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RIGID BIRATIONAL INVOLUTIONS OF P3 AND

CUBIC THREEFOLDS

by Sokratis Zikas

Abstract. — We construct families of birational involutions on P3 or on a smooth cubic threefold
which do not fit into a non-trivial elementary relation of Sarkisov links. As a consequence,
we construct new homomorphisms from their group of birational transformations, effectively
re-proving their non-simplicity. We also prove that these groups admit a free product structure.
Finally, we produce automorphisms of these groups that are not generated by inner and field
automorphisms.

Résumé (Involutions birationnelles rigides de P3 et de cubiques lisses de dimension 3)
Nous construisons des familles d’involutions birationnelles sur P3 ou sur une cubique lisse de

dimension 3 qui ne s’intègrent pas dans une relation élémentaire non triviale de liens de Sarki-
sov. En conséquence, nous construisons de nouveaux homomorphismes à partir de leur groupe
de transformations birationnelles, redémontrant de manière effective leur non-simplicité. Nous
prouvons également que ces groupes admettent une structure de produit libre. Enfin, nous pro-
duisons des automorphismes de ces groupes qui ne sont pas engendrés par des automorphismes
intérieurs et des automorphismes de corps.
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1. Introduction

1.1. Homomorphisms from the Cremona group and free product structure

The Cremona group Crn(k) = Birk(Pn) is the group of birational transformations
of the projective space Pn over a field k. The study of this group has been a classical
problem dating back to 19th century.
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234 S. Zikas

The Cremona group in dimension 2 over any field k is known to be non-simple (see
[CL13, Lon16]) i.e., it admits non-trivial homomorphisms to other groups. Recently,
many families of such homomorphisms were constructed: for example in dimension 2

over a perfect field by [LZ20, Sch22] and over a subfield of the complex numbers by
[BY20] in dimension 3 and by [BLZ21] in dimension greater or equal to 3. Among
other important consequences, the examples in the latter case proved for the first time
the non-simplicity of the Cremona group in dimension greater or equal to 3.

In this paper, we construct uncountable families of involutions of P3 over C, which
are Sarkisov links and do not fit into any non-trivial relations of Sarkisov links. These
are links of Type II of the form

X
χC

//

��

''

X

��

ww
Z

P3 P3

where X → P3 is a divisorial contraction to a curve C and the central model Z
is a sextic double solid, whose covering map induces the involution. The link χC is
completely determined by C and the families of these links are parametrized by the
Hilbert schemes of these curves.

Using these links we obtain the following result:

Theorem 1. — There exists a group homomorphism

ψ : Cr3(C) −→ ∗
I
Z/2Z,

where
(1) the indexing set I parametrizes projective equivalence classes of certain curves

and is uncountable (see Section 4.1 for the precise description of I);
(2) PGL4(C) lies in the kernel and
(3) there exist elements χi ∈ Cr3(C), i ∈ I, of degree 19 not in the kernel.

Moreover, ψ admits a section giving the group Cr3(C) a semi-direct product structure.

This can be thought of as a counterpart to the homomorphisms constructed in
[BLZ21]. It should be noted that their results hold in all dimensions greater than or
equal to 3 and apply to many other classes of varieties; however, the advantage of our
construction lies in the fact that it is quite explicit, thus proving the non-simplicity
of Cr3(C) in an effective way.

Theorem 1 also provides the first example of a surjective group homomorphism
Cr3(C) → ∗I Z/2Z, where we have specific examples of elements which are known to
lie outside the kernel. This also contrasts the situation in dimension 2 over C: in all
proofs of non-simplicity of Cr2(C), normal subgroups are constructed directly with
the corresponding group homomorphism being the quotient one. These constructions
are again non-effective, thus no elements of low degree are known to lie in the kernel.
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Rigid birational involutions of P3 and cubic threefolds 235

Using a subset of the aforementioned involutions we obtain another structural
result. More specifically, let J be the subset of I corresponding to curves which are
fixed by no non-trivial automorphism of P3, and denote by G the subgroup of Cr3(C)
generated by all elements admitting a decomposition into Sarkisov links, none of them
equivalent to χCj

, j ∈ J (see Remark 2.8). We then have the following:

Theorem 2. — The Cremona group Cr3(C) can be written as the free product

Cr3(C) = G ∗
(∗
J
⟨χCi

⟩
) ∼= G ∗

(∗
J
Z/2Z

)
,

where the indexing set J is uncountable.

This is an analogue to [LZ20, Th. C], where Cr2(k) is shown to admit a similar free
product structure when k is a perfect field that admits a Galois extension of degree 8.
In their construction the involutions χCi

are instead replaced by Bertini involutions.
The indexing set corresponds to points of degree 8 in general position, not fixed by
any automorphism of the plane and up to projective equivalence.

We will now briefly discuss the techniques used to produce the aforementioned
constructions. The basic idea is to use the Sarkisov program. This is essentially an
algorithm which decomposes any birational map between Mori fiber spaces into a
sequence of simpler maps called Sarkisov links. The algorithm was proved to hold in
dimension 2, over perfect fields by [Isk96], in dimension 3, over C by [Cor95] and in
dimension greater than or equal to 3, over C by [HM13].

Using the Sarkisov program we get a set of generators, not quite for Crn(k), but
for the groupoid BirMorik(Pn). This is a groupoid whose objects are Mori fiber spaces
birational to Pn and whose morphisms are birational maps between them. Once we
have a set of generators, we want to know the relations between them. This is made
possible by the machinery of rank r fibrations developed in [BLZ21] based on ideas
from [Kal13]. This gives us a presentation of the groupoid BirMorik(Pn), where rela-
tions are induced by rank 3 fibrations. Once we have a presentation, we can construct
groupoid homomorphisms to groups or groupoids and restrict them to get group ho-
momorphisms from Crn(k).

1.2. Non-generation of Aut(Cr3(C)) by inner and field automorphisms

The group of field automorphisms of k acts on Pn
k naturally: given τ ∈ Aut(k),

we may define the map aτ as

Pn −→ Pn

(x0 : . . . :xn) 7−→
(
τ(x0) : . . . : τ(xn)

)
.

