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SYMPLECTIC HOMOGENIZATION

by Claude Viterbo

Abstract. — Let H(q, p) be a Hamiltonian on T ∗Tn. Under suitable assumptions on H, we show
that the sequence (Hk)k⩾1 defined by Hk(q, p) = H(kq, p) converges in the γ-topology—defined
in [Vit92]—to an integrable continuous Hamiltonian H(p). This is extended to the case of non-
autonomous Hamiltonians, and the more general setting in which only some of the variables are
homogenized: we consider the sequence H(kx, y, q, p) and prove it has a γ-limit H(y, q, p), thus
yielding an “effective Hamiltonian”. The goal of this paper is to prove convergence of the above
sequences, state the first properties of the homogenization operator, and give some applications
to solutions of Hamilton-Jacobi equations, construction of quasi-states, etc. We also prove that
when H is convex in p, the function H coincides with Mather’s α function defined in [Mat91]
and associated to the Legendre dual of H. This gives a new proof—in the torus case—of its
symplectic invariance first discovered by P. Bernard in [Ber07].

Résumé (Homogénéisation symplectique). — Soit H(q, p) un hamiltonien défini sur T ∗Tn. Sous
des hypothèses convenables, on montre que la suite (Hk)k⩾1 définie par Hk(q, p) = H(kq, p)

converge pour la topologie γ, définie dans [Vit92], vers un hamiltonien intégrable H(p). Ceci
s’étend au cas de hamiltoniens non-autonomes, et au cas où seulement certaines variables
sont homogénéisées : par exemple la suite Hk(kx, y, px, py) qui dans ce cas aura une limite
H(y, px, py), qui est un « hamiltonien effectif ». Le but de cet article est de démontrer la
convergence de ces suites, ainsi que les premières propriétés de l’opérateur d’homogénéisation
et d’en donner des applications aux solutions d’équations de Hamilton-Jacobi, aux quasi-états
symplectiques, etc. On démontre aussi que lorsque H est convexe en p, la fonction H coïncide
avec la fonction α de Mather (cf. [Mat91]) associée au dual de Legendre de H. Cela redémontre,
dans le cas du tore, que cette fonction est symplectiquement invariante, comme l’avait démontré
P. Bernard ([Ber07]) dans le cas général.

Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2. A crash course on generating function metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3. Statement of the main results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4. Proof of the main theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5. Proof of Proposition 4.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Mathematical subject classification (2020). — 37J05, 53D35, 35F20, 49L25, 37J40, 37J50.
Keywords. — Homogenization, symplectic topology, Hamiltonian flow, Hamilton-Jacobi equation,
variational solutions.

Supported by ANR projects GRST, Symplexe (ANR-06-BLAN-0030), Floer Power (ANR-08-BLAN-
0291-03/04), KAMFaible (ANR-12-BS01-0020), Microlocal (ANR-15-CE40-0007), and NSF grants
DMS-0635607 and DMS-0603957.

e-ISSN: 2270-518X http://jep.centre-mersenne.org/

http://jep.centre-mersenne.org/


68 C. Viterbo

6. Proof of Proposition 4.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7. Proof of Theorem 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8. Proof of Theorem 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9. Proof of Theorem 3.5, the partial homogenization case. . . . . . . . . . . . . . . . . . . . . . . 107
10. Proof of Proposition 3.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11. Non compact-supported Hamiltonians and the time dependent case. . . . . . . . . 114
12. Homogenization in the p variable and connection with Mather’s α function . 120
13. More examples and applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
14. Further questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Appendix A. Capacity of completely integrable systems. . . . . . . . . . . . . . . . . . . . . . . . . 128
Appendix B. Some “classical” inequalities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Appendix C. A different type of homogenization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Appendix D. Generating function for Euler-Lagrange flows. . . . . . . . . . . . . . . . . . . . . . 134
Appendix E. Relationship with [MVZ12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

1. Introduction

The aim of this paper is to define the notion of homogenization for a Hamiltonian
diffeomorphism of T ∗Tn. In other words, given a compactly supported Hamilton-
ian H(t, q, p) on S1 × T ∗Tn, we shall study whether the sequence Hk defined by
Hk(t, q, p) = H(kt, kq, p) converges to some Hamiltonian H, necessarily of the form
H(q, p) = h(p).

The convergence of (Hk)k⩾1 to H should be understood as the convergence for the
symplectic metric γ defined in [Vit92] (see also Section 2.1), of the flow of Hk, φt

k

to the flow of H, φ t. This convergence is necessarily rather weak, since for example
C0-convergence for the flows essentially never holds.

However, such γ-convergence implies the C0-convergence for the variational solu-
tion (see [OV95] for the definition) of Hamilton-Jacobi equations

(HJk)


∂

∂t
u(t, q) +H

(
k · t, k · q, ∂

∂q
u(t, q)

)
= 0,

u(0, q) = f(q),

to the variational solutions of

(HJ)


∂

∂t
u(t, q) +H

( ∂

∂q
u(t, q)

)
= 0,

u(0, q) = f(q).

It is important to stress that this notion of convergence does not imply any kind
of pointwise or almost everywhere convergence(1) for φt

k or Hk, but is rather related
to variational notions of convergence, similar to Γ-convergence (see [DG75], [DM93]),
that was already used in homogenization theory for studying viscosity solutions of
Hamilton-Jacobi equations. Homogenization using this method was for example used

(1)However C0 convergence of the flows implies γ-convergence as we proved in [Vit92], we refer
to Humilière’s work in [Hum08b] for stronger statements, i.e., weaker assumptions.
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in the work of Lions, Papanicolaou and Varadhan (see [LPV87] and also [Eva89],
[Fat97]), or the rescaling of metrics on Tn (see [AB84] and [Gro99]).

Many results in the above-mentioned papers can be considered as special cases of
“symplectic homogenization” that is presented here. We believe some of the advan-
tages of this unified treatment are:

(1) The removal of any convexity or even coercivity assumption on H in the p

direction (this is required in [LPV87] and [Eva89, Fat97, Fat08]), usually needed to
define H because of the use of minimization techniques for the Lagrangian. In fact
our homogenization is defined on compactly supported objects, and then extended to
a number of non-compactly supported situations.

(2) The natural extension of homogenization to cases where H has very little reg-
ularity (less than continuity is needed).

(3) A well-defined and common definition of the convergence of Hk to H or φk

to φ that applies to flows, Hamilton-Jacobi equations, etc.
(4) The symplectic invariance of the homogenized Hamiltonian extending the in-

variance results proved in [Ber03] for Mather’s α function, making his constructions
slightly less mysterious.

(5) The geometric properties of the function H (see Proposition 3.2(5)), yield-
ing computational methods extending those obtained in the one-dimensional case in
[LPV87] or in other cases (see for example [Con96]).

This paper will address these fundamental questions, some other applications will
be dealt with in subsequent papers (see for example [Vit18] for an approach to
Mather’s theory in the non-convex setting).

1.1. Some Notation
λ : the Liouville form pdq defined on T ∗M .
Hamc(T

∗M) : compactly supported time-dependent one periodic
Hamiltonians, i.e., elements in C∞

c (R/Z× T ∗M,R).
Hamc(T

∗M) : set of time one flows of Hamiltonians in Hamc(T
∗M).

GFQI : Generating function quadratic at infinity.
L(T ∗M) : the set of images of the zero section under the action of

the Hamiltonian diffeomorphisms in Hamc(T
∗M).

c(α, S) : critical value obtained by minimax
on S with the cohomology class α.

γ(L) and γ(φ) : c(µ,L)− c(1, L) and c(µ, φ)− c(1, φ) the metrics
on L(T ∗M) and Ĥamc(T

∗M).
Ĥamc(T

∗M) : completion for the metric γ of Hamc(T
∗M).

Ĥamc(T
∗M) : completion for the metric γ of Hamc(T

∗M).
c(1(x)⊗ α, S) : the number c(α, Sx), where Sx(q; ξ) = S(x, q; ξ).
sup(f(A)) : for f : X → R and A ⊂ X is defined as supx∈A f(x).
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1.2. Note. — Previous versions of this paper crucially used the case M = Tn of the
following

Conjecture 1. — There exists a constant Cn such that any Lagrangian submani-
fold L of T ∗M contained in the unit disc bundle {(q, p) ∈ T ∗M | ∥p∥ ⩽ 1} that is
Hamiltonian isotopic to the zero section satisfies γ(L) ⩽ CM .

The content of Section 6 replaces the use of this conjecture in the proof of the main
theorem. Added in revision: the conjecture has been recently proved, in particular for
M = Tn, by Shelukhin in [She22] (see also later proofs in [GV22, Vit22]). Also a
number of papers using the present paper or its ideas are [MVZ12], [MZ11], [SV10],
[Vit18], [Bis19], [Vit21].

2. A crash course on generating function metric

This section is devoted to defining the metric γ, stating some of its main properties
and explaining the relationship with Hamilton-Jacobi equations. The reader familiar
with the γ-metric may skip this section and start directly from Section 3, possibly
returning here for reference.

(2)This journal has since disappeared, but has been replaced by “Reflets de la physique”.
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2.1. Generating functions, the calculus of critical values and the γ-metric

Let M be an n-dimensional closed manifold, L be a Lagrangian submanifold in
T ∗M Hamiltonian isotopic to the zero section 0M (i.e., such that there is a Hamil-
tonian isotopy φt such that φ1(0M ) = L).

Definition 2.1. — The smooth function S : M × Rk → R is a generating function
quadratic at infinity (GFQI for short) for L if:

(1) there is a non-degenerate quadratic form B on Rk such that

|∇ξS(q; ξ)−∇B(ξ)| ⩽ C,

(2) zero is a regular value of the map

(q; ξ) 7−→ ∂S

∂ξ
(q; ξ),

(3) by (1) and (2), ΣS = {(q; ξ) | ∂S
∂ξ (q; ξ) = 0} is a smooth compact submanifold

in M × Rk. The map

iS : ΣS −→ T ∗M

(q; ξ) 7−→
(
q,
∂S

∂q
(q; ξ)

)
sends diffeomorphically ΣS to L.

Remarks 2.2. — We point out that:
(1) Throughout this paper, we shall use a semicolon to separate the “base vari-

ables” q from the “fiber variables” ξ, and we shall abbreviate “generating function
quadratic at infinity” by “GFQI”.

(2) When k = 0, i.e., there are no fiber variables, L is just the graph of the
differential dS(q).

When L is Hamiltonian isotopic to the zero section, any two GFQI of L are equiva-
lent by the equivalence relation generated by the following three elementary operations
associating S1 to S2 (see [Thé99, Th. 3.2, p. 254] and [Vit92, Prop. 1.5, p. 688]):

(1) (Stabilization) S2(x, ξ, η) = S1(x, ξ) + q(η), where q is a non-degenerate qua-
dratic form.

(2) (Diffeomorphism) S2(x, ξ) = S1(x, φ(x, ξ)), where (x, ξ) → (x, φ(x, ξ)) is a
fiber-preserving diffeomorphism.

(3) (Translation) S2(x, ξ) = S1(x, ξ) + c.
Moreover, an elementary computation using the Künneth isomorphism shows that
denoting by Sλ the set

{(q; ξ) ∈M × Rk | S(q; ξ) ⩽ λ},

we have for c large enough that

H∗(Sc, S−c) ≃ H∗(M)⊗H∗(D−, ∂D−),

J.É.P. — M., 2023, tome 10



72 C. Viterbo

where D− is the unit disc of the negative eigenspace of B. In the sequel we denote
by S∞, (resp. S−∞) the set Sc (resp. S−c) for c large enough. Therefore, to each
cohomology class α in H∗(M) we may associate the image of α ⊗ T (T is a chosen
generator of H∗(D−, ∂D−) ≃ Z) in H∗(S∞, S−∞), and for α ̸= 0, by homological
minimax, a critical level c(α, S) (see [Vit92, §2, p. 690–693]).

According to [Vit92], if S1, S2 are related by (1) or (2), then H∗(Sµ
1 , S

λ
1 ) =

H∗(Sµ
2 , S

λ
2 ), while if they are related by operation (3), we have H∗(Sµ

1 , S
λ
1 ) =

H∗(Sµ+c
2 , Sλ+c

2 ). As a result the minimax critical levels are well-defined up to a
constant shift (i.e., a shift by a constant independent from the cohomology class).

Definition 2.3 (see [Vit92, Def. 2.1]). — Let L be Hamiltonian isotopic to the zero
section, S a GFQI for L. For any non-zero cohomology class α we define

c(α, S) = inf{λ | the image of T ⊗ α in H∗(Sλ, S−∞) is non-zero}.

We denote by 1 the generator of H0(M), µ the generator of Hn(M) and set

c−(S) = c(1, S),

c+(S) = c(µ, S),

γ(L) = c(µ, S)− c(1, S).

Remarks 2.4. — We notice that
(1) According to [Vit92, Thé99] the numbers c(α, S) indeed only depends on L and

not on S up to a global shift: replacing S by S + c generates the same Lagrangian
and this shifts all the c(α, S) by c.

