(a− b+ 1) follows from ϕVa,b
(eM) = 1, where eM

corresponds to t = ξ = 0, and using limt→0 sin((a− b+ 1)t)/sin(t) = a− b+ 1.

Lemma A.12. — For a, b ∈ N0 with a ⩾ b we have

2(a− b+ 1)(2n− 1 + a+ b)ω(H)ϕVa,b
= (a− b+ 2)(2n− 1 + a)ϕVa+1,b

+ b(a− b+ 2)ϕVa,b−1

+ (a− b)(2n− 2 + b)ϕVa,b+1

+ (a− b)(a+ 1)ϕVa−1,b
.

Proof. — Write ϕVa,b
= 1

a−b+1 χq(t)ha,b(ξ) such that χq(t) = sin((q + 1)t)/sin(t).
In the angular coordinates above we have

ω(H) = Re(w1) = cos(ξ) cos(t)

as a function in C∞(S4n−1). Note that 2 cos(t)χq(t) = χq+1(t) + χq−1(t). Therefore,

(A.10)
ω(H)ϕVa,b

= cos(ξ) cos(t)χq(t)ha,b(ξ)

=
cos(ξ)ha,b(ξ)

2
χq+1(t) +

cos(ξ)ha,b(ξ)

2
χq−1(t).

Lemma A.2 (iii) implies

(A.11) cos(ξ)ha,b(ξ) =
2n− 2 + b

2n+ a+ b− 1
ha,b+1(ξ) +

a+ 1

2n+ a+ b− 1
ha−1,b(ξ)

and Lemma A.2 (ii) implies that

(A.12) cos(ξ)ha,b(ξ) =
2n− 1 + a

2n+ a+ b− 1
ha+1,b(ξ) +

b

2n+ a+ b− 1
ha,b−1(ξ).

Inserting Equation (A.11) and (A.12) into Equation (A.10) proves the result. □

Remark A.13. — As in Remark A.5, Lemma A.12 determines the scalars λ(Ya,b, V )

for each V ∈ K̂M with V ↔ Ya,b.

To decompose the relevant tensor products we use Proposition 5.19. By Equa-
tion (A.8) we infer that the non-compact roots are given by

∆n = {±ei ± en+1 | 1 ⩽ i ⩽ n}.

The following remark ensures that each representation Yτ,β , β ∈ S, in Proposition 5.19
actually occurs.

(4)There is a sign error in [JW77, Th. 3.1(4)]; solving the differential equation in [JW77, p. 147]
actually gives sin((q+1)t)

sin(t)
cosp(ξ)F

(
−p+q

2
,− p+q+2

2
, 2(n− 1),− tan2(ξ)

)
.
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Remark A.14. — Using the Weyl dimension formula we see that the representation
Wξ1,ξ2,ξ3 with highest weight ξ1e1 + ξ2e2 + ξ3en+1 has dimension

dimWξ1,ξ2,ξ3 =
ξ1 + ξ2 + 2n− 1

(2n− 1)(2n− 2)
(ξ1 − ξ2 + 1)(ξ3 + 1)

(
ξ1 + 2n− 2

2n− 3

)(
ξ2 + 2n− 3

2n− 3

)
and the representation W 1

ξ1,ξ2,ξ3
with highest weight ξ1e1 + ξ2e2 + e3 + ξ3en+1 has

dimension

dimW 1
ξ1,ξ2,ξ3 =

(
ξ1 + 2n− 1

2n− 3

)(
ξ2 + 2n− 2

2n− 1

)
(ξ1 + ξ2 + 2n− 1)(2n− 4)(ξ1 − ξ2 + 1)

2(ξ1 + 2n− 2)(ξ2 + 2n− 3)

· (ξ1 + 1)(ξ3 + 1)

ξ2 + 1
.

Using these dimension formulas we get that∑
β∈S⊆∆n

dimVp,q,β = dim p · dimVa,b = 4n · dimVa,b,

so that m(β) = 1 if and only if the corresponding formula for the dimension of Va,b,β is
not zero. Alternatively, the algorithm we used in the case of SO0(n, 1) can be applied
to verify this result.

A.4. The Case of G = F4(−20). — In this case we have K = Spin(9) with k0 = so(9)

and rk g = rk k = 4. Therefore, we may choose a Cartan subalgebra t of both k and g.
The root system can be realized in V = R4 with the standard basis e1, e2, e3, e4 in
the following way (see [Bou02, Plate VIII])

∆ = {±ei | 1 ⩽ i ⩽ 4} ∪ {±ei ± ej | 1 ⩽ i < j ⩽ 4} ∪ { 12 (±e1 ± e2 ± e3 ± e4)}
(A.13)

∆k = {±ei | 1 ⩽ i ⩽ 4} ∪ {±ei ± ej | 1 ⩽ i < j ⩽ 4}.