Note that this is not a morphism defined over Spec(k). However, Aut(k) acts on
the group Crn(k) by conjugation. Given a τ ∈ Aut(k) we define a group automor-
phism bτ as

Crn(k) −→ Crn(k)

f 7−→ aτ ◦ f ◦ (aτ )−1.

J.É.P. — M., 2023, tome 10



236 S. Zikas

A quick calculation yields that if f = (f0 : . . . : fn), where fi are homogeneous poly-
nomials of the same degree having no common factor, then bτ (f) = (f0

τ : . . . : fn
τ ),

where if fj =
∑
aIx

I , then fj
τ =

∑
τ(aI)x

I .
In [Dés06], the group Aut(Cr2(C)) was shown to be generated by inner and field

automorphisms, that is if ϕ : Cr2(C) → Cr2(C) is a group homomorphism, then there
exists a field automorphism τ of C and an element g ∈ Cr2(C) such that for every
f ∈ Cr2(C) we have

ϕ(f) = g ◦ bτ (f) ◦ g−1.

It is therefore a natural question to ask whether such a result is true in higher dimen-
sions or over other fields. In this text, we give a negative answer in dimension 3

over C:

Theorem 3. — There exist uncountably many automorphisms of Cr3(C) of arbitrary
order which are not generated by inner and field automorphisms.

These automorphisms are constructed using the free product structure on Cr3(C)
of Theorem 2. They act on the generators by exchanging two elements of the form
χCj

and χCj′ . The fact that such an automorphism is not inner boils down to the fact
that these involutions do not fit into a non-trivial relation of Sarkisov links, while a
correct choice of Cj and Cj′ shows that the automorphism is not a field automorphism
up to inner ones.

Finally, in [UZ21], the authors prove that any homeomorphism of Cr3(k), with
respect to either the Zariski or the Euclidean topology, is a composition of an inner
and a field automorphism for k = R or C. Thus our examples constitutes, to our
knowledge, the first examples of non-continuous automorphisms of Cr3(C).

1.3. Extensions of our results to cubic 3-folds. — All three of our theorems extend
to the case of the group of birational automorphisms of a smooth cubic 3-fold Y .

For Theorems 1 and 2, the same construction applies to any smooth cubic 3-fold
unconditionally. In the case of Theorem 1, we note again that the results of [BLZ21]
still apply to the case of BirC(Y ). Again, the advantage of our result lies in its explicit
nature. For instance, our approach provides examples of elements of order as low as 11
not in the kernel of the homomorphism BirC(Y ) → ∗I Z/2Z.

Finally, for Theorem 3 the action of a field automorphism τ on Aut(BirC(Y )) is
well-defined if and only if τ preserves Y , that is aτ (Y ) = Y . Thus the statement of
the corresponding theorem must be modified accordingly.

Acknowledgment. — I would foremost like to thank Jérémy Blanc for suggesting the
problem, as well as for his guidance and help throughout. I would also like to thank
Stéphane Lamy and Christian Urech for suggesting the application to the automor-
phism group of Cr3(C), and Serge Cantat, Erik Paemurru, Nikolaos Tsakanikas and
Immanuel van Santen for the interesting discussions and remarks. Finally, I would
like to thank the anonymous referees for their comments.
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2. Preliminaries

In the rest of the paper all varieties and birational maps between them are defined
over C.

2.1. Rank r fibrations and elementary relations. — Here, we give a brief account
of the theory developed in [BLZ21, §§3 & 4]. Any proofs provided here are sketches
of the actual proofs found there.

Definition 2.1. — Let X/B be a Mori fiber space with singularities not worse that
terminal (terminal Mori fiber space for short). We define BirMori(X) to be the
groupoid whose objects are terminal Mori fiber spaces, birational to X and the mor-
phisms between them to be birational maps.

Definition 2.2. — Let X/B and X ′/B′ be Mori fiber spaces. An isomorphism be-
tween X and X ′ is called an isomorphism of Mori fiber spaces if there exists an
isomorphism between B and B′ that makes the induced diagram commute.

Definition 2.3. — Let r ⩾ 1 be an integer. A morphism η : X → B is a rank r

fibration if the following conditions hold:
(1) the fiber space X/B given by η is a relative Mori Dream Space (see [BLZ21,

Def. 2.2]);
(2) dimX > dimB and ρ(X/B) = r;
(3) X is Q-factorial and terminal and for any divisor D on X, the output of any

D-MMP over B is still Q-factorial and terminal;
(4) there exists an effective Q-divisor ∆B such that the pair (B,∆B) is klt;
(5) the anticanonical divisor of X is η-big.
We say that a rank r fibration X/B dominates a rank r′ fibration X ′/B′ if we have

a commutative diagram

X //

$$

B

X ′ // B′

::

where X X ′ is a birational contraction and B′ → B is a morphism with connected
fibers.

Remark 2.4. — A rank 1 fibration η : X → B is a terminal Mori fiber space. Indeed,
the only thing left to check is the relative ampleness of the anti-canonical divisor.
However, since −KX is η-big, we may write

−KX ≡ A+ E,

where A is η-ample and E is effective. Since ρ(X/B) = 1, E is either η-nef or η-anti-
nef. Since the contracted curves cover X, an effective divisor cannot be η-anti-nef,
thus E is η-nef and subsequently, −KX is η-ample.

Similarly, rank 2 fibrations correspond to Sarkisov links between two Mori fiber
spaces in the following manner:

J.É.P. — M., 2023, tome 10



238 S. Zikas

If X/B is a rank 2 fibration then we may run a (−A)-MMP over B for any ample
divisor A. Then since ρ(X/B) = 2, at the first step we have a choice between 2 rays to
contract giving us 2 different MMPs. Since κ(−A) = −∞, the output of both MMPs
must be rank 1 fibrations, which correspond to Mori fiber spaces.

On the other hand, let

Xm

��

))

. . .oo

&&

X0

%%

oo oo // Y0

yy

// . . . //

yy

Yn

��

uu
,,

Z

��

rrB

be a Sarkisov diagram, whereX0
// Y0 is either a flop or an isomorphism. ThenX0/B

is weak Fano thus a Mori Dream Space. Moreover X0 is Q-factorial and terminal and
the output of any MMP is among the maximal dimensional varieties appearing in
the diagram, which by assumption are all Q-factorial and terminal. Finally, the fact
that B is klt is proved in [Fuj99, Cor. 4.6].