(2) Note that translating S by a constant shifts c(α, S) by the same constant, so
that, provided we normalized S in some way, c(α,L) is now well-defined as the common
value of c(α, S) for S a GFQI for L. For example, if we specify the Hamiltonian H

yielding the isotopy between the zero section and L, we may normalize S by requiring
that its critical values coincide with the critical values of the action AH defined on
P = {c : [0, 1] 7→ T ∗M | c(t) = (q(t), p(t)), p(1) = 0} by

AH(c) =

∫ 1

0

[p(t)q̇(t)−H(t, q(t), p(t))] dt.

Thus c±(H) = c±(S) is well-defined. When φ1 is generated by some compactly sup-
ported Hamiltonian, we may normalize the GFQI so that the fixed point at infinity,
which is a critical point of S, has critical value zero. We may thus define c(α,φ(0M ))

for φ ∈ Hamc(T
∗M).

(3) Note that when S has no fiber variable, we have

c+(S) = sup
x∈M

S(x), c−(S) = inf
x∈M

S(x).

(4) There is a similar definition for a homology class instead of cohomology class
(see [Vit92, p. 692]). For u ∈ H∗(M) we have

c(u, S) = inf{λ | the image of T ⊗ u is in the image of H∗(S
λ, S−∞)}.
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(5) We shall sometimes deal with the case M = Rn. Then we need quadraticity
at infinity of S for both the ξ and x variable, so that (1) in Definition 2.1 should be
replaced by

(1’) there exists a nondegenerate quadratic form B(q, ξ) on M × Rk(= Rn × Rk)

such that
|∇S(q; ξ)−∇B(q; ξ)| ⩽ C.

The map γ is well-defined on the set L(T ∗Rn) of Lagrangian submanifolds Hamil-
tonian isotopic to the zero section, where the Hamiltonian is assumed to be compactly
supported by compactifying L and Rn to Sn so that we set γ(L) def

= γ(L ∪ {(∞, 0)})
where

L ∪ {(∞, 0)} ⊂ T ∗Sn = T ∗Rn ∪ ({∞} × (Rn)∗).

It follows from [Vit92], that γ defines a metric on L(T ∗M) by setting

Definition 2.5. — Let S1 and S2 be GFQI for L1 and L2 in L(T ∗M). Then
γ(L1, L2) = c(µ, S1⊖S2)−c(1, S1⊖S2) where (S1⊖S2)(q; ξ1, ξ2) = S(q; ξ1)−S(q; ξ2).
The function γ defines a metric on L(T ∗M). We denote by L̂(T ∗M) the completion(3)

of L(T ∗M) for γ.

That γ is a metric on L(T ∗M) is a consequence of Lusternik-Shnirelman’s theory
(see [Vit92]). Note that γ(L) = γ(L, 0M ) so our use of γ is a slight abuse of notation.

Our goal is to define a metric on Hamc(T
∗M) = C∞

c ([0, 1] × T ∗M,R) the set of
compactly supported, time dependent Hamiltonians of T ∗M , and on Hamc(T

∗M) the
group of time-one maps of Hamiltonians in Hamc(T

∗M). For M = Tn, the graph of
φ ∈ Hamc(T

∗Tn),
Γ(φ) = {(z, φ(z)) | z ∈ T ∗Tn}

is a Lagrangian submanifold of T ∗Tn×T ∗Tn (where T ∗M is T ∗M with the symplectic
form of opposite sign: −dp ∧ dq).

But T ∗Tn×T ∗Tn is covered by T ∗(∆T∗Tn), where ∆T∗Tn is the diagonal, through
the symplectic covering map

j : T ∗(Tn × Rn) −→ T ∗Tn × T ∗Tn

(u, v, U, V ) 7−→ (u− V, v, u, v − U).

Here (q, p) ∈ T ∗Tn, (Q,P ) ∈ T ∗Tn and the symplectic form is

dp ∧ dq − dP ∧ dQ,

while (u, v) ∈ Tn × Rn, (u, v, U, V ) ∈ T ∗(Tn × Rn) with symplectic form dU ∧ du +

dV ∧ dv.
The inverse of j,

(q, p,Q, P ) 7−→ (q, P, p− P,Q− q) = (u, v, U, V )

(3)Usually called the Humilière completion, see [Hum08b].
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is not well-defined: since Q, q are only defined modulo Zn, so is V . It is thus mul-
tivalued, but we may lift Γ(φ) to Γ̃(φ) ⊂ j−1(Γ(φ)), which is now a Lagrangian
submanifold in T ∗(∆T∗Tn).

In other words it φt is a Hamiltonian isotopy of T ∗Tn and φ̃t the lift to T ∗Rn such
that φ̃0 = Id, we have, setting [q] to be the class of q ∈ Rn in Tn,

Γ̃(φ) =
{
([q], P, p− P,Q− q) ∈ T ∗(Tn × Rn) | φ̃(q, p) = (Q,P )

}
.

When φ has compact support, we may compactify both Γ̃(φ) and ∆T∗Tn and we
get a Lagrangian submanifold Γ(φ) in T ∗(Tn × Sn). We may then set

Definition 2.6 ([Vit92, p. 697]). — For M = Tn, the maps c−, c+ and γ are defined by

c−(φ) = c(1⊗ 1,Γ(φ)), c+(φ) = c(µTn ⊗ µSn ,Γ(φ))

and
γ(φ) = γ(Γ(φ)) = c(µTn ⊗ µSn ,Γ(φ))− c(1⊗ 1,Γ(φ)).

We also set
c±(φ,ψ) = c±(φψ

−1) and γ(φ,ψ) = γ(φψ−1).

Proposition 2.7 (see [Vit92]). — The map γ defines a bi-invariant metric on
Hamc(T

∗Tn) since
(1) it is non-degenerate γ(φ) = 0 ⇐⇒ φ = id

(2) it is invariant by conjugation γ(ψφψ−1) = γ(φ) for all ψ in Hamc(T
∗Tn).

(3) it satisfies the triangle inequality

γ(φψ) ⩽ γ(φ) + γ(ψ)

for any φ,ψ in Hamc(T
∗Tn).

Proof. — Then according to [Vit06b, Prop. 2.11], γ is a distance on the set of Lagran-
gian Hamiltonian isotopic to the zero section. We apply this to Γ(φ)⊂T ∗(Tn×Sn).
Property (1) follows from the non-degeneracy of the metric on L(T ∗(Tn × Sn)). For
property (2) the proof is identical to the proof of [Vit92, Cor. 4.3] for the case M=Rn).
The last property follows easily from the triangle inequality from [Vit92, Cor. 3.6,
p. 696]. □

Remarks 2.8
– The metric γ can be extended on one hand to Hamc(T

∗M) by setting γ̂(φ) =

sup{γ(φ(L), L) | L ∈ L(T ∗M)} and on the other hand to general symplectic manifolds
(see [Oh05, Sch00]) using Floer cohomology instead of generating function homology.

– A vector field Z is called a Liouville vector field, if Z is conformal (i.e., the flow ψt

of Z satisfies ψ∗
t ω = etω). We then have, according to [Vit92, Cor. 4.3, p. 698],

(2.1) γ(ψtφψ
−1
t ) = etγ(φ).

On the set Hamc(T
∗Tn) the metric γ is defined as follows.(4)

(4)Remember that elements of Hamc(T ∗M) are time-dependent Hamiltonians.
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Definition 2.9. — Let H(t, z) be a Hamiltonian in Hamc(T
∗M) with flow φt

H . We set

γ(H,K) = sup
{
γ(φt

H ◦ (φt
K)−1) | t ∈ [0, 1]

}
.

Finally we state two convergence criteria for the γ-metric.

Proposition 2.10. — Let M = Rn or Tn. Let φH , φK be the time-one maps of the
flows associated to H,K in Hamc(T

∗M). We have

γ(H,K) ⩽ ∥H −K∥C0([0,1]×T∗M,R).

As a result, if the sequence (Hk)k⩾1 of Hamiltonians on T ∗M with fixed support,
C0-converges to H, then (Hk)k⩾1 converges, in the metric γ, to H.

Similarly we have a constant C such that

γ(φ,ψ) ⩽ C · dC0(φ,ψ).

Proof. — The first statement follows immediately from [Vit92, Prop. 4.6, p. 699
& Prop. 4.14, p. 707]. It is stated explicitly for example as [Vit06b, Prop. 2.15] or
[Hum08b, Prop. 2.4(d), p. 378]). The second one follows for Hamiltonian maps sup-
ported in the unit disc bundle from [Sey12, Th. 5]. The general case follows from the
homogeneity (by the dilation t · (q, p) 7→ (q, t · p)) of both sides. □

We may therefore define the completion Ĥamc(T
∗M) of Hamc(T

∗M) for γ, as Hu-
milière did (see [Hum08b, §4, p. 388]). For example Ĥamc(T

∗M) is the set of equiv-
alence classes of Cauchy limits for γ of sequences of elements of Hamc(T

∗M), two
sequences being equivalent if their γ-distance converges to 0. For Ĥamc(T

∗M) we as-
sume the sequence is supported in a fixed compact set. Note that the support of an
element of Ĥam(T ∗M) can be defined directly (see [Hum08b]), so this is the same
as the subset of elements of Ĥam(T ∗M) having compact support. From the above
proposition we deduce that a sequence of Hamiltonians C0-converging uniformly on
compact sets will be a Cauchy sequence for γ, hence defines an element in Ĥamc(T

∗M).
We thus get

Proposition 2.11 (see [Hum08b, Prop. 1.3]). — There is a continuous inclusion map

C0
c ([0, 1]× T ∗M,R) −→ Ĥamc(T

∗M)

Similarly if Hamc(T ∗M) is the C0-closure of Hamc(T
∗M) we have a continuous in-

clusion
Hamc(T ∗M) −→ Ĥamc(T

∗M)

Finally, we claim that the spectral numbers c(α,L) are well-defined on the γ-com-
pletions of the above metric spaces, for example in Ĥamc(T

∗M).

Proposition 2.12. — For α ∈ H∗(Tn × Sn) ∖ {0} the map φ 7→ c(α,φ) uniquely
extends as a continuous map (for the metric γ) defined on Ĥamc(T

∗Tn).
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Proof. — Since |c(α,φ1)− c(α,φ2)| ⩽ γ(φ1, φ2) according to Proposition B.3, this is
just an application of the general statement that a Lipschitz map defined on a metric
space has a unique extension to its completion. □

2.2. Variational solutions of Hamilton-Jacobi equations. — Let S(x, y; ξ) be a
GFQI, where (x, y) ∈ X × Y . Define Sy(x, ξ) = S(x, y; ξ) and for α ∈ H∗(X) set
c(α⊗1(y), S) = c(α, Sy). The notation indicates thatH∗(X×{y}) = H∗(X)×H∗({y})
and H∗({y}) is one-dimensional generated by an element denoted 1(y).

Let φt be the Hamiltonian flow of H(q, p), and Γ̃(φt) the lift of its graph in
T ∗(Tn × Rn) as in Definition 2.5. Let St(q, P, ξ) be a GFQI for Γ̃(φt). We thus
define c(1(q, P ), St) = c(1, St,q,P ). Then ut(q, P ) = c(1(q, P ), St) is, by definition, the
variational solution of

∂

∂t
ut(q, P ) +H

(
q, P +

∂

∂q
ut(q)

)
= 0,

u0(q, P ) = 0.

We refer to [OV95], [Vit95] and [CV08] for more information on variational solu-
tions, in particular the fact that it does not depend on the choice of S and [Vit18,
App. 2, Th. 13.1] for the proof that variational solutions satisfy the equation outside
a closed set of zero measure.

3. Statement of the main results

We shall first give our results in the case of homogenization with respect to all
variables, then present the case of partial homogenization, and finally the applications
to variational solutions of Hamilton-Jacobi equations.

3.1. Standard homogenization

Theorem 3.1 (Main theorem). — Let H(t, q, p) be a compactly supported, smooth
Hamiltonian, 1-periodic in t on T ∗Tn. Then the following holds:

(1) There exists a Hamiltonian H ∈ C0
c (Rn,R) such that the sequence

Hk(t, q, p) = H(kt, kq, p)

γ-converges to H(t, q, p) = H(p).
(2) The function H only depends on φ1, the time-one map associated to H (i.e.,

it does not depend on the isotopy (φt)t∈[0,1]).
(3) The map

A : C∞
c (R/Z× T ∗Tn,R) −→ C0

c (Rn,R)
defined by A(H) = H extends to a nonlinear projector (i.e., a surjective map satisfying
A2 = A) with Lipschitz constant 1:

A : Ĥamc(T
∗Tn) −→ C0

c (Rn,R),

where the metric on Ĥamc(T
∗Tn) is given by γ, and the canonical metric on C0(Rn,R)

is the C0-metric.
Moreover A sends Lipschitz Hamiltonians to Lipschitz maps.
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The next theorem states some properties of the homogenization map A.