We choose the positive system ∆+
k = {ei − ej : 1 ⩽ i < j ⩽ 4} ∪ {ei : 1 ⩽ i ⩽ 4} with

ρc =
7

2
e1 +

5

2
e2 +

3

2
e3 +

1

2
e4.

By [Joh76, Th. 3.1] we see that Hµ decomposes as the Hilbert space direct sum

(A.14) Hµ
∼=K L2(K/M) ∼=K L2(S15) ∼=K

⊕̂
m⩾ℓ⩾0

m≡ℓ mod 2
Vm,ℓ,

where Vm,ℓ is the K-representation with highest weight m
2 e1 +

ℓ
2e2 +

ℓ
2e3 +

ℓ
2e4 (see

[Joh76, p. 278]). Introducing angular coordinates on R16 as in [Joh76, p. 275] we can
write (see [Joh76, Th. 3.1])

ϕVm,ℓ
= χℓ(φ)hm,ℓ(ξ)

with

χℓ(φ) := cos(φ)ℓF
(
− ℓ
2
,
−ℓ+ 1

2
,
7

2
,− tan(φ)2

)
,

hm,ℓ(ξ) := cos(ξ)mF
(ℓ−m

2
,
−m− ℓ− 6

2
, 4,− tan(ξ)2

)
.

J.É.P. — M., 2023, tome 10



Spectral correspondences for rank one locally symmetric spaces 397

Lemma A.15. — For m, ℓ ∈ N0, ℓ ⩽ m, m ≡ ℓ mod 2, we have

(6 + 2ℓ)(14 + 2m)ω(H)ϕVm,ℓ
= (6 + ℓ)(14 +m+ ℓ)ϕVm+1,ℓ+1

+ (6 + ℓ)(m− ℓ)ϕVm−1,ℓ+1
+ ℓ(8 +m− ℓ)ϕVm+1,ℓ−1

+ ℓ(m+ ℓ+ 6)ϕVm−1,ℓ−1
.

Proof. — In the angular coordinates of [Joh76, p. 275] we have

ω(H) = x = cos(ξ) cos(φ)

as a function in C∞(S15). We claim that

(A.15) cos(φ)χℓ(φ) =
6 + ℓ

6 + 2ℓ
χℓ+1(φ) +

ℓ

6 + 2ℓ
χℓ−1(φ).

Using Lemma A.2 (ii) and the symmetry of the hypergeometric function in the first
two variables we infer that for z := − tan(φ)2

(6 + 2ℓ)F
(
− ℓ
2
,
−ℓ+ 1

2
,
7

2
, z
)
= (6 + ℓ)F

(−(ℓ+ 1)

2
,− ℓ

2
,
7

2
, z
)

+
ℓ

cos(φ)2
F
(−ℓ+ 1

2
,
−ℓ+ 2

2
,
7

2
, z
)
.

Multiplying both sides by cos(φ)ℓ+1 now proves the claim. We now express the product
cos(ξ)hm,ℓ(ξ) in two different forms. By Lemma A.2 (iii) we have

(A.16) cos(ξ)hm,ℓ(ξ) =
8 +m− ℓ
14 + 2m

hm+1,ℓ−1(ξ) +
m+ ℓ− 6

14 + 2m
hm−1,ℓ−1(ξ)

and by Lemma A.2 (ii) similarly

(A.17) cos(ξ)hm,ℓ(ξ) =
14 +m+ ℓ

14 + 2m
hm+1,ℓ+1(ξ) +

m− ℓ
14 + 2m

hm−1,ℓ+1(ξ).

Since ω(H)ϕVm,ℓ
= cos(φ)χ(φ) cos(ξ)hm,ℓ(ξ) we arrive at the desired result by com-

bining Equations (A.15), (A.16) and (A.17). □

Remark A.16. — As in Remark A.5, Lemma A.15 determines the scalars λ(Ym,ℓ, V )

for each V ∈ K̂M with V ↔ Ym,ℓ.

To decompose the relevant tensor products we use Proposition 5.19. By Equa-
tion (A.13) we infer that the non-compact roots are given by

∆n =
{1

2
(±e1 ± e2 ± e3 ± e4)

}
.

The following remark ensures that each representation Yτ,β , β ∈ S, in Proposition 5.19
actually occurs.