The correspondence above is not one-to-one, namely a rank 2 fibration gives rise
to a Sarkisov link and its inverse, up to Mori fiber space isomorphisms. On the other
hand, in the Sarkisov diagram above, all Xi/B and Yi/B are rank 2 fibrations.

Proposition 2.5 ([BLZ21, Prop. 4.3]). — Let X → B be a rank 3 fibration. Then there
are only finitely many rank 2 fibrations, corresponding to Sarkisov links χi (up to Mori
fiber space isomorphisms), dominated by X/B, and they fit in a relation

χt ◦ · · · ◦ χ1 = id .

Definition 2.6. — A trivial relation between Sarkisov links is a relation of one of the
following forms

ϕ−1 = ψ and α ◦ ϕ ◦ β = ψ,

where ϕ, ψ are Sarkisov links and α, β are isomorphisms of Mori fiber spaces.
An elementary relation between Sarkisov links is one that arises from a rank 3

fibration (see Proposition 2.5).

Theorem 2.7 ([HM13, Th. 1.1], [BLZ21, Th. 4.28]). — Let X/B be a terminal Mori
fiber space.

(1) The groupoid BirMori(X) is generated by Sarkisov links and isomorphisms of
Mori fiber spaces.

(2) Any relation between Sarkisov links in BirMori(X) is generated by trivial and
elementary relations.

Remark 2.8. — The first part of the theorem is due to [HM13]. The original version
does not mention the isomorphisms of Mori fiber spaces, which are however implicit
in their proof. Note that an isomorphism between the total spaces of two Mori fiber
spaces which is not a Mori fiber space isomorphism is a non-trivial Sarkisov link.

J.É.P. — M., 2023, tome 10
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Similarly, the second part of the original theorem in [BLZ21] does not mention the
trivial relations as generators. These are indeed “trivial” from a birational point of
view. For our purposes though, we will need a slightly more accurate statement and
so we explain the subtleties.

For the first type of trivial relation, a rank 2 fibration corresponds to a unique
Sarkisov diagram up to composition with Mori fiber space isomorphisms on the left
and right. However, as already discussed in Remark 2.4, a Sarkisov diagram is not
directed and thus corresponds to both a link and its inverse. The second type of
relation is just a by-product of not working up to Mori fiber space isomorphism.

Note that a trivial relation involving a link χ arises from the rank 2 fibration
that corresponds to χ up to orientation and compositions with isomorphisms. Thus,
by definition, an elementary relation cannot be a trivial one.

With that in mind, we will say that two Sarkisov links ϕ and ψ are equivalent
if there exist α, β, isomorphisms of Mori fiber spaces such that α ◦ ϕ ◦ β = ψ.

2.2. Weighted blowups

Definition 2.9. — Let w = (w1, . . . , wn) be positive integers. Define the C∗-action
on An+1 by

λ · (u, x1, . . . , xn) = (λ−1u, λw1x1, . . . , λ
wnxn).

The morphism from the geometric quotient T := An+1/C∗ → An defined by

T −→ An

(u : x1 : . . . :xn) 7−→ (uw1x1, . . . , u
wnxn)

is called the standard w-blowup of An at the origin.
Let f : E ⊂ X → p ∈ Y be a morphism contracting a divisor E to a smooth point p.

We say that f is a w-blowup of Y at p if there exists an analytic neighbourhood
(U, p) ∼= (An, 0) of p such that the restriction f |f−1(U) : f

−1(U) → U is the standard
w-blowup of An at 0.

Lemma 2.10. — Let p ∈ Y be a smooth point of a 3-fold and let π : (X,E) → (Y, p)

be a (1, a, b)-blowup of Y at p. Then the ramification formula takes the form

KX = π∗KY + (a+ b)E.

Proof. — Since this is something that can be checked locally, up to local analytic
isomorphism we may assume that (Y, p) = (A3, 0), X is the quotient A4/C∗ under
the action

λ · (u, x1, x2, x3) = (λ−1u, λx1, λ
ax2, λ

bx3)

and π is given by (u : x1 : x2 : x3) 7→ (ux1, u
ax2, u

bx3).
Let U1 be the open subset {x1 ̸= 0} ⊂ X, isomorphic to A3. If we denote the

composition
A3 −→ U1 ⊂ X −→ A3

(v, y1, y2) 7−→ (v : 1 : y1 : y2) 7−→ (v, y1v
a, y2v

b).

J.É.P. — M., 2023, tome 10



240 S. Zikas

by ψ then we may calculate that

ψ∗(1 dx1 ∧ dx2 ∧ dx3) = va+b dv ∧ dy1 ∧ dy2.

Taking the divisor of this 3-form we conclude. □

Lemma 2.11. — Let p ∈ Y be a smooth point of a 3-fold and let π : E ⊂ X → p ∈ Y be
a (1, a, b)-blowup of Y at p. Let Γ be a curve in Y which is a complete intersection in
an affine neighbourhood U of p. Choose generators f1 and f2 for the ideal of regular
functions on U vanishing along Γ. We then have

E · Γ̃ =
vE(f1) · vE(f2)

ab
,

where Γ̃ denotes the strict transform of Γ, vE is the divisorial valuation defined by E
and f1 and f2 are considered as rational functions on X.

Proof. — Again we will work in a local analytic neighbourhood and assume that
(Y, p) = (A3, 0) and π is given by (u : x1 : x2 : x3) 7→ (ux1, u

ax2, u
bx3). We may write

fn =

dn∑
i=kn

hn,i(v, y1, y2),

for n = 1, 2, where hn,i are homogeneous polynomials with respect to the grading
(1, a, b) and hn,kn

̸= 0. Then, pulling back under π we get

π∗(fn) = fn(ux1, u
ax2, u

bx3) = ukn

( dn∑
i=kn

ui−knhn,i(x1, x2, x3)

)
,

which shows that vE(fn) = kn. Moreover the ideal of Γ̃ is generated by f̃1 and f̃2 with

f̃n =

dn∑
i=kn

ui−knhn,i(x1, x2, x3),

for n = 1, 2. Finally, using the fact that E ∼= P(1, a, b) and that Γ̃ is given by the
vanishing of the f̃n, n = 1, 2, we may compute that

E · Γ̃ = V(f̃1)|E · V(f̃2)|E = V(h1,k1
) ·E V(h2,k2

) =
k1 · k2
ab

. □

3. The construction

Throughout this section, Y will denote either P3 or a smooth cubic 3-fold in P4.
Denote by HY

g,d the Hilbert scheme of subvarieties of Y with Hilbert polynomial
P (n) = dn− g + 1.