Theorem 3.2 (Main properties of symplectic homogenization). — The map A defined
in the above theorem satisfies the following properties:

(1) It is monotone, i.e., if H1 ⩽ H2, then A(H1) ⩽ A(H2).
(2) It is invariant under the action of a Hamiltonian symplectomorphism:

A(H ◦ ψ) = A(H) for all ψ ∈ Ham(T ∗Tn).

(3) Setting Hc(t, q, p) = c · H(c · t, q, p), we have A(Hc) = cA(H) for any c ∈ R.
In particular, if H is autonomous, A(cH) = cA(H).

(4) The map A extends to a map (still denoted by A) between P(T ∗Tn), the set of
subsets of T ∗Tn, to P(Rn), the set of subsets of Rn. This map is bounded from below
by the symplectic shape of Sikorav (see [Ben88, Sik89, Eli91]), i.e.,

shape(U) = {p0 ∈ Rn | ∃ψ ∈ Hamc(T
∗Tn), ψ(Tn × {p0}) ⊂ U} ⊂ A(U).

(5) If L is a Lagrangian Hamiltonian isotopic to Lp0 = {(q, p0) ∈ T∗Tn} and
sup(q,p)∈LH(q, p)⩾h (resp. inf(q,p)∈LH(q, p)⩽h) we have A(H)(p0)⩾h (resp. ⩽h).

(6) We have

lim
k→∞

1

k
c+(φ

k) = sup
p∈Rn

H(p), lim
k→∞

1

k
c−(φ

k) = inf
p∈Rn

H(p).

(7) For any sequence of non-negative compactly supported functions, (Hn)n⩾1, con-
verging uniformly to 1 on compact sets, we have limn ζ(Hn) = 1.

(8) Given any Radon measure µ on Rn, the map

ζ(H) =

∫
Rn

A(H)(p)dµ(p)

satisfies all the properties of a symplectic quasi-state(5) except for normalization (i.e.,
ζ(1) = 1) which is however satisfied in a weak sense according to 7. In particular,
we have A(H + K) = A(H) + A(K) whenever H and K Poisson-commute (i.e.,
{H,K} = 0).

Remarks 3.3. — Here are some comments:
(1) The function H will be defined in the autonomous case as

H(p) = lim
k
c(µ⊗ 1(p), Hk).

Of course there is a lot to prove, starting from the existence of this limit.
(2) In (1) the assumption could be replaced by the property that H1 ⪯ H2 in the

sense of [Vit92] (i.e., c−(φ−1
H1

◦ φ1
H2

) = 0, see [Vit92, Def. 4.9, p. 701]).

(5)see [EP06] for the definition and properties of quasi-states in the symplectic framework, inspired
by [Aar91].
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(3) Note that it is not true that characteristic functions are in Ĥamc(T
∗Tn), for

example an integrable Hamiltonian is in the completion if and only if it is continuous,
so for example for U = S1 × [−1, 1], HU is not in Ĥamc(T

∗Tn). However A can be
extended to any H that is a limit of a decreasing sequence of continuous functions, i.e.,
any upper semi-continuous function-by setting H = limkHk, by setting H = limkHk.
It is easy to show that this does not depend on the choice of the sequence (Hk). So A

extends to the class of upper semi-continuous functions. However it is not clear what
properties do still hold in such situation, since for example −H is not upper semi-
continuous.

(4) Property 3 is essentially trivial for c > 0. The non-trivial fact is that A(−H) =

−A(H) (see Remark 3.8).
(5) As a result of 5 if u is a smooth subsolution of the stationary Hamilton-Jacobi

equation, that is, H(x, p + du(x)) ⩽ h, then H(p) ⩽ h. Similarly if u is a smooth
supersolution, that is, H(q, p+ du(q)) ⩾ h, then H(p) ⩾ h.

(6) From 5, we get the following statement: let

E+
c = {p0 ∈ Rn | ∃L Hamiltonian isotopic to Lp0 , inf(q,p)∈LH(q, p) ⩾ c},

E−
c = {p0 ∈ Rn | ∃L Hamiltonian isotopic to Lp0

, sup(q,p)∈LH(q, p) ⩽ c}.

As a result, if p ∈ E
+

c ∩ E−
c , we have H(p) = c.

More generally we have the following

Corollary 3.4. — Let H be an autonomous Hamiltonian. Then if c = H(p0), then
H−1(c) intersects all images of Lp0 by a Hamiltonian map.

Proof. — Indeed, if this was not the case we could find a Hamiltonian image of Lp0

which is contained in either H < c or H > c. In the first case, this implies H(p0) > c

in the second H(p0) < c, contradicting our assumption. □

3.2. Partial homogenization. — We now consider the case of a Hamiltonian H de-
fined on T ∗Tn ×M , where M is some symplectic manifold. We shall only deal with
the case where M = T ∗Tm, but the general case can be easily adapted. We want to
understand the limit of Hk(t, x, y, z) = H(kt, kx, y, z) for (x, y) ∈ T ∗Tn, z ∈ M . In-
deed, we shall show that it is sufficient to define the homogenization for φt for small t.
But denoting by φt

k the flow of Hk, the graph of φt
k for t small lives in a neighborhood

of T ∗(Tn × Rn) × ∆M , hence in T ∗(Tn × Rn) × T ∗∆M . Since the graph lives in a
cotangent bundle, we shall see that it can again be described, using the theory of
generating functions.(6) We then have the following extension of Theorem 3.1, which
corresponds to the case m = 0:

Theorem 3.5 (Main theorem, partial homogenization case). — Let H(t, x, y, q, p) be
a compact supported Hamiltonian on T ∗Tn+m. Then

(6)Indeed, the main advantage of Tn over general closed manifolds, is that T ∗Tn × T ∗Tn is
covered by T ∗∆, while for general M this only holds in a tubular neighborhood of the diagonal.
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(1) The sequence (Hk)k⩾1 defined by

Hk(t, x, y, q, p) = H(kt, kx, y, q, p)

γ-converges to a continuous function H of the form H(y, q, p).
(2) The map

Ax : C∞
c ([0, 1]× T ∗Tn+m,R) −→ C0

c (Rn × T ∗Tm,R)

given by Ax(H) = H extends to a projector (i.e., it is surjective and satisfies A2
x = Ax)

with Lipschitz constant 1

Ax : Ĥamc(T
∗Tm+n) −→ C0

c (Rn × T ∗Tm),

where the metric on Ĥamc(T
∗Tm+n) is γ.

(3) If H(q,p)(x, y) = H(x, y, q, p), we have

Ax(H)(y, q, p) = A(H(q,p))(y).

Thus partial homogenization is obtained by freezing the non-homogenized variables.

Remarks 3.6

(1) In 2 we identify C0
c (Rn×T ∗Tm,R) to an element in Ĥamc(T

∗Tm+n) as we did
in the previous section.

(2) The Hamiltonian H(y, q, p) is called the effective Hamiltonian. In case it is
smooth, its flow is given by Φ(x0, y0, q0, p0) = (x(t), y(t), q(t), p(t)) with

y(t) = y0, x(t) = x0 +

∫ t

0

∂H

∂y
(y0, q(t), p(t))dt,

q̇(t) =
∂H

∂p
(y0, q(t), p(t)), ṗ(t) = −∂H

∂q
(y0, q(t), p(t)).

(3) It is not true anymore that H depends only on the time-one map of H.
(4) More generally, using Theorem 3.5 3, we may prove properties of Ax analogous

to the properties of A stated in Theorem 3.1. The projector Ax is not invariant by
symplectic maps. It is however invariant by fiber-preserving Hamiltonian symplectic
maps: if

ψ(x, y, q, p) = (ψ(q,p)(x, y), ψ2(q, p))

we have
Ax(H ◦ ψ)(y, q, p) = Ax(H)(y, ψ2(q, p)).

3.3. Homogenized Hamilton-Jacobi equations. — Our theorem has some interesting
applications to generalized solutions of evolution Hamilton-Jacobi equations. Consider
the equation:

(HJ)


∂

∂t
u(t, q) +H

(
t, q,

∂

∂q
u(t, q)

)
= 0,

u(0, q) = f(q),

where t ∈ R, q ∈ Tn and H ∈ C∞(R/Z× T ∗Tn).
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Smooth solutions to such equations are only defined for t less than some T0. In gen-
eral, solutions exhibit shocks:

∥∥D2u(q)
∥∥
C0([0,T ]×Tn,R,R) blows-up as t goes to T0.

There are essentially two types of generalized solutions for such equations: viscosity
solutions (cf. [CL83], [Bar94], [BCD97]) and variational solutions (cf. [Sik90], [Cha91],
[OV95], [Vit95]). These two solutions do not coincide in general, with one notable
exception: when the Hamiltonian is convex in p (cf. [Zhu96], [Roo17, Wei13]).

From [LPV87] it follows that if H is coercive in p, and uk is the viscosity solution of

(HJk)


∂

∂t
uk(t, q) +H

(
kt, kq,

∂

∂q
uk(t, q)

)
= 0,

uk(0, q) = f(q).

The sequence (uk)k⩾1 converges to u, the viscosity solution of

(HJ)


∂

∂t
u(t, q) +H

( ∂

∂q
u(t, q)

)
= 0,

u(0, q) = f(q).

Our theorem, together with results by Humilière (cf. [Hum08b, §6, in particular
Prop. 6.1]) implies that this extends to the non-coercive case, provided uk is the
variational solution and H is given by our main theorem. We now state the more
general proposition, yielding the analog of [LPV87]:

Proposition 3.7. — Let H ∈ C0([0, 1] × T ∗Tn+m,R) be either coercive (i.e.,
lim|(y,p)|→∞H(t, x, y, q, p) = +∞) or compactly supported, f ∈ C0(Tn+m,R) and uk
the variational solution of (HJPk):

(HJPk)


∂

∂t
uk(t, x, q) +H

(
kt, kx, q,

∂

∂x
uk(t, x, q),

∂

∂q
uk(t, x, q)

)
= 0,

uk(0, x, q) = f(x, q).

where (x, q) ∈ Tn × Tm Then lim
k→+∞

uk(t, x, q) = u(t, x, q) where convergence is uni-

form on compact time intervals and u is the variational solution of (HJP).

(HJP)


∂

∂t
u(t, x, q) +H

(
q,

∂

∂x
u(t, x, q),

∂

∂q
uk(t, x, q)

)
= 0,

u(0, x, q) = f(x, q).

More precisely, for (x, q) in a bounded set, there is a sequence εk going to zero,
such that for all t ⩾ 1

|uk(t, x, q)− u(t, x, q)| ⩽ εkt

The next three sections will be devoted to the proof of our main theorem, first in
the “standard case”, then in the “partial homogenization” setting.

Remark 3.8. — Note that, according to Theorem 3.2(3), we have A(−H) = −A(H).
This is a statement that typically does not hold in the case of viscosity solutions, since
if u(t, x) is a viscosity solution associated to H, u(−t, x) is not in general a viscosity
solution associated to −H.
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4. Proof of the main theorem

Let us introduce the reader to the main steps of the proof. We denote by φt
k the

flow of Hk(t, q, p) = H(kt, kq, p) for H ∈ Hamc(T
∗Tn). In the first part of Section 4.1,

we shall construct a GFQI of the graph of the φt
k, starting from a GFQI of the graph

of the flow φt = φt
1.

Our proof will then be split in two parts:
– Finding a candidate φ t for the γ-limit of φ t

k , or equivalently a candidate H for
the γ-limit of Hk

– Showing that the γ-limit of φt
k is indeed φ t.

Recall from Section 2.2 that if S(q, p, ξ) is a GFQI for Γ(φ), c(α⊗1(p), φ) is defined
as c(α, Sp) where Sp(q, ξ) = S(q, p, ξ).

The first step goes along the following lines: if H does not depend on (t, q), then
c(µq ⊗ 1(p), φ1) = H(p), so(7) if Hk is a sequence of autonomous Hamiltonians γ-con-
verging to H, we must have that

lim
k→∞

c(µq ⊗ 1(p), φ1
k) = H(p).

We shall thus try to define H using this formula, and we shall first prove that this
limit exists. This is the object of the second part of Section 4.1 and is proved in
Proposition 4.10. We thus get a candidate φ1 for the γ-limit of φ1

k.
The second step is more delicate, and is dealt with in Section 4.2. The formula

obtained for the GFQI of φt
k yields the following inequality valid for any Hamiltonian

map α

lim
k→∞

inf c(µ⊗ 1, φkα) ⩽ c(µ⊗ 1, φα)

and proved in Proposition 4.15.
We must then prove the reverse inequality. This requires us to use the previous

inequality with φ−1 instead of φ, the difficulty being that we do not know a priori
that φ−1 = φ−1. The proof of this equality is the object of Section 6.

Finally note that we do not know,(8) in general, whether the convergence of a se-
quence of compactly supported Hamiltonians (Hk)k⩾1 follows from the convergence
of the sequence of flows (φt

k)k⩾1. Indeed, it could happen that in the completion
Ĥamc(T

∗Tn), the same family of maps φt, is obtained from two different Hamiltoni-
ans i.e., is the image of two different elements of Ĥamc(T

∗Tn) by the extension to the
completions of the exponential map H → φt

H . However, two distinct compactly sup-
ported continuous integrable Hamiltonians H1(p), H2(p) cannot have the same flow,
as is proved in Corollary A.2 (this also follows from a much more general theorem of
Humilière, Leclercq and Seyfaddini, see [HLS15]).