Remark A.17. — By the Weyl dimension formula we see that the representation
Wa1,a2,a3,a4 with highest weight a1e1 + a2e2 + a3e3 + a4e4 has dimension

dimWa1,a2,a3,a4 =
1

6! · 4! · 2 · 7 · 5 · 3
· δ1 · δ2 · δ3 ·

4∏
i=1

(9 + 2(ai − i)),
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with δi :=
∏4
j=i+1(ai + aj + 9− i− j)(ai − aj + j − i). Using this dimension formula

we get ∑
β∈S⊆∆n

dimVm,ℓ,β = dim p · dimVm,ℓ = 16 · dimVm,ℓ,

so that m(β) = 1 if and only if the corresponding formula for the dimension of Vm,ℓ,β is
not zero. Alternatively, the algorithm we used in the case of SO0(n, 1) can be applied
to verify this result.

We will now compute the scalars TVY (pV,µ)(e) from Lemma 3.13. Since we already
computed the scalars λ(V, Y ) in each case, it suffices to determine the scalars ν(V, Y )

(see Equation (5.6) for the notation).

Proposition A.18 (Scalars between Poisson transforms)
(1) G = SO0(n, 1), n ⩾ 3: For ℓ ∈ N0,

ν(Yℓ, Yℓ+1) = ℓλ(Yℓ, Yℓ+1), ν(Yℓ, Yℓ−1) = −(2ρ(H) + ℓ− 1)λ(Yℓ, Yℓ−1),

(2) G = SU(n, 1), n ⩾ 2: For p, q ∈ N0,

ν(Yp,q, Yp+1,q) = 2pλ(Yp,q, Yp+1,q),

ν(Yp,q, Yp,q−1) = −2(ρ(H) + q − 1)λ(Yp,q, Yp,q−1),

ν(Yp,q, Yp,q+1) = 2qλ(Yp,q, Yp,q+1),

ν(Yp,q, Yp−1,q) = −2(ρ(H) + p− 1)λ(Yp,q, Yp−1,q),

(3) G = Sp(n, 1), n ⩾ 2: For a, b ∈ N0 with a ⩾ b,

ν(Va,b, Va+1,b) = 2aλ(Va,b, Va+1,b),

ν(Va,b, Va,b−1) = −(4n− 2 + 2b)λ(Va,b, Va,b−1),

ν(Va,b, Va,b+1) = 2(b− 1)λ(Va,b, Va,b+1),

ν(Va,b, Va−1,b) = −(4n+ 2a)λ(Va,b, Va−1,b),

(4) G = F4(−20) : For m, ℓ ∈ N0, ℓ ⩽ m, m ≡ ℓ mod 2,

ν(Vm,ℓ, Vm+1,ℓ+1) = (m+ ℓ)λ(Vm,ℓ, Vm+1,ℓ+1),

ν(Vm,ℓ, Vm−1,ℓ+1) = −(14 +m− ℓ)λ(Vm,ℓ, Vm−1,ℓ+1),

ν(Vm,ℓ, Vm+1,ℓ−1) = (m− ℓ− 6)λ(Vm,ℓ, Vm+1,ℓ−1),

ν(Vm,ℓ, Vm−1,ℓ−1) = −(20 +m+ ℓ)λ(Vm,ℓ, Vm−1,ℓ−1).

Proof. — In view of Lemma 5.16 it suffices to find a closed G-invariant subspace
U ⩽ Hµ, for some µ ∈ a∗, such that multK(V,U) = 0 and multK(Y,U) ̸= 0.
In this case we have ν(V, Y ) = −(µ + ρ)(H)λ(V, Y ). The following table determines
the Harish-Chandra module UK of U in each case (see [JW77, Th. 5.1] and [Joh76,
Th. 5.2]). □
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G V Y UK µ(H) (µ+ ρ)(H)

SO0(n, 1) Yℓ Yℓ+1 ⊕∞
j=ℓ+1Yj −ρ(H)− ℓ −ℓ

Yℓ Yℓ−1 ⊕ℓ−1
j=0Yj ρ(H) + ℓ− 1 n+ ℓ− 2

SU(n, 1) Yp,q Yp+1,q ⊕p′⩾p+1,q′⩾0Yp′,q′ −2p− ρ(H) −2p
Yp,q Yp,q−1 ⊕p′⩾0,q′⩽q−1Yp′,q′ ρ(H) + 2(q − 1) 2(n+ q − 1)

Yp,q Yp,q+1 ⊕p′⩾0,q′⩾q+1Yp′,q′ −2q − ρ(H) −2q
Yp,q Yp−1,q ⊕p′⩽p−1,q′⩾0Yp′,q′ ρ(H) + 2(p− 1) 2(n+ p− 1)