Proposition 3.1. — Consider the following pairs (g, d) depending on Y :

Y (g, d)

P3 (2, 8), (6, 9), (10, 10), (14, 11)

Cubic 3-fold (0, 5), (2, 6)

J.É.P. — M., 2023, tome 10
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Then there exists an irreducible component SYg,d of HY
g,d whose general element C ∈

SYg,d is a smooth curve satisfying the following: if X → Y is the blowup of Y along C
then:

(1) X is a smooth weak-Fano 3-fold, there are finitely many (−KX)-trivial curves
and |−KX | is base-point free;

(2) The anti-canonical model Z := Proj
(
⊕n⩾0H

0(X,−nKX)
)

of X is a sextic
double solid, that is a double cover of P3 ramified along a sextic hypersurface.

(See Lemma 4.1 for an estimation of the dimension of SYg,d.)

Proof. — For the non-emptiness of SYg,d we refer to [BL12, §5.1] and [BL15, §3.3] for
the cases of P3 and a smooth cubic 3-fold respectively.

Similarly, the proof of (1) can be found in [BL12, Prop. 5.11] and [BL15, Prop. 3.7]
for the two cases respectively.

As for (2), we first note that in all cases, using the formula

(−KX)3 = (−KY )
3 + 2KY · C + 2g − 2,

we get (−KX)3 = 2. By the Hirzebruch-Riemann-Roch theorem (see [Har77, p. 437,
Ex. 6.7]) together with the Kawamata-Viehweg vanishing theorem we get

h0(X,−nKX) =
n(n+ 1)(2n+ 1)

12
(−K3

X) + 2n+ 1 =
n(n+ 1)(2n+ 1)

6
+ 2n+ 1.

For n = 1 we get h0(X,−KX) = 4; we write x0, x1, x2, x3 for the generators.
By (1) the linear system |−KX | is base-point free and the associated morphism
X → P(H0(X,−KX)) contracts finitely many curves and is thus dominant. In
particular, the xi’s satisfy no polynomial relation. Moreover, since a general element
of |−KX | is the pullback of a general hyperplane and (−KX)3 = 2, the projection
formula (see [Deb01, 1.9]) implies that X → P(H0(X,−KX)) is generically 2 to 1.
For n = 2 we get h0(X,−2KX) = 10 = dimS2H0(X,−KX). Since there is no
relation between the xi’s, we get the equality of these two spaces. For n = 3 we get
h0(X,−3KX) = 15 = dimS3H0(X,−KX) + 1. Again using the fact that there is no
relation between the xi’s, we get that we only have one new generator. That is

H0(X,−3KX) = S3H0(X,−KX)⊕ ⟨t⟩.

We now consider the diagram

X //

%%

X ′

yy
P3

with X ′ = Proj(R), where R is the graded algebra generated by x0, . . . , x3 with de-
grees 1 and t with degree 3 and X ′ → P3 is the projection to the first four factors.
Note that X → X ′ and X → P3 both contract the (−KX)-trivial curves. Moreover,
if X ′ → P3 were generically one to one, it would be a bijection and thus an isomor-
phism from Zariski’s Main Theorem. Thus X ′ → P3 is two to one, which implies that
X → X ′ has connected fibers. For n ⩾ 4, the morphism given by |−nKX | contracts
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242 S. Zikas

the same curves as X → X ′ and has connected fibers. Thus by [Deb01, Prop. 1.14],
these two morphisms are the same up to isomorphism. In particular, there is no new
generator for any n ⩾ 4. Finally, since we know that the algebra ⊕n⩾0H

0(X,−nKX)

is generated by x0, . . . , x3, t, we only have to calculate the dimensions of the graded
components to see that we have only one relation in degree 6: indeed, for n = 4, 5 we
have

h0(X,−nKX) = dimC[x0, . . . , x3, t]n;

however, for n = 6 we have

h0(X,−6KX) = 104 = dimC[x0, . . . , x3, t]n − 1,

which shows that there is a relation in degree 6 which, up to change of coordinates,
can be brought to the form F (x0, . . . , x3, t) = t2 − f6(x0, . . . , x3) = 0; for any n ⩾ 7

we have

h0(X,−nKX) = dim
( C[x0, . . . , x3, t]
(F (x0, . . . , x3, t))

)
n
. □

Remark 3.2. — The construction above induces a birational self-map of Y in the
following way: denote by η the rational map Y X → Z and by p the deck transfor-
mation of Z over P3. Then χC := η−1 ◦ p ◦ η : Y Y defines a birational map. Note
that χC is an involution. Schematically, we have the diagram

X

��

&&

// X

xx

��

Z

p

ZZ

Y Y

Remark 3.3. — In the setting of Proposition 3.1, any curve γ contracted by X → Z is
smooth and rational with normal bundle isomorphic to OP1(a)⊕OP1(b), with (a, b) =

(−1,−1) or (0,−2).
Indeed, consider the contraction

γ ⊂ S ⊂ X −→ p ∈ H ⊂ Z,

where p is a singular point of Z, H is a general hyperplane section though p and S is
the strict transform of H. Since H is general, we may assume that its only singularity
is p. By Theorem 3.1 S is smooth and thus the morphism S → H factors through
the minimal resolution E ⊂ T → p ∈ H of H, where E is a chain of smooth rational
curves. However, since the relative Picard rank of S → H is 1, the morphism S → T

must be an isomorphism. In particular, γ is a smooth rational curve.
Now denote by E ⊂ W → γ ⊂ X the blowup of X along γ. Then E is isomorphic

to the Hirzebruch surface Fa−b. Then by [IP99, Lem. 2.2.14] we have

a+ b = deg
(
Nγ/X

)
= (−KX) · γ + 2g(γ)− 2 = −2.
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Moreover, using adjunction formula as well as the formulas in [Zik23, Lem. 5.5],
we may compute

−KW |E = −KE + E|E = −1

2
KE .

Since −KW is nef (see Case 3 in the proof of Proposition 3.5) so is KE . Thus E ∼= Fn

with n = 0, 1 or 2, that is a − b = 0, 1 or 2. The only integer solutions to the two
equations are (a, b) = (−1,−1) and (0,−2).