(7)Recall that according to Proposition 2.12, spectral numbers are well-defined on Ĥamc(T ∗Tn).
(8)In the case of continuous Hamiltonians and flows, i.e., the case of the group Hameo, this is

proved in [Vit06a] (see also [BS13]). I owe this remark to Vincent Humilière and Nicolas Vichery.
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4.1. Reformulating the problem and finding the homogenized Hamiltonian

First of all, we shall assume we are dealing with a compactly supported autonomous
Hamiltonian H ∈ Hamc(T

∗Tn). We shall see in Section 11.2 that the general case
reduces to this one.

Similarly let φt
k be the flow associated to Hk(q, p) = H(kq, p) set φk = φ1

k and
φ = φ1

1.
We first compute φt

k as a function of φt. The map ρk(q, p) = (kq, p) defined on
T ∗Tn is not invertible. Nevertheless its lift ρ̃k : T ∗Rn → T ∗Rn is invertible. If we
denote by φ̃ any lift of φ, then ρ̃−1

k φ̃ρ̃k is Zn-equivariant, that is,

ρ̃−1
k φ̃ρ̃k(q + ν, p) = ρ̃−1

k φ̃ρ̃k(q, p) + (ν, 0)

for ν ∈ Zn. It therefore descends to a diffeomorphism of T ∗Tn. However this diffeo-
morphism depends on the choice of the lift φ̃. Since φ is the time-one of a Hamiltonian
isotopy, we may choose for φ̃ the lift starting from the identity. With this choice we
shall write by abuse of notation ρ−1

k φρk for the symplectomorphism of T ∗Tn induced
by ρ̃−1

k φ̃ρ̃k.

Lemma 4.1. — Let ρk : T ∗Tn → T ∗Tn be defined by ρk(q, p) = (kq, p), then with the
above convention, we have φt

k = ρ−1
k φktρk.

Proof. — The map ρk is conformally symplectic, hence

dHk(z)ξ = dH(ρk(z))dρk(z)ξ = ω (XH(ρk(z)), dρk(z)ξ)

= (ρ∗kω)(dρk(z)
−1XH(ρk(z)), ξ).

Since ρ∗kω = kω, we get

XHk
(z) = k ((ρk)∗XH) (z) = (ρk)

∗(kXH)(z).

The flow of kXH is φkt, hence the flow of (ρk)∗(kXH) is ρ−1
k φktρk. □

From now on we shall write φk = ρ−1
k φkρk. We are thus looking for the γ-limit of

ρ−1
k φkρk.

Note that we may replace φ = φ1 by φ1/r for some fixed integer r. Indeed, if
ρ−1
k φk/rρk γ-converges to ψ, we have that

ρ−1
k φkρk = ρr

(
ρ−1
kr φ

kr/rρkr
)
ρ−1
r

γ-converges to ρrψρ
−1
r . If our theorem is proved for φ1/r, ψ will be generated by a

Hamiltonian depending only on the p variable. We easily check that in this case

ρrψρ
−1
r = ψr.

In other words, ρ−1
k φkρk γ-converges to ψr.

Remark 4.2. — Note that ρkφρ−1
k is not well-defined since ρ̃kφ̃ρ̃−1

k is not Zn equi-
variant. However the conjugacy ρr(ρ

−1
kr φρkr)ρ

−1
r is well-defined: one may check

that the lift is indeed Zn-equivariant. Similarly for ψ the flow of an integrable
Hamiltonian, h(p), the map ρrψρ

−1
r is indeed well-defined, and equal to ψr as
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stated. Of course by a continuity argument this extends to the case where h is only
continuous.

For simplicity we shall assume from now on that φ is C1-close to the identity, so
that it lifts to a Hamiltonian diffeomorphism φ̃ of T ∗Rn, C1-close to the identity.
The graph of the map φ̃ has a generating function S defined on T ∗Tn and compactly
supported. We identify q ∈ Rn with its projection in Tn, and P ∈ Rn. By abuse of
notation, we shall still denote by S the lift of S to T ∗Rn.

The function S defines φ̃ by the relation

φ̃
(
q, P − ∂S

∂q
(q, P )

)
=

(
q − ∂S

∂P
(q, P ), P

)
.

This means that the graph Γ̃(φ) of φ̃ in T ∗Rn × T ∗Rn ≃ T ∗∆R2n , has the generating
function S(q, p) that is the lift of a compactly supported function defined on T ∗Tn.

In other words, setting φ̃(q, p) = (Q,P ) we have
P − p =

∂S

∂q
(q, P ),

q −Q =
∂S

∂P
(q, P ).

Similarly when φ is not C1-close to the identity. Then S has extra variable ξ ∈ V

and S(x, P ; ξ) is quadratic at infinity. Then for (q, P ; ξ) such that ∂S
∂ξ (q, P ; ξ) = 0,

we have
φ̃
(
q, P − ∂S

∂q
(q, P ; ξ)

)
=

(
q − ∂S

∂P
(q, P ; ξ), P

)
.

We now give the composition law for generating functions, due to Chekanov
(cf. [Che96]).

Lemma 4.3. — Let φ1, φ2 be Hamiltonian maps having S1, S2 defined respectively on
Tn×Rn×V1 and Tn×Rn×V2 as generating functions, compactly supported functions
on T ∗Tn. Then φ̃1 ◦ φ2 has the generating function

S(q1, p2; q2, p1, ξ1, ξ2) = S1(q1, p1, ξ1) + S2(q2, p2, ξ2) + ⟨p1 − p2, q2 − q1⟩,

where q1 ∈ Rn, q2 ∈ Rn, p1, p2 ∈ Rn.

Remark 4.4. — Let us point out the following.
(1) The above function S is a GFQI, since the sum of two functions (in different

variables) with derivatives at bounded distance from the derivative of a quadratic form
is at bounded distance from the derivative of a quadratic form. Note that according
to Brunella ([Bru91], see also [Vit06b, Prop. 1.6]), S may be deformed to a generating
function that is equal to a quadratic form outside a compact set.

(2) Note that in the above lemma, q2 ∈ Rn is identified with its projection on Tn.
We may remark that if we set q2 = q1 + u, we have

S′(q1, p2;u, p2) = S(q1, p2; q1 + u, p2) = S1(q1, p2) + S2(q1 + u, p2) + ⟨p2 − p1, u⟩,
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so that S′ is a GFQI of the same Lagrangian as S (since we did a fiber-preserving
change of variable), and is the lift of a function defined on T ∗Tn × R2n (q1 ∈ Tn,
p2 ∈ Rn, u, v ∈ Rn).

Proof. — This is a straightforward computation and we refer to [Che96, Th. 4.1] (see
also [Cha84] for example). □

More generally, we get:

Lemma 4.5. — The map φ̃k has the generating function

Sk(q1, pk; p1, q2, p2, · · · , qk−1, pk−1, qk) = Σk(q1, pk; p1, q2, p2, · · · , qk−1, pk−1, qk)

+Bk(q1, pk; p1, q2, p2, · · · , qk−1, pk−1, qk),

where

Σk(q1, pk; p1, q2, p2, · · · , qk−1, pk−1, qk) =

k∑
j=1

S(qj , pj)

Bk(q1, pk; p1, q2, · · · , qk−1, pk−1, qk) =

k−1∑
j=1

⟨pj , qj+1 − qj⟩+ ⟨pk, q1 − qk⟩.and

Proof. — By induction from the formula in Lemma 4.3

S(q1, p2; q2, p1) = S1(q1, p1) + S2(q2, p2) + ⟨p1 − p2, q2 − q1⟩. □

Remarks 4.6
(1) In the sequel (qj , pj) ∈ T ∗Rn, even though, by our usual abuse of notations,

we identify qj with its projection on Tn = Rn/Zn. Note however that for ν ∈ Zn,
we have that Σk and Sk are invariant by (qj)1⩽j⩽n → (qj + ν)1⩽j⩽n. We emphasize
that the qj and pj are vector coordinates (i.e., each qj and each pj is a vector in Rn).

(2) Note that this formula is a discretization of the action functional (up to sign).
The sum of the S(qj , pj) corresponds to

∫
Hdt while the quadratic term corresponds

to
∫
pq̇dt.

Again, Σk is defined on (T ∗Tn)k, while Bk is defined on (T ∗Rn)k. Note also that Bk

is the discretization of
∫
S1 pq̇dt, so that our expression is the discretization of the

Maupertuis action
∫
S1 pq̇ −Hdt. Finally we have:

Lemma 4.7. — Let φ be a Hamiltonian diffeomorphism of T ∗Tn generated by S(q, p).
Then φk = ρ−1

k φkρk is generated by Fk given by

Fk(q1, pk; p1, · · · , qk−1, pk−1, qk)

=
1

k
Σk(kq1, pk; p1, · · · , kqk−1, pk−1, kqk) +Bk(q1, pk; p1, · · · , qk−1, pk−1, qk).
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Proof. — Indeed an elementary computation shows that if S(q, p; ξ) is a generating
function for ψ : T ∗Rn → T ∗Rn, then 1

kS(kq, p; ξ) generates ρ−1
k ψρk.

Thus in our case, we expect the generating function
1

k
Σk(kq1, pk; p1, q2, · · · , qk−1, pk−1, qk) +

1

k
Bk(kq1, pk; p1, q2, · · · , qk−1, pk−1, qk).

But the fiber-preserving change of variable qj 7→ kqj (j ⩾ 2) transforms this generat-
ing function into

Fk(q1, pk; p1, q2, · · · , qk−1, pk−1, qk) =
1

k
Σk(kq1, pk; p1, kq2, · · · , kqk−1, pk−1, qk)

+
1

k
Bk(kq1, pk; p1, kq2, · · · , kqk−1, pk−1, qk).

Because the second term is quadratic, we easily check that it is equal to

Bk(q1, pk; p1, q2, · · · , qk−1, pk−1, qk). □

Definition 4.8. — We set to simplify our notations

x = q1, y = pk, ξ = (p1, q2, · · · , qk−1, pk−1, qk).

We define

Fk : Rn
x × (Rn)∗y × R2n(k−1)

ξ −→ R,

Fk(x, y; ξ) =
1

k

[
S(kx, p1) +

k−1∑
j=2

S(kqj , pj) + S(kqk, y)

]
+Bk(x, y, ξ),

where Bk(x, y, ξ) is defined by

Bk(q1, pk; p2, . . . , qk) =

k−1∑
j=1

⟨pj , qj+1 − qj⟩+ ⟨pk, q1 − qk⟩.

Let µx be the fundamental class in the torus Tn (which variable is denoted here
by x). We then define

hk(y) = c(µx, Fk,y) = c(µx ⊗ 1(y), Fk),

where Fk,y(x; ξ) = Fk(x, y; ξ).

Remarks 4.9. — Let us make the following remarks.
(1) As long as we write c(µx ⊗ 1(y), S) for a generating function S, there is no

ambiguity. However, if Λ is the Lagrangian associated to S, and (Λ)y is the reduction
of Λ at y, having GFQI Sy, writing an expression like c(α, (Λ)y) requires some care,
since S is defined up to a constant, and this constant yields a coherent choice of
a GFQI for (Λ)y for each y, so that the c(α, (Λ)y) are well-defined up to the same
constant for all values of the parameter y, and not up to a function of y as one could
expect. Indeed, a choice of S, a GFQI for Λ defines a GFQI for (Λ)y, by Sy = S(y, •).

Moreover, for similar reasons, even c(β, (Λ)y)− c(α, (Λ)y) depends on the global Λ
and not only on its reduction (Λ)y.
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(2) Note also that for ν = (ν1, . . . , νk) = (ν1, ν) ∈ Z⊕ Zk−1, we have

Fk(x, y; ξ) = Fk(x+ ν1, y, ν + ξ),

where ν + ξ = (p1, q2 + ν2, . . . , pk−1, qk + νk). Indeed, this periodicity is obvious for
the terms containing S, and the quadratic term is

Bk(q1, pk; p2, . . . , qk) =

k−1∑
j=1

⟨pj , qj − qj+1⟩+ ⟨pk, q1 − qk⟩,

remembering that x = q1, y = pk for which the periodicity is easily checked.
(3) Note that since φt

k equals the identity outside a compact set of the cotangent
bundle, the function ξ 7→ Fk(x, y, ξ) will have, for y large enough, a single critical
point with critical value equal to zero (by normalization). According to Remark 4.4(1),
we could deform Fk to be exactly quadratic for y large enough, but this is not really
useful, since for such values of y topologically there is no way to distinguish ξ 7→
Fk(x, y, ξ) from a quadratic form (the topology of the sub-level sets will coincide).