Sp(n, 1) Va,b Va+1,b ⊕a′⩾a+1,a′⩾b′Va′,b′ −(ρ(H) + 2a) −2a
Va,b Va,b−1 ⊕b′⩽b−1,a′⩾b′Va′,b′ ρ(H) + 2b− 4 4n+ 2(b− 1)

Va,b Va,b+1 ⊕b′⩾b+1,a′⩾b′Va′,b′ −(ρ(H)− 2 + 2b) −2(b− 1)

Va,b Va−1,b ⊕a′⩽a−1,a′⩾b′Va′,b′ ρ(H)− 2 + 2a 4n+ 2a

F4(−20) Vm,ℓ Vm+1,ℓ+1 ⊕m′+ℓ′⩾m+ℓ+2Vm′,ℓ′ −(ρ(H) +m+ ℓ) −(m+ ℓ)

Vm,ℓ Vm−1,ℓ+1 ⊕m′−ℓ′⩽m−ℓ−2Vm′,ℓ′ ρ(H) +m− ℓ− 8 14 +m− ℓ
Vm,ℓ Vm+1,ℓ−1 ⊕m′−ℓ′⩾m−ℓ+2Vm′,ℓ′ −(ρ(H)− 6 +m− ℓ) 6−m+ ℓ

Vm,ℓ Vm−1,ℓ−1 ⊕m′+ℓ′⩽m+ℓ−2Vm′,ℓ′ ρ(H)− 2 +m+ ℓ 20 +m+ ℓ

Appendix B. Moderate growth of Poisson transforms

In this section we state a result (Theorem B.3) of [Olb94] on the image of Pois-
son transforms restricted to distributions. As the reference is not readily available,
we include the proof. We start with two preliminary results.

Theorem B.1 ([Olb94, Satz 2.3]). — Let (τ, Y ) ∈ K̂ and µ ∈ a∗. Then the space
(Eτ,µ)K of K-finite elements in Eτ,µ is a Harish-Chandra module.

Proof. — Consider the K-equivariant embedding

i : Ỹ ↪−→ (Ẽτ,µ)K , ∀ f ∈ (Eτ,µ)K : i(ṽ)(f) := ⟨ṽ, f(e)⟩,

where (Ẽτ,µ)K denotes the K-finite functionals on Eτ,µ. Set W := U(g)(i(Ỹ )). Note
that l(Z(U(g)) ⊆ D(G, τ). Since χτ,µ is finite-dimensional, Z(U(g)) acts locally finite
on W , i.e., dimZ(U(g))w < ∞ for all w ∈ W . Since W is also finitely generated,
W is a Harish-Chandra module ([Wal88, 3.4.7]). By [Min92, Lem. 2.2], the canonical
map (Eτ,µ)K → W̃ is injective (if the Taylor series of f vanishes at e it vanishes
identically). Since W is admissible, we have ˜̃

W = W and thus (Eτ,µ)K = W̃ . Now
(Eτ,µ)K is a Harish-Chandra module as the dual of the Harish-Chandra module W
([Wal88, 4.3.2]). □

We denote the G-representation on eigensections of moderate growth by

Aµ := {f ∈ Eτ,µ | ∃ s ∈ R : supg∈G|e−sdG/K(eK,gK)f(g)| <∞},

where dG/K denotes the Riemannian distance function on G/K.

Lemma B.2 ([Olb94, Lem. 4.12]). — Let f ∈ Aµ such that |f(g)| ⩽ C1e
sdG/K(eK,gK).

Then, for each X ∈ U(g), there exists a constant CX such that

(B.1) |(r(X)f)(g)| ⩽ CXe
sdG/K(eK,gK).
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Proof. — According to [HC66, Th. 1], for every f ∈ Eτ,µ there exists a (K-biinvariant)
function α ∈ C∞

c (G) with f ∗ α = f . Then

|(r(X)f)(g)| = |r(X)(f ∗ α)(g)| =
∣∣∣∣r(X)

∫
G

f(x)α(x−1g) dx

∣∣∣∣
⩽ sup
y∈g(suppα)−1

|(r(X)α)(y)|
∫
g(suppα)−1

|f(x)|dx

⩽ C sup
y∈g(suppα)−1

|(r(X)α)(y)|esmaxz∈(suppα)−1 dG/K(zK,eK)esdG/K(gK,eK).□

Theorem B.3 ([Olb94, Satz 4.13]). — Let (τ, Y ) ∈ K̂M and consider P τµ as a map
from D′(K/M) ∼= H−∞

µ to C∞(G×K Y ) with respect to some fixed t ∈ HomM (C, Y ).
If f ∈ D′(K/M) has order m, then

∀ g ∈ G : |P τµ (f)(g)| ⩽ Ca(Reµ+ρ)+

g

(
max
α∈Σ+

aαg
)m
,

where ag ∈ A is defined as the unique element such that g ∈ KagK and aαg ⩾ 1 for
every α ∈ Σ+ and, for each λ ∈ a∗0, {λ+} := Wλ ∩ {ν ∈ a∗ | ∀α ∈ Σ+ : ⟨ν, α⟩ ⩾ 0}.
In particular,

P τµ (D
′(K/M)) ⊆ Aµ.