Proposition 3.4. — Let Y , C and X be as above and let H denote a hyperplane if Y
is P3 and a hyperplane section otherwise. Then the degree of χC with respect to H is

deg(χC) = (r2H3 − d)r − 1,

where d is the degree of C and r is the index of Y .

Proof. — We consider the induced diagram

X
ϕ

//

��

''

X

��

ww
Z

Y Y

where ϕ is a flop over Z. Fix the basis (KX , H) for the Q-vector space N1(X), where,
by abuse of notation, we denote again by H the class of the pullback H. Then ϕ

induces an automorphism of N1(X), by pullback, and since KX is an eigenvector
for it, the associated matrix has the form

ϕ∗ =

(
1 a

0 b

)
.

Since ϕ2 = idX , b = −1. Thus ϕ∗H = aKX −H.
Using the formulas in [IP99, Lem. 2.2.4], we may compute that

(KX)2 ·H = r2H3 − d,

where r is the index of Y and d the degree of C, and

(ϕ∗KX)2 · ϕ∗H = (KX)2 · (aKX −H) = a(KX)3 −KX ·H = −2a− (r2H3 − d).

Equating the above formulas we get a = −(r2H3 − d). Thus

ϕ∗H = −(r2H3 − d)KX −H = ((r2H3 − d)r − 1)H − (r2 − d)E,

from which we conclude that χC
∗(H) = ((r2H3 − d)r − 1)H. □

For the pairs of genus and degree of Proposition 3.1, we obtain the following values
for the degree of χC :

(g, d) (2, 8) (6, 9) (10, 10) (14, 11)
P3

deg(χC) 31 27 23 19

(g, d) (0,5) (2,6)Cubic
3-fold deg(χC) 13 11
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Proposition 3.5. — Let X be as in Proposition 3.1 and π : (W,E) → (X, z) be a
divisorial contraction with W Q-factorial and terminal. Then −KW is not big.

Proof. — We first note that since W is terminal and X is smooth, by [Tzi03, Prop. 1.2]
and [Kaw01, Th. 1.2], W → X is either the regular blowup of a curve or a (1, a, b)-
blowup of a point, with a, b coprime.

We distinguish 3 cases based on the geometry of the center z:

Case 1: z is a point andW → X is a (1, a, b)-blowup. — Suppose for contradiction that
−KW is big and let SW ∈ |−nKW | be a general element, for n ≫ 1. Denote by SX

the image of SW in X, by HX the pullback of a general hyperplane section HZ of Z
containing the image of z and Γ ⊂ X the intersection of SX with HX . First notice
that SX ∈ |−nKX | and HX ∈ |−KX |. We thus have

(−KX) · Γ = n(−KX)3 = 2n.

If we denote by ΓW the strict transform of Γ in W , then by Lemma 2.11 we have

E · ΓW =
vE(SX) · vE(HX)

ab
=
n(a+ b)

ab
vE(HX),

where the second equality follows from the ramification formula of Lemma 2.10. Again,
using the same formula we may compute that

(−KW ) · ΓW = n
(
2− (a+ b)2

ab
vE(HX)

)
.

Since we chose HX to be the pullback of a hyperplane containing the image of z,
vE(HX) ⩾ 1. The quantity (a+ b)2/ab is always strictly greater than 2, and so
(−KW ) · ΓW < 0. Finally, since we assumed that −KW is big then the sections of
−nKW cover W for sufficiently large n and so do the curves Γ chosen as above. This
gives us a dense subset of W covered by (−KW )-negative curves, which contradicts
the bigness of −KW .

Case 2: z is a curve not contracted by X → Z. — We have
−nKW = π∗(−nKX)− nE.

Sections of −nKW are pullbacks of degree n hypersurface sections of Z vanishing
along the curve C := π(z) with multiplicity n. Let h = 0 be such a hypersurface
section and I = (f1, . . . , fk) be the ideal of C. Then h ∈ In and since deg(h) = n,
h can only be a linear combination of degree n monomials in the linear elements in I.
Thus for −nKW to be big, we need to have at least 4 linear elements in I which is a
contradiction.

Case 3: z is a curve contracted by X → Z. — In this case we consider the diagram
W

g
��

X

f ""

F

r
��

P3
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where f : X → P3 is the morphism given by |−KX | and r : F → P3 is the blowup of
the image p ∈ P3 of γ under f . Since the preimage of p under f ◦g is a Cartier divisor,
f ◦ g factors through r via s : W → F . Finally, sections of −KW are pullbacks of
hyperplanes of P3 through p. Thus the previous diagram completes to the following:

W

g
��

s

!!

|−KW |

��

X

f   

F

r
��   

P3 // P2,

where P3 P2 denotes the projection from the point p. Since W → P2 has connected
fibers, it coincides with its Stein factorization. Thus, for any n ⩾ 1, the image of W
under the morphism given by | − nKW | is isomorphic to P2, showing that | −KW | is
not big. □

Corollary 3.6. — Using the notations of Proposition 3.1 and Remark 3.2, there exists
no rank 3 fibration dominating the rank 2 fibration X → Y → Spec(C). Consequently,
there are no non-trivial relations in BirMori(Y ) involving χC .

Proof. — Let W ′ → B be a rank 3 fibration dominating X → Spec(C). Then B =

Spec(C) and we have a diagram of the form

W ′

f &&

// Spec(C)

X

66

By the definition of a rank 3 fibration W ′ is a Mori Dream Space. Let a be an ample
divisor onX. Then there exists a composition of log-flips g : W // W ′ so that g∗f∗(A)
is nef on W ′. With W ′ being a Mori Dream Space itself, g∗f∗(A) is semi-ample and
the associated contraction gives rise to the diagram

W ′

f ""

g
// W

��

X.