(4) The analogue of the above formula still holds if φ is not assumed to be C1-small.
Then its graph Γ(φ) has a generating function S(q, p; ζ), on Rn

x × (Rn)∗y × E → R
and φ1

k has generating function

Fk : Rn
x × (Rn)∗y × R2n(k−1)

ξ × Ek −→ R,

where ξ is as in Definition 4.8

Fk(x, y; ξ, ζ1, . . . , ζk) =
1

k

[
S(kx, p1, ζ1)+

k−1∑
j=2

S(kqj , pj , ζj)+S(kqk, y, ζk)

]
+Bk(x, y, ξ).

Our first step will be to prove:

Proposition 4.10. — The sequence (hk)k⩾1 is a precompact sequence for the C0 topol-
ogy.

The proposition will follow from Ascoli-Arzelà’s theorem, once we prove the fol-
lowing

Lemma 4.11. — The sequence (hk)k⩾1 is equicontinuous and uniformly bounded.

Proof. — Indeed let φ̃k be the lift of φk = ρ−1
k φkρk to T ∗Rn. It has support in some

tube
T ∗
ARn = {(q, p) ∈ T ∗Rn | |p| ⩽ A};

Now recall from [Vit92, §2, p. 690–693] that c(α, Fk,y) is a critical value of Fk,y. Thus
for each y there exists x(y), ξ(y) such that

∂Fk

∂x
(x(y), y; ξ(y)) = 0,

∂Fk

∂ξ
(x(y), y, ξ(y)) = 0, Fk(x(y), y, ξ(y)) = hk(y).
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Moreover, we may assume φ is generic, so that the map y 7→ (x(y), ξ(y)) is smooth
on a set W , the complement of some codimension one subset (see [OV95] and also
[Roo17, Wei13], [Vit18, App. 2, Th. 13.1]). Thus for y in W ,

dhk(y) =
∂

∂y
Fk(x(y), y, ξ(y)) = x(y)−Xk(x(y), y),

where Xk is defined by

φ̃k(x, y) = (Xk(x, y), Yk(x, y)).

The quantity x(y) − Xk(x(y), y) can be estimated as follows: the first coordinate of
the flow φ̃t

k satisfies

ẋk(t) =
∂H

∂y
(kxk(t), yk(t)),

hence |ẋk(t)| is bounded by C = sup
{∣∣∂H

∂p (x, y)
∣∣ | (x, y) ∈ T ∗Tn

}
which is finite

since H is compactly supported. This implies that |x − Xk(x, y)| ⩽ C hence in the
complement of Σ the inequality

|dhk(y)| =
∣∣∣ ∂
∂y
Fk(x(y), y, ξ(y))

∣∣∣ ⩽ C

holds. Since hk is continuous, this implies that it is C-Lipschitz.
For the uniform boundedness, let C be a bound for |S|. Then, according to Def-

inition 4.8, |Fk(x, y; ξ) − Bk(x, y, ξ)| ⩽ C. Since c(µx, Bk) = 0 we get |c(µx, Fk)| =
|hk(y)| ⩽ C. □

From Ascoli-Arzelà’s theorem and the above Lemma 4.11, we infer that the se-
quence (hk)k⩾1 is relatively compact in the C0 topology. In other word it has a
C0-converging subsequence, and so does any of its subsequences. We now argue as
follows: consider a subsequence (hkν

)ν⩾1 of (hk)k⩾1 C
0-converging to h∞. We are

going to prove that (φ1
kν
)ν⩾1 γ-converges to φ∞, the time-one flow of h∞. We still

need to prove that the whole sequence (φ1
k)k⩾1 C

0-converges to φ∞, but this follows(9)

from:

Proposition 4.12. — If a subsequence of (ρ−1
k φkρk)k⩾1 has a γ-limit φ, then any

other γ-converging subsequence has the same γ-limit.

Proof. — We start with

Lemma 4.13. — For any φ,ψ in Hamc(T
∗Tn):

γ(φkψk) ⩽ kγ(φψ),(4.1)

γ(ρ−1
k φρk) =

1

k
γ(φ).(4.2)

(9)We use here the fact that in a metric space if every subsequence of a sequence (xk)k⩾1 has a
converging sub-subsequence with limit x, then the sequence itself converges to x.
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Proof. — Indeed, we may write

φkψk = φψ
(
ψ−1(φψ)ψ

) (
ψ−2(φψ)ψ2

)
· · ·

(
ψ−(k−1)(φψ)ψk−1

)
Since each factor is conjugate to φψ, and we have k factors, Property (4.1) fol-
lows immediately from conjugation invariance of γ and the triangle inequality. Prop-
erty (4.2) follows from the fact that if S(q, P ; ξ) is the GFQI for φ then Rk(q, P ; ξ) =
1
kS(k · q, P ; ξ) is the GFQI for ρ−1

k φρk and it is easy to check that c(α,Rk) =
1
k c(α, S(q, P ; ξ)) (this is a manifestation of the scaling property of γ by conformal
conjugation, see equation (2.1) in Section 2). □

Now we prove that the sequence (ρ−1
k φkρk)k⩾1 cannot have two distinct limit

points. Indeed, let us assume we have two infinite sets of integers, A,B such that
there exists σ1 ̸= σ2 and a sequence εk converging to 0 with the property

∀k ∈ A, γ(ρ−1
k φkρk, σ1) ⩽ εk, ∀k ∈ B, γ(ρ−1

k φkρk, σ2) ⩽ εk.

Then for any integer q,

γ(ρ−1
kq φ

kqρkq, σ1) = γ(ρ−1
q (ρ−1

k φkρk)
qρq(ρ

−1
q σ−q

1 ρq)),

since
σ1 = ρ−1

q σq
1ρq.

This last equality follows from the fact that for an integrable Hamiltonian, H(p),
we obviously have Hk = H.

But using (4.2), we get for k ∈ A

γ(ρ−1
kq φ

kqρkq, σ1) = γ(ρ−1
q (ρ−1

k φkρk)
qρq(ρ

−1
q σ−q

1 ρq)) = γ(ρ−1
q ((ρ−1

k φkρk)
qσ−q

1 )ρq)

⩽
1

q
γ((ρ−1

k φkρk)
qσ−q

1 ) ⩽ q · 1
q
γ(ρ−1

k φkρkσ
−1
1 ) ⩽ εk.

Similarly we get that for k in B, and any q, we have

γ(ρ−1
kq φ

kqρkq, σ2) ⩽ εk.

As a result, for k ∈ A,m ∈ B we have

γ(ρ−1
kmφ

kmρkm, σ1) ⩽ εk, γ(ρ−1
kmφ

kmρkm, σ2) ⩽ εm.

This implies γ(σ1, σ2) ⩽ εm+ εk and since the right hand side goes to zero as k,m
go to infinity, we get that σ1 = σ2 and this concludes the proof. □

4.2. The Main steps of the proof. — In the previous section we obtained a contin-
uous function h∞(p), as the limit of some subsequence (hkν (p))ν⩾1. Since h∞ is con-
tinuous, according to Humilière (cf. our Proposition 2.11 above, or [Hum08b] propo-
sition 1.3) it has a “generalized flow” that is generates a one-parameter subgroup
in Ĥamc(T

∗Tn). In other words the map H → φt
H extends to a map between the

γ-completions,
Ĥamc(T

∗Tn) −→ Ĥamc(T
∗Tn).
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Note that Ĥamc(T
∗Tn) inherits the group structure of Hamc(T

∗Tn). We denote by
φ t
∞ the “generalized flow” associated to h∞. Note that the element φt

∞ is not a map:
it is only an element in Ĥamc(T

∗Tn).

Proposition 4.14. — For all t ⩾ 0, the element φ t
∞ is the γ-limit of (φt

k)k⩾1 defined
by φt

k = ρ−1
k φktρk: we have

lim
k→+∞

γ(φt
k, φ

t
∞) = 0.

From now on we assume t = 1, and denote φk = φ1
k, and φ∞ = φ 1

∞. The proof of
Proposition 4.14 will be based on the following two propositions

Proposition 4.15. — There exists a sequence (kν)ν⩾1 going to infinity such that for
any α in Ĥamc(T

∗Tn), we have

lim sup
ν→∞

c+(φkνα) ⩽ c+(φ∞α).

Proposition 4.16. — Consider a subsequence of (φkν
)ν⩾1 such that (all limits are

uniform in p)
lim
ν→∞

c(µ⊗ 1(p), φkν
) = lim

ν
hkν (p) = h∞(p).

Then we have
lim
ν→∞

c(µ⊗ 1(p), φ−1
kν

) = −h∞(p).

Proof that Proposition 4.15 and 4.16 imply Proposition 4.14.. — Indeed take α = φ−1
∞ ,

where φ∞ = φ1 is the limit associated by the previous subsection to some subsequence
of (kν)ν⩾1 still denoted (kν)ν⩾1. By Proposition 4.15, we get

lim sup
ν

c+(φkν
φ∞

−1) ⩽ c+(Id) = 0.

and since for all β in Ĥamc(T
∗Tn), c+(β) ⩾ 0 we get

lim sup
ν

c+(φkνφ∞
−1) = 0.

Now we must prove lim infν c−(φkν
φ−1
∞ ) = 0, and it is enough to show that

lim inf
ν

c−(φkν
α) ⩾ c−(φ∞α)

for any α in Ĥamc(T
∗Tn).

But according to [Vit92, Prop. 4.2(2), p. 697] and invariance by conjugation of c
(see [Vit92]) the formulas

c+(φ
−1) = −c−(φ) and c±(ψφψ

−1) = c±(φ)

hold in Ham(T ∗Tn). Since c± are obviously continuous for the γ-topology, the same
formulas hold in Ĥamc(T

∗Tn). We can thus write

c−(φkνα) = −c+(α−1φ−1
kν

) = −c+(φ−1
kν
α−1).

We then apply Proposition 4.15 to the sequence (φ−1
kν

). According to Proposition 4.16,

lim
ν
c(µ⊗ 1(p), φ−1

kν
) = −h∞(p)
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and according to Corollary A.2, −h∞(p) has flow φ−1
∞ in the completion Ĥamc(T

∗Tn).
As a result,

lim inf
k

c−(φkνα) = − lim sup
k

c+(φ
−1
kν
α−1) ⩾ −c+(φ∞

−1α−1) = c−(φ∞α).

Taking again α = φ−1
∞ we get

lim inf
k

c−(φkν
φ∞

−1) = 0,

hence
lim
k
c−(φkν

φ∞
−1) = lim

k
c+(φkν

φ∞
−1) = 0.

We thus proved that if the sequence hkν (p) = c(µx ⊗ 1(p), φkν ) C
0-converges to h∞,

then (φkν
)ν⩾1 γ-converges to φ∞. Note that conversely, if (φkν

)ν⩾1 γ-converges to φ∞,
since ψ 7→ c(α,ψ) is 1-Lipschitz, we have that hkν

(p) = c(µx⊗1(p), φkν
) C0-converges

to c(µx ⊗ 1(p), φ∞) = h∞(p).
Now assume there are two subsequences, (φkν )ν⩾1, (φlν )ν⩾1 such that the sequence

c(µx ⊗ 1(p), φkν
) C0-converges to h1∞, while c(µx ⊗ 1(p), φlν ) C

0-converges to h2∞.
Then we find two subsequences of (φk)k⩾1 γ-converging respectively to φ1 and φ2

(where φ t
1 is the flow of h1∞ while φ t

2 is the flow of h2∞). But according to Proposi-
tion 4.12, two γ-converging subsequences of (φk)k⩾1 must have the same limit, thus
φ1 = φ2. Using again the continuity of ψ 7→ c(α,ψ) for γ, we have

h1∞(p) = lim
ν
c(µx ⊗ 1(p), φkν

) = c(µx ⊗ 1(p), φ1)

= c(µx ⊗ 1(p), φ2) = lim
ν
c(µx ⊗ 1(p), φℓν ) = h2∞(p).

As a result we proved that
(a) the sequence (hk)k⩾1 is precompact for the C0 topology,
(b) if a subsequence (hkν

)ν⩾1 C
0-converges to h then the sequence (φkν )ν⩾1 con-

verges to φ∞,
(c) any two converging subsequences of (φk)k⩾1 have the same limit.
We claim that this implies that (φk)k⩾1 converges, and its limit is φ = φ∞, the

flow of h∞ defined by h∞(p) := limk c(µx ⊗ 1(p), φk).
Indeed from (a) we get the existence of a limit h for some subsequence, from (b)

that then the corresponding subsequence of (φk)k⩾1 converges to φ and since by (c),
φ is unique, so is h (according to Proposition A.1). Now we claim (hk)k⩾1 converges.
Indeed, assume otherwise: there would be a subsequence kν such that γ(hkν

, h) ⩾ ε

for all ν. But the subsequence hkν
being precompact has a converging subsequence,

whose limit must be different from h a contradiction with (c). Now we know (hk)k⩾1

converges to h, hence so does (φk)k⩾1 and it must have limit φ∞ the flow of h∞
(in Ĥamc(T

∗Tn)).
This concludes our proofs of Proposition 4.14, modulo the proofs of Proposi-

tions 4.15 and 4.16. □
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We note the following

Corollary 4.17. — The γ-convergence of φt
k to φt

∞ is uniform in t on compact
sets. In other words the sequence of functions t 7→ γ(φt

kφ
−t) converges uniformly on

compact sets to 0.