Moreover, let V ⩽ Hµ denote a subrepresentation such that P τµ maps V −∞ into the
joint kernel H ⊆ Eτ,µ of some invariant differential operators d1, . . . , dn. Assume that
the restriction

P τµ |VK
: VK −→ HK

to the Harish-Chandra module VK of V is an isomorphism with inverse β. Then β

continues to a map β : Aµ ∩H→ V −∞.

Proof. — Let ṽ ∈ Ỹ and f ∈ D′(K/M). Then, by interpreting Equation (3.3) for
distributions,〈
ṽ, P τµ f(g)

〉
=
〈
ṽ, Lg−1(P τµ f)(e)

〉
=
〈
tπµ(g

−1)f, τ̃(•−1)ṽ
〉
=
〈
tf, π−µ(g)(pr1 τ̃(•

−1)ṽ)
〉
,

where ⟨· , ·⟩ denotes the natural pairing of Ỹ with Y resp. D′(K ×M Y ) with
C∞(K ×M Ỹ ) and pr1 : Ỹ → Ỹ (1) denotes the projection onto the M -isotypic compo-
nent of the trivial representation of M in Ỹ . Let φ := pr1 τ̃(•

−1)ṽ ∈ C∞(K×M Ỹ (1)) ∼=
H∞

−µ. When f is a distribution of order m, there exist finitely many elements Yi ∈ U(k)

of order at most m such that (recall ℓ defined in Section 2.4 and opp in Section 3.1)

|⟨tf, π−µ(g)φ⟩|⩽
∑
i

sup
k∈K
|(r(Yi)π−µ(g)φ)(k)|⩽

∑
i

sup
k∈K
|(ℓ(opp(Ad(g−1k)Yi))φ)(g

−1k)|

⩽ (sup
k∈K
|aI(g−1k)−(µ+ρ)|)

∑
i

sup
k∈K
|(ℓ(opp(Ad(g−1k)Yi))φ)(kI(g

−1k))|.

By Kostant’s convexity theorem ([Hel00, Ch. IV, Th. 10.5]) we have, for each a ∈ A,

{log(aI(ak)) | k ∈ K} = conv{w log(a) | w ∈W},

J.É.P. — M., 2023, tome 10



Spectral correspondences for rank one locally symmetric spaces 401

where conv denotes the convex hull. Thus,

|aI(g−1k)−(µ+ρ)| ⩽ a
(−(Reµ+ρ))+

g−1 = a(Reµ+ρ)+

g .

If |•| denotes a K-invariant norm on U(g), we obtain

|Ad(g−1k)Yi| ⩽ (max
α∈Σ+

aαg−1)m =
(
max
α∈Σ+

aαg
)m
.

Therefore, there exist constants Ci such that

sup
k∈K
|(ℓ(opp(Ad(g−1k)Yi))φ)(kI(g

−1k))| = sup
k∈K
|(ℓ(opp(Ad(g−1k)Yi))φ)(k)|

⩽ Ci
(
max
α∈Σ+

aαg
)m
.

Hence, we proved
|⟨ṽ, P τµ f(g)⟩| ⩽ Ca(Reµ+ρ)+

g

(
max
α∈Σ+

aαg
)m
,

which is the first assertion of the theorem.
For the second part let β := (P τµ |VK

)−1 : HK → VK and consider its adjoint

β∗ : ṼK −→ H̃K , β∗(λ)(h) := λ(β(h)).

As in Theorem B.1 we obtain that H̃K is generated under U(g) by the point evalu-
ations δṽ, ṽ ∈ Ỹ , at the identity eK of G/K. Therefore, the growth condition from
Equation (B.1) implies that each f ∈ Aµ ∩H defines a moderate functional on H̃K

in the terminology of [Wal92, 11.6]. Therefore, with

∀φ ∈ ṼK : β(f)(φ) := f(β∗φ),

β(f) defines a moderate functional on ṼK . By [Wal92, Prop. 11.6.2], each of these
functionals extend continuously to Ṽ∞. Thus, β extends to a map

β : Aµ ∩H −→ (Ṽ∞)′ = V −∞. □
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