By property (3) of Definition 2.3, W is also terminal. Thus by Proposition 3.5, −KW

is not big. However this would also imply that −KW ′ is not big which contradicts
property (1) of Definition 2.3. The second claim follows directly from Theorem 2.7. □

Remark 3.7. — The trivial relations involving χC are:

(χC)
2 = id and a ◦ χC ◦ b ◦ ψ−1 = id

where a, b−1 are any Mori fiber space isomorphisms starting from Y and ψ is the
Sarkisov link given by the composition a ◦ χC ◦ b. Moreover, in the second type of
relation, if a, b ∈ Aut(Y ) with b = a−1, then a ◦ χC ◦ a−1 = χa(C).
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4. Consequences

In what follows we will stick to the notation introduced in section 3: Y will denote
either P3 or a smooth cubic 3-fold in P4 and SYg,d will denote the irreducible component
of the Hilbert scheme of subvarieties of Y with Hilbert polynomial P (n) = dn−g+1,
defined in Proposition 3.1.

4.1. Homomorphism and semi-direct product structure. — We now construct a
group homomorphism from Bir(Y ) to a free product ∗I Z/2Z, where the indexing
set I is uncountable. To do so, we will first construct a groupoid homomorphism from
BirMori(Y ) to the same target and then restrict it to Bir(Y ).

Let (g, d) be one of the pairs of Proposition 3.1. We define the set Ig,d to be the set
of elements SYg,d up to automorphisms of Y and I to be the disjoint union of all Ig,d
for all pairs (g, d) considered in Proposition 3.1. The following lemma shows that Ig,d
and thus I is uncountable.

Lemma 4.1. — For all pairs (g, d) and C ∈ SYg,d satisfying the generality conditions
of Proposition 3.1,

−KY · C ⩽ dim SYg,d ⩽ −KY · C + 1.

In particular, dim
(
SYg,d

)
> dim

(
Aut(Y )

)
.

Proof. — By [BL12, Prop. 2.8] and [BL15, Prop. 3.7] a general anti-canonical section S
containing C is a smooth K3 surface (see [BL12, Prop. 2.8] and [BL15, Prop. 2.9]). The
normal bundle sequence for the embeddings C ⊂ S ⊂ Y gives

0 −→ NC/S −→ NC/Y −→ NS/Y |C −→ 0.

The long exact sequence and the fact that (C2)S = 2g − 2 yield

0 −→ H0 (C,OC(2g − 2)) −→ H0(C,NC/Y ) −→ H0 (C,OC(−KX · C))

−→ H1 (C,OC(2g − 2)) −→ H1(C,NC/Y ) −→ H1 (C,OC(−KX · C)) −→ 0.

By Serre duality, h1 (C,OC(−KX · C)) = h0 (C,OC(2g − 2 +KX · C)). For the six
cases of (g, d) and Y of Proposition 3.1, we get the following values for 2g − 2 +

KX · C: −30,−26,−22,−18 and −12,−10, thus h1 (C,OC(−KX · C)) = 0. Similarly
h1 (C,OC(2g − 2)) = h0 (C,OC) = 1, thus h1(C,NC/Y ) is either 0 or 1. Moreover,
using the additivity of the Euler characteristic on short exact sequences and the
Riemann-Roch theorem to compute we get

h0(C,NC/Y )−h1(C,NC/Y ) = −KX ·C =⇒ −KX ·C ⩽ h0(C,NC/Y ) ⩽ −KX ·C+1.

Since C represents a general and thus smooth point of SYg,d we get that dim SYg,d =

h0(C,NC/Y ).
For the last assertion, if Y is a cubic 3-fold, then dimAut(Y ) = 0 (see [MM64])

and we are automatically done. If Y = P3, then in all cases d ⩾ 8 and so −KY · C =

4d > 15 = dimAut(P3). □
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Theorem 4.2. — There exists a surjective group homomorphism ψ : Bir(Y ) →
∗I Z/2Z, which admits a section, giving the group Bir(Y ) a semi-direct product
structure

Bir(Y ) = N ⋊∗
I
Z/2Z,

where N is the kernel of ψ.

Proof. — We will first define a groupoid homomorphism Ψ: BirMori(Y ) → ∗I Z/2Z.
To do so, for each i in I, we fix an element Ci ∈ SYg,d in the equivalence class cor-
responding to i ∈ Ig,d. The groupoid BirMori(Y ) is generated by Sarkisov links and
isomorphisms of Mori fiber spaces, and relations are generated by trivial and ele-
mentary ones (see Theorem 2.7). Thus to define a groupoid homomorphism from
BirMori(Y ) it is enough to define it on the generators and check that all relators are
mapped to the neutral element. With that in mind we define Ψ as follows: on the level
of objects, Ψ maps everything to the unique object of ∗I Z/2Z (when considered as a
groupoid). On the level of Sarkisov links and automorphisms, for each i ∈ I, Ψ maps
all links equivalent to χCi (see Remark 2.8) to the non-zero element of the factor i.
All other links and isomorphisms are mapped to the neutral element. Any relator not
involving any link equivalent to χCi

is automatically sent to the neutral element, and
the same is true for both relators of Remark 3.7.

Define ψ : Bir(Y ) → ∗I Z/2Z to be the restriction of Ψ to the subgroup Bir(Y )

of BirMori(Y ). Since ψ is the restriction of a groupoid homomorphism, it is a group
homomorphism itself. Let 1k be the non-zero element of the k-th factor of ∗I Z/2Z,
k ∈ I. Then ψ(Ck) = 1k, thus the homomorphism is surjective. Conversely, we may
define a section by sending 1k to χCk

. □

Remark 4.3. — Using Proposition 3.4, the degree of an involution χCi
and thus of

an element not in the kernel of ψ, can be as low as 19 in the case Y = P3 and 11 in
the case Y is a cubic 3-fold.

4.2. Free product structure. — We now show that Bir(Y ) admits a free product
structure G ∗ (∗J Z/2Z). The indexing set J is defined similarly to the indexing set I
of the previous section: we first define JY

g,d to be the set of elements of SYg,d that
are fixed by no non-trivial automorphism of Y , up to projective equivalence; then we
define JY to be the disjoint union over all pairs (g, d) of Proposition 3.1 corresponding
to Y .

A priori, it is not clear that JY is uncountable or even non-empty. Thus we first
set out to prove that JY is uncountable. First we treat the case Y = P3.

Lemma 4.4. — Let C be a curve of genus g ⩾ 2, and let D be a very ample divisor
on C, such that dim|D| ⩾ 5.