Proof. — This follows from the fact that if ∥H∥C0 ⩽ C then ∥Hk∥C0 ⩽ C and thus
γ(φt

kφ
−s
k ) ⩽ C|t− s|. So let fk(t) = γ(φt

kφ
−t), then

|fk(t)− fk(s)| = |γ(φt
kφ

−t)− γ(φs
kφ

−s)| ⩽ γ(φt
kφ

−t ◦ φsφ−s
k )

⩽ γ(φt
kφ

−s
k ) + γ(φtφ−s) ⩽ 2C|t− s|.

Now if a sequence (fk)k⩾1 of functions defined on [0, 1] and uniformly Lipschitz con-
verges simply to a function f , then the convergence is uniform. Indeed, the sequence
(fk)k⩾1 is equicontinuous. It is also uniformly bounded, since γ(φk) ⩽ ∥Hk∥C0 ⩽ C

so γ(φt
kφ

−t) ⩽ γ(φt
k) + γ(φ−t) ⩽ 2C. So by Ascoli’s theorem, one can find a sub-

sequence converging uniformly on compact sets, but the limit of the subsequence is
necessarily f . And since we proved that all converging subsequences must have the
same limit, the sequence is uniformly converging to f on compact sets. □

5. Proof of Proposition 4.15

First of all, it is enough to deal with the case where α ∈ Hamc(T
∗Tn) (i.e., not

in its completion), since Hamc(T
∗Tn) is dense in Ĥamc(T

∗Tn) and c+ is continuous
for γ. Now we may choose S(x, y; η) a GFQI for α, with η belonging to some vector
space V . Let Zn act diagonally on the (u, x) variables by ν ⋆ (u, x) 7→, (u + ν, x+ ν)

and extend this action by the trivial action on products of Rn
u × Rn

x so that φkα has
the GFQI defined on the Zn quotient

Gk : Tn
u × Rn

v × Rn
x × Rn

y × V × Ek −→ R

Gk(u, v;x, y, η, ξ) = S(x+ u, v; η) + Fk(u, y; ξ) + ⟨y − v, x⟩,
where Fk was defined in Definition 4.8 and is a GFQI for φk, u ∈ Tn

u , v ∈ Rn
v , x ∈ Rn

x ,
y ∈ Rn

y , ξ ∈ Ek, η ∈ V , and Ek is the space R2n(k−1) as in Definition 4.8.
It will often be more convenient to switch from cohomology to homology in order

to make our argument geometrically more transparent. By relative cycle we mean a
chain with boundary in F−∞

k (i.e., in F−c
k for c large enough). The number c(a, S) was

defined for a homology class a in Remark 2.4 4. The identification of c(µu ⊗ 1(y), Fk)

with c([Tn
u ×{y}], Fk) follows from Proposition B.3. In the sequel we denote by C a rel-

ative cycle representing z in H∗(F
b, F a) which means that C⊂F b and [C,C ∩ F a]=z

in H∗(F
b, F a).

Thus, by definition of c(µu ⊗ 1(y), φk) = hk(y), for each y, there is a relative cycle
C−(y) homologous to Tn

u × {y} ×E−
k (x lives in Tn, ξ in Ek, and E−

k is the negative
eigenspace for the quadratic part Bk of Fk) in

H∗(G
∞
k,(x,v,η), G

−∞
k,(x,v,η)) = H∗(F

∞
k , F−∞

k )
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such that

Fk(y, C
−(y)) ⩽ hk(y) + ε

(we denote by (y, C−(y)) the set of (u, y, ξ) such that (u, ξ) ∈ C−(y)). Unfortunately
we may not get such an estimate if we simultaneously require that C−(y) is to depend
continuously on y. However, let us first assume such a continuous dependence can be
achieved and (hk)k⩾1 converges to h∞. Set

Gk : Tn
u × Rn

v × Rn
x × Rn

y × V/Zn −→ R,

Gk(u, v;x, y, η) = S(x+ u, v; η) + hk(y) + ⟨y − v, x⟩.

Again we may find a (relative) cycle Γ in Tn
u ×Rn

v × (Rn
x)× (Rn

y )×V in the homology
class of Tn

(u,v) × ∆x,y × V −, where V − is the negative eigenspace of the quadratic
part(10) of S, such that

supGk(Γ) ⩽ c(µ,Gk) + ε = c(µ, φα) + ε.

Let now Γ×Y C− be the (relative) cycle

Γ×Y C− =
{
(u, v, x, y, ξ, η) | (u, v, x, y, η) ∈ Γ, (u, ξ) ∈ C−(y)

}
.

We claim that

(1) supGk(Γ×Y C−) ⩽ Gk(Γ) + ε,
(2) Γ×Y C− is a cycle in H∗(G

∞
k , G

−∞
k ) homologous to

Tn
u × Rn

v ×∆x,y × E−
k × V −,

so that

c(µ, φkα) = c(µ,Gk) ⩽ supGk(Γ×Y C−) ⩽ supGk(Γ) + ε

⩽ c(µ,Gk) + ε ⩽ c(µ, φkα) + ε.

Indeed, for (1) we have

supGk(Γ×Y C−)

= sup{S(x+ u, v; η) + Fk(u, y, ξ) + ⟨y − v, x⟩ | (u, v, x, y, η) ∈ Γ, (u, ξ) ∈ C−(y)},

but Fk(u, y, ξ) ⩽ hk(y) + ε for (u, ξ) ∈ C−(y), so

supGk(Γ×Y C−) ⩽ sup{S(x+ u, v; η) + hk(y) + ⟨y − v, x⟩ | (u, v, x, y, η) ∈ Γ}+ ε

⩽ supGk(Γ) + ε.

(10)Notice that ∆x,y , the diagonal in Rn
x × Rn

y , is the negative eigenspace of ⟨y,−x⟩.
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For (2), we use the fact that if Γ is homologous to Tn
(u,v) ×∆x,y × V − and C−(y)

is homologous to Tn × {y} × E−
k then Γ×Y C− is homologous(11) to

(Tn
(u,v) ×∆x,y × V −)×Y (Tn × {y} × E−

k ),

that is, Tn
u × Rn

v ×∆x,y × E−
k × V −.

Let us now try to establish the above inequality without the assumption that we
can find C−(y) such that supFk(y, C

−(y)) ⩽ hk(y) + ε depending continuously on y.
Let the subsequence (hkν )ν⩾1 converges to h∞. We will see in the next Lemma that
we may find a continuous family C−(y) such that for k = kν and ν large enough, the
estimate

supFk(y, C
−(y)) ⩽ hk(y) + ε

holds for y outside of a subset U2δ where Uδ is a δ-neighborhood of some grid in (Rn)∗

(see Figure 1), while inside U2δ, supFk(y, C
−(y)) ⩽ a for some constant a.

The existence of C−(y) is a consequence of the following general result. We remind
the reader that a function F satisfies the Palais-Smale condition if any sequence such
that F (xn) is bounded and ∇F (xn) converges to zero has a converging subsequence.

This implies that the flow of −∇F/|∇F (x)|2 is defined for all time outside a neigh-
borhood of the set of critical points (which is compact) provided our metric is com-
plete. In particular, for generic F (i.e., F Morse and with Morse-Smale gradient flow),
classes in H∗(F b, F a) are represented by linear combinations of unstable manifolds
of critical points (see for example [Lau92]). As usual we denote by F∞ (resp. F−∞)
the set F c = {x | F (x) ⩽ c} for c large.

Lemma 5.1. — Let F (u, x) be a smooth function on the product V ×X of two oriented
complete Riemannian manifolds. We moreover assume both F and its restriction Fu

to a fiber {u}×X satisfy the Palais-Smale condition and for u outside a compact set,
Fu does not depend on u.

Let f ∈ C0(V,R) be such that for each u ∈ V , there exists a cycle C(u) representing
a class in Hd(F

+∞
u , F−∞

u ) with supF (u,C(u)) ⩽ f(u). Moreover we assume that
Hp(F

∞
u , F−∞

u ) vanishes for p ⩾ d+ 1.
Then for any positive ε and any subset U in V , such that each connected

component of V ∖ U has sufficiently small diameter, there exists a cycle C̃ in
Hd+dim(V )(F

∞, F−∞) and a constant a such that if we denote by C̃(u) the slice
C̃ ∩ π−1(u) (π : V ×X → X is the second projection)

supF (u, C̃(u)) ⩽ f(u) + aχU (u) + ε,

where χU is the characteristic function of U .

(11)The general fact that if we have two fibrations, pX : X → Z, pY : Y → Z and two cycles
A,B in X,Y respectively, in general position with respect to pX , pY , then the homology class of
A×Z B only depends on the homology classes of A and B. This follows from the fact that, denoting
p = (pX , pY ) : (X ×Y ) → Z, then A×Z B = (A×B)∩ p−1(∆Z), so represents the class j!([A×B])

where j : X ×Z Y → X × Y is the inclusion, and j! the umkehr map. In general we may perturb
A,B so that they are in general position, and then the homology class of A×Z B does not depend
n the choice of perturbations.
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Proof. — What we are doing is a constructive version of the Leray spectral se-
quence H∗(V,H∗(F

+∞
u , F−∞

u )), on the term Hn(V,Hd(F
+∞
u , F−∞

u )), yielding a class
in Hn+d(F

+∞, F−∞).
Our assumptions imply that the critical values of Fu are contained in some bounded

interval (independent from u), [−a/2, a/2]. We may assume V is triangulated and U

contains a neighborhood of the (n − 1) cells (n = dim(V )). In other words V ∖ U is
contained in the union of the top dimensional cells. We denote by V p the p-skeleton
of V , and by W p(δ) a δ-neighborhood of V p. Continuity of F implies that if we
take C̃(u) to be constant (i.e., independent from u) in each connected component of
V n ∖Wn−1(δ), containing a connected component of V ∖ U , the inequality will be
satisfied there. We need to extend C̃(u) for all u in V , so that the union of the C̃(u)
makes a singular cycle.

For this we proceed by induction on cells of the skeleton of V of decreasing di-
mension, so that we are going to extend C̃(u) for u ∈ V ∖W p(δp) successively for
p = n−1, n−2, . . . , 1, 0. For the first step, we need to glue the C̃(u) so that they yield
a cycle over the union of n and n−1 cells (outside a neighborhood of (n−2)-cells). For
this we need to look at what happens on an n − 1-dimensional cell, Ti,j intersection
of the n-cells Ti and Tj where we have a priori two conflicting definitions of C̃(u),
that we denote by C̃i(u), C̃j(u) obtained by taking for C̃(u) the constant value given
on each of the two n-cells, Ti, Tj . Let us write C̃i(u) − C̃j(u) = ∂Γi,j(u) which is of
course possible since C̃i(u) and C̃j(u) are homologous chains in Hd(F

+∞
u , F−∞

u ) on
Ti ∩ Tj . Then we may glue these together to⋃

u∈T̊i

C̃i(u) ∪
⋃

u∈T̊j

C̃j(u) ∪
⋃

u∈T̊i,j

Γi,j(u).

Note that this is indeed a singular chain of dimension n+dim(C̃i(u)), since dim(Ti) =

dim(Tj) = n, dim(Γi,j) = dim(C̃i(u)) + 1,dim(Ti,j) = n − 1. Thus each of the three
pieces has dimension n+ dim(C̃i) = n+ dim(C̃j).

Now of course, the maximum of F over⋃
u∈Ti

C̃i(u) ∪
⋃

u∈Tj

C̃j(u) ∪
⋃

u∈Ti,j

Γi,j(u)

has increased outside V ∖ U , but we can always assume that Γi,j ⊂ F a. If this was
not the case, we could push Γi,j down using the gradient of Fu, and since there is no
critical value above a/2, we can push it below a. As a result we have defined a cycle
over the complement of the (n− 2)-skeleton, contained in F a.

Now we look at the next inductive step, that is, extending to the (n− 2)-skeleton.
Consider then for Tα an (n − 2)-simplex, that is, in the boundary of the Tβ for β in
some set of (n− 1)-simplices. For each β we have a Γβ obtained in the previous step.
We claim that at any point of the (n − 2)-simplex Tα we have

∑
Tα∈∂Tβ

∂Γβ = 0.
Indeed by definition ∂Γβ = C̃iβ (u)− C̃jβ (u) where Tβ is bounded by Tiβ and Tjβ , and
in the above sum each index will appear twice (of course we need oriented simplices,
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and the above is correct provided they are oriented in a compatible way: this is made
possible by the orientability of V ).

Now, we claim that
∑

Tα∈∂Tβ
Γβ , which is closed by the above argument is in fact

a boundary ∂Γα. Indeed, over each fiber, u, this is a d + 2-cycle, and the homology
of the fiber Hk(F

+∞
u , F−∞

u ) vanishes for k ⩾ d+2. Therefore, in this dimension, any
cycle is a boundary, and we may find Γα such that

∂Γα =
∑

Tα∈∂Tβ

Γβ .

Now Γα is contained in F c and we get⋃
u∈T̊i

C̃i(u) ∪
⋃

u∈T̊j

C̃j(u) ∪
⋃

u∈T̊i,j

Γi,j(u)
⋃

u∈T̊α

Γα(u)

is a cycle over the (n − 2)-skeleton and contained in Hk(F
a, F−∞). We must then

iterate this procedure on the n− 3, . . . , 0 skeleton. □

We then apply the Lemma to Fk, which clearly satisfies the assumptions with
U = Uδ. We then get that supFk(y, C

−(y)) ⩽ hk(y) + akχ
δ(y) + ε where χδ is a

smooth function with values in [0, 1], equal to one on Uδ and to zero outside U2δ, ak is
a constant and ε is arbitrarily small.

Now for ℓ ⩾ 1 we want an expression(12) for Gℓ,k, a GFQI of φℓk, using the explicit
formula for Fℓk obtained as in Lemma 4.7 (or rather Remark 4.9(4)). We thus get

Gℓ,k(u, v;x, y, ξ, η) = S(x1 + u, v, η) +
1

ℓ

ℓ∑
j=1

Fk(ℓxj , yj , ξj) +Bℓ(x, y) + ⟨yℓ − v, x1⟩

and u ∈ Tn,v ∈ Rn, x = (x1, . . . , xℓ) ∈ (Rn)ℓ, y = (y1, . . . , yℓ) ∈ (Rn)ℓ, ξ =

(ξ1, . . . , ξℓ) ∈ (Ek)
ℓ, η ∈ V .

We may now “spread our error terms” akχδ(y) by translating them. More precisely,
for j from 1 to ℓ, let us choose domains Uδ

j ⊂ Rn yielding χδ
j (with supp(χδ

j) ⊂ U δ
j ),

such that(13) the following holds:
(1) the connected components of Rn ∖ Uδ

j have diameter less than δ,
(2) any (n+ 1) distinct sets Uδ

j have empty intersection.
Such Uδ

j may be constructed by taking for Uδ
j the δ/2-neighborhood of

Sj = {(x1, . . . , xn) ∈ Rn | ∃k, xk ∈ 2δ(Z+ rj)} = 2δ(S + rj(e1 + · · ·+ en)),

where
(a) S = {(x1, . . . , xn) | ∃k, xk ∈ Z},
(b) r1, . . . , rℓ are distinct elements of R/Z such that |ri − rj | ⩾ δ for i ̸= j (so it is

understood that δ < 1/ℓ).

(12)Note that Gℓ,k actually depends on the choice of ℓ and k and not just of the product ℓk.
(13)Here we measure distance with the norm ∥x∥∞ = sup1⩽j⩽n |xj |, otherwise we get an un-

pleasant
√
n factor.
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We refer to Figure 1 for a representation of the U δ
j when n = 2, ℓ = 3. Clearly we

have Sj1 ∩ Sj2 ∩ · · · ∩ Sjn ∩ Sjn+1 = ∅ provided ji ̸= jk for i ̸= k and the same holds
for their neighborhood: Uδ

j1
∩ U δ

j2
∩ · · · ∩ Uδ

jn
∩ U δ

jn+1
= ∅.

We now have
supFk(y, Cj(y)) ⩽ hk(y) + akχ

δ
j(y) + ε.

Consider

Gℓ,k(u, v;x, y, η)=S(x1 +u, v; η)+
1

ℓ

ℓ∑
j=1

(
hk(yj) + akχ

δ
j(yj)

)
+Bℓ(x, y)+ ⟨yℓ − v, x1⟩

Figure 1. An example of the sets Uδ
1 (yellow), Uδ

2 (red), Uδ
3 (blue)

for n = 2, ℓ = 3 (inspired by P. Mondrian, [Mon42]).

Let Γ be a cycle in the homology class of Tn
(u,v) ×∆x,y × V −, such that

supGℓ,k(Γ) ⩽ c(µ,Gℓ,k) + ε

and let (Γ×Y C−[ℓ]) be defined as

(Γ×Y C−[ℓ]) = Γ×Y (C−
1 × · · · × C−

ℓ )

=
{
(u, v;x, y, ξ, η) | (u, v, x, y, η) ∈ Γ, (ℓxj , ξj) ∈ C−

j (yj)
}
.

Now (Γ×Y C
−[ℓ]) is in the homology class of Tn

u ×Rn
v ×∆x,y × (E−

k )ℓ × V − and we
may thus infer that

c(µ, φkα) = c(µ,Gℓ,k) ⩽ supGℓ,k(Γ×Y C−[ℓ])

and Gℓ,k((Γ×Y C−[ℓ])) ⩽ Gℓ,k(Γ). We may thus conclude that

c(µ,Gℓ,k) ⩽ c(µ,Gℓ,k) + 2ε.

Our last step will be to prove

Lemma 5.2. — For each k there is a constant Ak such that the following inequality
holds for all ℓ:

c(µ,Gℓ,k) ⩽ c(µ,Gk) +
Ak

ℓ
.

J.É.P. — M., 2023, tome 10



Symplectic Homogenization 97

Proof. — Indeed Gℓ,k is the generating function of ψk,δ,ℓ α where

ψk,δ,ℓ = ρ−1
ℓ

(
ψ1
k,δ ◦ · · · ◦ ψℓ

k,δ

)
ρℓ

and ψj
k,δ is the time-one flow of hk(y) + akχ

δ
j(y).

But since the Hamiltonians hk(y)+akχδ
j(y) depend only on y, their flows commute,

hence ψk,δ,ℓ is the time-one flow of

Kk,δ,ℓ(y) =
1

ℓ

( ℓ∑
j=1

hk(y) + akχ
j
δ(y)

)
.

Now since (n+ 1) sets Uδ
j have empty intersection, we have that

∀y ∈ Rn,

∣∣∣∣ ℓ∑
j=1

χδ
j(y)

∣∣∣∣ ⩽ n,

hence
|Kk,δ,ℓ(y)− hk(y)| ⩽

nak
ℓ
.

As a result, using the inequality between γ and the C0-norm of the Hamiltonian from
Proposition 2.10, we get

γ(ψk,δ,ℓ, ψk) ⩽
nak
ℓ

def
=

Ak

ℓ
,

where ψk is the time-one flow of hk(y) hence

γ (ψk,δ,ℓα,ψkα) ⩽
Ak

ℓ

and

c(µ,Gℓ,k) ⩽ c(µ, ψk,δ,ℓα) ⩽ c(µ, ψkα) +
Ak

ℓ
⩽ c(µ, φkα) +

Ak

ℓ
. □

Since by assumption, as ν goes to infinity (ψkν )ν⩾1 γ-converges to φ we get for
k = kν

c(µ, φkℓα) = c(µ,Gℓ,k) ⩽ c(µ,Gℓ,k) + ε ⩽ c(µ,Gk) + ε+
Ak

ℓ

and since this holds for any positive ε we have

c(µ, φkℓα) ⩽ c(µ, φα) +
Ak

ℓ
.

Taking ℓ large enough, we see that there is a sequence(14) ℓν

lim
ν
c(µ, φℓν ·kν

α) ⩽ c(µ, φα)

as announced. This concludes the proof of Proposition 4.15. □

(14)In fact this holds for any sequence.
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Remark 5.3. — It is important to notice that

Gℓ,k = S(x1 + u, v; η) +
1

ℓ

ℓ∑
j=1

(
hk(yj) + akχ

δ
j(yj)

)
+Bℓ(x, y) + ⟨yℓ − v, x1⟩

cannot be bounded from above by

S(x1 + u, v; η) +
1

ℓ

ℓ∑
j=1

hk(yj) +Bℓ(x, y) + ⟨yℓ − v, x1⟩+
ak
ℓ

as it is obvious by choosing (y1, . . . , yℓ) such that each yj is in Uδ
j . Our proof makes

crucial use of the commutation property of the hk(y) + aχj(y) and would not hold if
we replaced χδ

j(y) by an analogous function χδ
j(x, y).

6. Proof of Proposition 4.16

Let Γφ be the graph of φ, where φ in coordinates is φ(x, y) = (X(x, y), Y (x, y))

and Sφ a GFQI for Γ(φ)

Γφ =
{
(X(x, y), y, y − Y (x, y), X(x, y)− x) | (x, y) ∈ T ∗Tn

}
.

Then the reduction of Γφ at y = y0 is

(Γφ)y0 =
{
(X(x, y0), y0 − Y (x, y0)) | x ∈ Tn

}
,

that is, Ly0
− φ(Ly0

), where

Ly0 = {(x, y0) | x ∈ Tn}.

Note that if Sφ is a GFQI for φ, it is normalized, and this yields a normalization of
the GFQI for Ly − φ(Ly). This could very well NOT be the normalization expected
by the reader (see for example Remark 2.4(2)).

For example for H integrable, of the form H(p), we have Ly = φ(Ly), so
Ly − φH(Ly) = 0N . However the normalization of the generating functions yields
c(µ,Ly − φH(Ly)) = H(y) and not 0.

Now c(αx ⊗ 1(y), φ) = c(αx ⊗ 1(y), Sφ) = c(α, (Sφ)y) = c(α,Ly − φ(Ly)).

Lemma 6.1. — We have

c(µx ⊗ 1(y), φk) = c(µ,Ly − φk(Ly)) = −c(1, Ly − φ−1
k (Ly)) = −c(1x ⊗ 1(y), φ−1

k ).

Proof. — Indeed, c(µ,Ly − φk(Ly))) = c(µ, φ−1
k (Ly) − Ly) by Hamiltonian invari-

ance(15) of c(µ,L1−L2). Moreover c(µ, φ−1
k (Ly)−Ly) = −c(1, Ly−φ−1

k (Ly)) by [Vit92,
Cor. 2.8, p. 693]. □

Denoting by ĥk(y) the number c(µx ⊗ 1(y), φ−1
k ), to prove Proposition 4.16 it is

enough to show that ĥk(y) = c(µx ⊗ 1(y), φ−1
k ) = −c(1x ⊗ 1(y), φk) differs from

−c(µx ⊗ 1(y), φk) = −hk(y) by a term of the size O(1/k). This is the content of

(15)that is, c(α,L1 −L2) = c(α,φ(L1)−φ(L2)) for φ a Hamiltonian map. The proof is the same
as in [Vit92] page 695, proof of Proposition 3.5.

J.É.P. — M., 2023, tome 10



Symplectic Homogenization 99

Proposition 6.2. — We have, uniformly in y,

c(µx ⊗ 1(y), φk)− c(1x ⊗ 1(y), φk) = O(1/k).

Remarks 6.3
(1) Using the proof of Conjecture 1 by Shelukhin (see [She22]) we can prove the

above proposition as follows:

c(µx ⊗ 1(y), φk)− c(1x ⊗ 1(y), φk) = c(µ,Ly − φk(Ly))− c(1, Ly − φ−1
k (Ly))

= γ(Ly − φk(Ly)) =
1

k
γ(Ly − φk(Ly)).

But the φk have a fixed compact support, so the same holds for Ly − φk(Ly) hence
according to the main theorem in [She22], γ(Ly − φk(Ly)) is bounded independently
from k, and we conclude that limk

1
kγ(Ly − φk(Ly)) = 0.

(2) Indeed the proposition implies

ĥk(y) = c(µx ⊗ 1(y), φ−1
k ) = −c(1x ⊗ 1(y), φk)

= −c(µx ⊗ 1(y), φk) +O(1/k) = −hk(y) +O(1/k).

Since by definition c(α,φk) = c(α, Fk) we have to prove that

c(µx ⊗ 1(y), Fk)− c(1x ⊗ 1(y), Fk) = O(1/k).

According to Proposition B.3, if f is defined on an n-dimensional orientable manifold,
and α ∈ Hq(f b, fa) then

c(α, f) = sup{c(u, f) | u ∈ Hq(f
b, fa), ⟨α, u⟩ ≠ 0}.

As a result, we may in the sequel replace cohomology classes by homology classes
using this property.

Proof of Proposition 6.2. — First of all, let u be a homology class in Hd(T
n) repre-

sented by a map A : X → Tn and v ∈ H1(T
n) be represented by a loop B : S1 → Tn.

Denote by u · v the class represented by C : (θ, x) → B(θ) · A(x). Here x · y is the
product in the group Tn and u · b ∈ Hk+1(T

n) is then well-defined, i.e., does not
depend on the choice of the representatives of u and v: this is the Pontryagin prod-
uct of u and v. Moreover it is easy to see that if v1, . . . , vn form a basis of H1(T

n),
then v1 · v2 · · · vn is a nonzero multiple of the fundamental class,(16) µ. Since we must
compare c(1x ⊗ 1(y), Fk) and c(µx ⊗ 1(y), Fk), our proposition will follow from

Proposition 6.4. — Let A : V → Tn
x ×Rn×Ek representing the class u×[{y}×E−

k ] ∈
Hd+n(k−1)(F

c
k,y, F

−∞
k,y ), and v ∈ H1(T

n). Then there exists C ′ : S1×V → Tn×Rn×Ek

representing u · v × [{y} × E−
k ] ∈ Hd+1+n(k−1)(F

c′

k,y, F
−∞
k,y ), where

c′ ⩽ c+O(1/k).