Then for n ⩾ 3, a general (n + 1)-dimensional subsystem V of |D| defines an
embedding of C in Pn that admits no projective automorphisms. Moreover, for every
such V , there are only finitely many other subsystems of the same dimension which
are projectively equivalent.
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Proof. — The complete linear system |D| defines an embedding to PN for someN ⩾ 4.
Maps given by (n + 1)-dimensional subsystems correspond to composition of the
embedding with projections from PN to n-dimensional linear subspaces. Thus since
n ⩾ 3, a general (n + 1)-dimensional subsystem defines an embedding (see [Har77,
Props. 3.4 and 3.5]).

Recall that since the genus of C is greater than or equal to 2, by a classical theorem
of Hurwitz (see [Hur92]) its automorphism group Aut(C) is a finite group. Denote
by G the subgroup {g ∈ Aut(C) | g∗D ∼ D} of Aut(C). Let V be an n-dimensional
subspace of |D|. Then the automorphisms of Pn acting on C are exactly the elements
of G that leave V invariant. If G is trivial, we are done. If G is non-trivial, then by
considering the non-trivial action of G on the Grassmannian Gr(n + 1, |D|), we see
that being invariant under G is a closed condition.

Finally, two embeddings corresponding to two subspaces V1 and V2 are projectively
equivalent if and only if there exists g ∈ G such that g(V1) = V2. Since G is a finite
group, so is the orbit of every element in Gr(n+1, |D|), proving the second claim. □

Lemma 4.5. — For (g, d) ∈ {(2, 8), (6, 9)} and any curve C of genus g, there exists
uncountably many non-projectively equivalent curves in SP

3

g,d, isomorphic to C, that
admit no non-trivial projective automorphisms.

Consequently, JP3

2,8, JP3

6,9 and thus JP3 are uncountable.

Proof. — We will do this case by case. For (g, d) = (2, 8), letD be a divisor of degree 8.
Since 8 ⩾ 4 = 2g, D is very ample and non-special and by Riemann-Roch, dim|D| = 7.
By Lemma 4.4, a general 4-dimensional subspace of |D| defines an embedding in P3

such that C admits no non-trivial projective automorphism. A general choice of two
such subspaces gives non-projectively equivalent embeddings.

For (g, d) = (6, 9), we start with an abstract curve of genus 6, choose a point p and
define the divisor D = KC − p, which is of degree 9. By the Riemann-Roch theorem
we have

h0(C,OC(D)) = 9− 6 + 1 + h0(C,OC(KC −D)) = 4 + h0(C,OC(p)) = 5.

We will now show that D is very ample which is equivalent to showing that for
any two points r, s on C, h0(C,OC(D− r− s)) = h0(C,OC(D))− 2 = 3. Suppose for
contradiction that h0(C,OC(D−r−s)) = h0(C,OC(KC−p−r−s)) = 4. We consider
the canonical embedding Cκ ⊂ P5 of C. The fact that h0(C,OC(KC − p− r− s)) = 4

implies that the three points p, r and s are collinear in the canonical embedding.
Write x0, . . . , x5 for the generators of H0(C,OC(KC)). Then we may compute that
h0(C,OC(2KC)) = 15, while S2

(
H0(C,OC(KC))

)
= 21. This implies that there

are at least 6 relations among x0, . . . , x5 in degree 2. Thus, C is contained in the
complete intersection of 4 quadrics and by Bézout’s theorem so is any tri-secant line.
Consequently, there are finitely many tri-secant lines. Choosing a point p which does
not lie on any tri-secant line we get that for any r, s ∈ C, h0(C,OC(D − r − s)) = 3

and thus D is very ample. Finally, we may apply Lemma 4.4 to the divisor D to
obtain the desired result. □
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Remark 4.6. — For the last two cases, namely (g, d) = (10, 10) and (11, 14), the
divisors that define their embedding in P3 are special in the Brill-Noether sense. Thus
techniques similar to those of Lemma 4.4 are difficult to apply.

However we expect the statement of Lemma 4.5 to be true for them as well: using
a degeneration argument this amounts to just exhibiting one such curve with no
projective automorphisms.

We now treat the case Y is a smooth cubic 3-fold.

Lemma 4.7. — Let Y be a smooth cubic 3-fold. For (g, d) ∈ {(0, 5), (2, 6)}, a gen-
eral element C ∈ SYg,d is fixed by no non-trivial automorphism of Y and thus JY is
uncountable.

Proof. — Define G := Aut(Y )∖ {id} and consider the correspondence
F =

{
(C, a) ∈ SYg,d ×G | a(C) = C

}
together with the projections p1 and p2 to the two factors. Notice that the subset
of SYg,d of curves which are fixed by some automorphism coincides with the subscheme

F :=
⋃

a∈G

p1
(
p−1
2 (a)

)
⊂ SYg,d.

By [MM64] Aut(Y ) is finite and so is G. Thus G and consequently p1 are projective.
This implies that F is closed as the finite union of the closed subschemes p1

(
p−1
2 (a)

)
,

a ∈ G. We will now show that F ̸= SYg,d, more precisely, we will show that for any
a ∈ G, there exists a C ∈ SYg,d not fixed by a.

We briefly recall a construction from [BL15, §3.3]: let p be a general point in Y

and S a general hyperplane section of Y not containing p. Define the rational map
ϕ : S Y by sending a point q to the third point of intersection of the line through p
and q and Y . Then Q := ϕ(S) is a hyperquadric section of Y singular at the point p.
Moreover, Q is isomorphic to the blowup of P2 along 12 points, all lying on a cubic
curve Γ, followed by the contraction of Γ. Using this construction, the authors provide
examples of curves of genus g and degree d with (g, d) ∈ {(0, 5), (2, 6)} lying on Q

and passing though p, satisfying the generality conditions of Proposition 3.1.
Now let p be a general point in Y such that a(p) = q ̸= p. Choose a general

hyperplane section S of Y not containing p, such that the hyperquadric section Q of
the previous construction does not contain q. Then for (g, d) ∈ {(0, 5), (2, 6)}, we may
find a curve C ∈ SYg,d lying on Q and passing though p. We have p ∈ C but a(p) /∈ C,
thus a(C) ̸= C. □

Theorem 4.8. — For each j in J , we fix an element Cj ∈ SYg,d in the projective
equivalence class corresponding to j ∈ Ig,d.

Let G be the subgroup of Bir(Y ) generated by elements admitting a decomposition
into Sarkisov links none of them equivalent to χCj (see Remark 2.8). We then have

Bir(Y ) = G ∗
(∗
JY

⟨χCj ⟩
) ∼= G ∗

(∗
JY

Z/2Z
)
,

where the indexing set J is uncountable.
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Proof. — The groupoid BirMori(Y ) is generated by Sarkisov links and isomorphisms
of Mori fiber spaces, and relations are generated by trivial and elementary ones (see
Theorem 2.7). Every link equivalent to χ (see Remark 2.8) is of the form a ◦χ ◦ b and
is thus redundant in the generation of the groupoid. Thus we may take as generators
Mori fiber space isomorphisms, as well as all Sarkisov links that are either χCj

or
they are not equivalent to χCj

for any j ∈ J . Moreover, by replacing links equivalent
to χCj by a ◦ χCj ◦ b in all relations, for any j ∈ J , we see that the only generating
relations involving χCj

of Remark 3.7 are χ2
Cj

= idY and a ◦ χCj
◦ b = χCj

. In the
second relation, the target and the source of χCj being Y , implies that a, b ∈ Aut(Y ).
However, by comparing base loci, we see that a and b must fix the curve Cj , which
by our choice of JY , implies that a = d = idY . Thus the only relation among our new
set of generators, involving χCj is χ2

Cj
= idY .

To show that Bir(Y ) = G ∗
(∗JY ⟨χCj

⟩
)
, we have to show that:

(1) each element of Bir(Y ) can be written as a product of elements in the factors
of G ∗

(∗JY ⟨χCj
⟩
)
;

(2) generating relations involve only elements from a single factor ofG∗(∗JY⟨χCj
⟩).

For the former, given any element of Bir(Y ) we may decompose it into Sarkisov links
using the generators chosen in the previous paragraph. Then factoring this decom-
position by isolating all elements χCj

, we get a product of elements in G and ⟨χCj
⟩,

j ∈ J .
As for the latter, let r = idY be a relator in Bir(Y ). As previously, r is a product of

conjugates of the generating relations chosen in the first paragraph, these are precisely
elements of the form χCj

2, j ∈ J and R, with R = idW is a relator in BirMori(Y )

involving none of the χCj
. Again factoring by isolating all expressions χCj

2 we get
that r is a product of conjugates of elements of the form rG and χCj

2, where rG = idY
is a relation in G. Thus r may be generated by relators involving only elements of G
or ⟨χCj

⟩, j ∈ J .
For the last assertion, if Y = P3 we conclude by Corollary 4.5 and otherwise by

Lemma 4.7. □

Remark 4.9. — The construction of the isomorphism above depends on the choice
of a curve in each projective equivalence class of SYg,d. Different choices give rise to
different isomorphisms.

4.3. Inner and Field Automorphisms. — We now construct a group automorphism
of Bir(Y ) which we show that is not a product of inner and field automorphisms (see
Subsection 1.2 for all the relevant definitions).

We first fix an isomorphism Bir(Y ) ∼= G ∗ (∗Z/2Z) among the ones constructed
in the previous section (see Remark 4.9). Choose a non-trivial permutation ρ of J ,
such that there exists j0 ∈ JY

g,d with j0′ := ρ(j0) ∈ JY
g′,d′ and (g, d) ̸= (g′, d′). We note

that, whether Y is P3 or a smooth cubic 3-fold, such a choice is always possible, for
example, for Y = P3, we can choose (g, d) = (2, 8) and (g′, d′) = (6, 9) since the
corresponding JY

g,d and JY
g′,d′ are non-empty by Lemma 4.5.
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We now define an automorphism ϕ = ϕ(ρ) of Bir(Y ) by sending the factor of
the free product with index j to that with index ρ(j). More precisely, we define the
automorphism ϕ = ϕ(ρ) on the generators of the free product by sending χCj with
χCρ(j)

and fixing all generators in G.

Proposition 4.10. — The automorphism ϕ of Bir(Y ) defined above is not the com-
position of a field automorphism σ of C preserving Y and an inner automorphism of
Bir(Y ).

Proof. — Suppose the contrary. Then for any f ∈ Bir(Y ) we have

ϕ(f) = bτ (g ◦ f ◦ g−1),

where g ∈ Bir(Y ) and τ is a field automorphism of C (see Section 1.2 for the definition
of bτ ). For f = χCj0

we get

χCj0
′ = bτ

(
g ◦ χCj0

◦ g−1
)

⇐⇒ bσ(χCj0
′ ) = g ◦ χCj0

◦ g−1,

where σ = τ−1. However, by the description of relations involving χCj0
, the only

possible choice would be for g = idY . We would then have

bσ(χCj0
′ ) = χCj0

.

By comparing base loci, we get that aσ(Cj0′) = Cj0 . However, aσ(Cj0′) is abstractly
isomorphic to Cj0′ which cannot be isomorphic to Cj0 as they have different genera,
which is a contradiction. □

Corollary 4.11. — The automorphism group of Bir(Y ) is not generated by inner
automorphisms and field automorphisms preserving Y .

Moreover, there exist elements of any order which do not lie in the subgroup gen-
erated by inner and field automorphisms: the order of ϕ(ρ) is equal to the order of ρ
and since J is infinite we can find permutations of any order.

Remark 4.12. — For Y = P3 and any ρ as above, the group automorphism
ϕ(ρ) : Cr3(C) → Cr3(C) is not a homeomorphism with respect to either the Zariski
or the Euclidean topology on Cr3(C). Indeed by the results of [UZ21], any homeo-
morphism of Cr3(C), with respect to either of the two topologies, is the composition
of a field automorphism with an inner automorphism.

4.4. Extensions of the construction. — All results proved in the previous sections
rely on the involutions constructed in Proposition 3.1 and their rigidity proved in
Proposition 3.5. These involutions have appeared before in the literature in [CM13],
[BL12] and [BL15].

The rigidity of these involutions essentially boils down to the fact that they are
dominated by a smooth weak-Fano 3-fold of anti-canonical degree 2, which is the
smallest degree possible. However, among the lists of [CM13] there are several other
examples of involutions of Fano 3-folds which have the same property. Thus it is a
natural question whether the whole construction extends to these cases as well.
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