(16)by abuse of language, we denote by µ both the fundamental homology class and the funda-
mental cohomology class. This should cause no confusion.
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Proof. — In the proof we shall assume v is represented by the loop s 7→ sν, where
ν ∈ Zn. All degree one classes on the torus can be represented in such a way. The
first step will be to modify C to a cycle C̃ in the same homology class. We denote
by K a number such that

K > max

{
sup

(q,p)∈T∗Tn

|S(q, p)|, sup
(q,p)∈T∗Tn

|dS(q, p)|
}
,

where S is the generating function for φ as in Section 4.1. We first show that relative
cycles in sublevel sets can be deformed to “standard form”.

Lemma 6.5. — There exists a cycle C̃ homologous to C in Hd(F
c
k,y, F

−∞
k,y ) and a

constant M such that we have
(i) C̃ ⊂

(
{(q, p) | maxj |pj | ⩽M} ∪ F−4K

k,y

)⋂
F c
k,y,

(ii) C̃ ∩ F−3K
k,y ⊂ Tn × {y} × E−

k .

Proof. — Let us choose M so that S has support in the set |p| ⩽M/2. We are going
to deform C by first using the vector field Z, associated to the differential equation

q̇j = −χ(|pj |)(pj − pj−1) = Xj(q, p), ṗj = 0, for 1 ⩽ j ⩽ k,

where χ(|pj |) vanishes for |pj | ⩽ M/2. Note that y = pk is preserved. As a result,
if ψt is the flow of Z, we have
d

dt
Fk,y(ψ

t(q, p))|t=0 = ⟨dFk,y(q, p), Z(q, p)⟩ =
〈 ∂

∂q
Fk,y(q, p), X(q, p)

〉
= −

k∑
j=1

χ(|pj |)
〈 ∂

∂qj
Fk,y(q, p), (pj − pj−1)

〉
=

∑
j

χ(|pj |)
(
−|pj − pj−1|2 +

〈 ∂S
∂qj

(k · qj , pj), (pj − pj−1)
〉)

= −
∑
j

χ(|pj |)|pj − pj−1|2,

since S vanishes on the support of χ(|p|). Note that the pj are integrals of the
flow of Z, that Fk,y is decreasing along the flow of Z and that since pk = y is
fixed, if maxj |pj | ⩾ M , for M large enough with respect(17) to y, the quantity∑

j χ(|pj |)|pj − pj−1|2 is bounded from below by some constant mk > 0 (note that
mk = O(1/k), but we don’t care). Thus outside the region {maxj |pj | ⩽M}, Z is a
pseudo-gradient for Fk,y, and since the flow is complete (it is bounded by a linear
quantity), it satisfies the following properties:

(1) Setting ψt(q, p) = (Q,P ) we have p = P .
(2) For (q, p) /∈ {(q, p) | maxj |pj | ⩽M} we have Fk,y(ψ

t(q, p)) ⩽ Fk,y(q, p)−mkt.

(17)This is where the proof would fail if we did not fix y, and wanted to prove the incorrect
statement 1

k
γ(φk) → 0.
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As a result, if (q, p) ∈ F c
k,y we have

ψ(c+4K)/mk(q, p) ∈
(
{maxj |pj | ⩽M} ∪ F−4K

k,y

)⋂
F c
k,y

(see Figures 2 and 3).
We thus obtained a cycle C̃1 = ψ(c+4K)/mk(C) satisfying (i). We now deform C̃1

to C̃ as follows. Since ∥Fk,y −Bk∥ ⩽ K we have −K ⩽ c ⩽ K, and the inclusions

F−4K
k,y ⊂ B−3K

k ⊂ F−2K
k,y ⊂ B−K

k .

Thus

C̃1 ∈ Hd(F
+∞
k,y , F−∞

k,y ) = Hd(B
+∞
k , B−∞

k ) and B−∞
k ≃ B−K

k ,

[C̃1] = [A× {y} × E−
k ] in Hd(B

+∞
k , B−∞

k )and

for some cycle A representing the class a.
This means there is a cycle D such that ∂D = C̃1 − (A× {y} × E−

k ), so

∂(D ∩B−3K
k ) = C̃1 ∩B−3K

k −
(
(A× {y} × E−

k ) ∩B−3K
k

)
+D ∩ {Bk = −3K}.

Thus in B−3K
k we may replace C̃1 by the homologous cycle A×{y}×E−

k ∩B−3K
k −D′,

where D′ ⊂ {Bk = −3K}. But then D′ ∩ F−4K
k,y = ∅ so

((A× {y} × E−
k ) ∩B−3K

k ) ∪D′) ∩ F−4K
k,y = (A× {y} × E−

k ) ∩B−3K
k ∩ F−4K

k,y .

Then the cycle

C̃ = (C̃1 ∩ {Bk ⩾ −3K}) ∪D′ ∪ ((A× {y} × E−
k ) ∩B−3K

k )

is homologous to C̃1.

C̃1 A× {y} × E−
k

B−3K
k

D

Figure 2. On the left: The
cycles C̃1, A × {y} × E−

k

and bounding cycle D.

(C̃1) A× {y} × E−
k

B−3K
kD′ ⊂ ∂D

Figure 3. The cycle C̃.
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Now, since

sup{Fk,y(q, p) | (q, p) ∈ D′ ∪ ((A× {y} × E−
k ) ∩B−3K

k )}
⩽ sup{Fk,y(q, p) | Bk(q, p) ⩽ −3K} ⩽ −2K,

we may conclude that sup{Fk,y(q, p) | (q, p) ∈ C̃} is bounded by the maximum of
{sup{Fk,y(q, p) | (q, p) ∈ C̃1} and

sup{Fk,y(q, p) | (q, p) ∈ D′ ∪ (A× {y} × E−
k ) ∩B−3K

k }},

that is, by max{c,−2K} = c. Finally C̃ satisfies both (i) and (ii). □

Now that we have a cycle in “standard position” we are going to construct a
representative of [C] · v. Remember that v is represented by s 7→ s · ν for ν ∈ Zn.
We set

τsj (q1, . . . , qk, p1, . . . , pk) = (q1, . . . , qj−1, qj + sν, qj+1, . . . , qk, p1, . . . , pk)

and τ (s1,...,sk) = τskk ◦ · · · ◦ τs−1
1 and τs = τ (s,s,...,s).

Then C ′
1 =

⋃
s∈[0,1] τ

s(C̃) is a cycle representing u · v × {y} × E−
k . More generally

for any continuous path σ : [0, 1] → [0, 1]k, such that σ(0) = (0, . . . , 0) and σ(1) =

(1, . . . , 1) we have, since all such paths are homotopic, that C ′ =
⋃

s∈[0,1] τ
σ(s)(C̃) is

homologous to C ′
1.

Moreover, define the paths

σk(s) = (1/k, . . . , 1/k, s− j/k, 0, 0, . . . , 0) for s ∈ [j/k, (j + 1)/k],

where there are j components equal to 1/k. Thus σk joins (0, . . . , 0) to (1/k, . . . , 1/k).
Now set

σ(s) = (ℓ/k, . . . , ℓ/k) + σk(k · s− ℓ)

for s ∈ [ℓ/k, (ℓ+ 1)/k] for 0 ⩽ ℓ ⩽ k − 1. Then σ connects (0, . . . , 0) to (1, . . . , 1).

(0, 0, 0)

(1/3, 1/3, 0)

(1/3, 1/3, 1/3)

(1/3, 0, 0)

Figure 4. The path σ3 : [0, 1] → [0, 1]3.

Now we claim Fk,y(τ
1/k(q, p)) = Fk,y(q, p). This follows clearly from the fact that

qj 7→ S(qj , pj) is Zn-periodic and the formula

Fk,y(q, p) =
1

k

k∑
j=1

S(k · qj , pj) +Bk(q, p),
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where

Bk(q, p) =

k−1∑
j=1

⟨pj , qj − qj+1⟩+ ⟨pk, qk − q1⟩.

Since
(1) σ sends [0, 1] in [0, 1]k with σ(0) = (0, . . . , 0) and σ(1) = (1, . . . , 1).
(2) σ(ℓ/k) = (ℓ/k, . . . , ℓ/k)

and τ ℓ/k(C̃) still satisfies properties (i) and (ii) from Lemma 6.5, it is enough to prove,
using Fk,y ◦ τ1/k = Fk,y, that for any such C̃, we have⋃

s∈[0,1/k]

τσ(s)(C̃) =
⋃

s∈[0,1]

τσk(s)(C̃) ⊂ F c′

k,y

with c′ ⩽ c+O(1/k).

Lemma 6.6. — We have

Fk,y(τ
s
j (q, p)) = Fk,y(q, p) +

1

k
(S(kqj + ksν, pj)− S(kqj , pj)) + s⟨pj − pj−1, ν⟩,(1)

Fk,y(τ
1/k
j−1 ◦ · · · ◦ τ

1/k
1 (q, p)) = Fk,y(q, p) +

1

k
⟨pj−1 − p1, ν⟩,(2)

Fk,y(τ
s
j ◦ τ1/kj−1 ◦ · · · ◦ τ

1/k
1 (q, p))⩽Fk,y(q, p) +

K

k
+
|ν|
k
(|pj − pj−1|+|pj−1 − p1|).(3)

Proof. — Assertion (1) is checked immediately. Then (2) follows at once from the fact
that S(qj + ν, pj) = S(qj , pj). Finally (3) follows immediately from (2) and (1). □

Now for (q, p) ∈ C̃ satisfying properties (i) and (ii) of Lemma 6.5, since τk(s) is of
the form τ tj ◦ τ

1/k
j−1 ◦ · · · ◦ τ

1/k
1 for 0 ⩽ t ⩽ 1/k, we have:

(1) If (q, p) ∈ {maxj |pj | ⩽M} we have, using Lemma 6.6(3),

Fk,y(τ
σk(s)(q, p)) ⩽ Fk,y(q, p) +

K + 4M |ν|
k

⩽ c+O(1/k).

(2) If (q, p) ∈ F−4K
k,y and (q, p) ∈ Tn × {y} ×E−

k we have pj = −(qj − qj−1) hence
Fk,y(q, p) = −

∑
j p

2
j +

1
k

∑
j S(kqj , pj) thus using (3) of Lemma 6.6 we have

Fk,y(τ
σk(s)
j (q, p)) ⩽ −

∑
j

p2j +
1

k

∑
j

S(kqj , pj) +
|ν|
k
(|pj − pj−1|+ |pj−1 − p1|)

⩽ −
∑
j

p2j +
|ν|
k
(|pj |+ 2|pj−1|+ |p1|) +K.

In the path σk(s) only the k-th variable varies from 0 to 1/k. But since −3K ⩾
Fk,y(q, p) ⩾ Bk(q, p)−K we get Bk(q, p) ⩽ −2K so

∑
j p

2
j ⩾ 2K and using standard

inequalities∑
j

p2j −
|ν|
k
(|pj |+ 2|pj−1|+ |p1|)−K ⩾M −

√
6M |ν|
k

−K ⩾ K

for M large enough. And this implies

Fk,y(τ
σk(s)(q, p)) ⩽ −K +O(1/k) ⩽ c+O(1/k).
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We thus proved that for any (q, p) ∈ C̃ and s ∈ [0, 1], we have

Fk,y(τ
σk(s)(q, p)) ⩽ c′ = c+O(1/k).

Since the map from S1 × C̃ → F c′

k,y given by (s, q, p) 7→ τσk(s) represents [C̃] · v, this
concludes our proof and the proof of Proposition 4.16. □

Remarks 6.7
(1) The above method of proof, in the case of variational problems for closed

geodesics, is related to the “passing the obstacles one at the time” that can be found
in the paper by [Ban80] page 87, as well as to Gromov’s book [Gro99], Sections 2.26
and 2.27. I wish to thank V. Bangert for the reference.

(2) Since φk = ρ−1
k φkρk, and we proved γ(φk(Ly) − Ly) converges to zero, so for

y = 0, we get 1
kγ(φ

k(0Tn)) converges to zero. This is much weaker than Conjecture 1.

7. Proof of Theorem 3.1

We are now going to prove Theorem 3.1 in the autonomous case. The general case
could be proved along the same lines, but we shall show in Section 11.2, how to deduce
it formally from the time-independent case.

Thus far we showed that some subsequence of (φt
k)k⩾1, γ-converges to φt

∞ and
in Proposition 4.12 that this implies the convergence of the sequence itself to φt

∞.
Recall that according to Corollary 4.17 the γ-convergence of φt

k to φt
∞ is uniform in t

on compact sets. In other words the sequence of functions t 7→ γ(φt
kφ

−t) converges
uniformly on compact sets to 0 and thus the sequence H(kq, p) converges to H =

A(H) for the γ-metric (recall that H is continuous, so belongs to Ĥamc(T
∗Tn), the

γ-completion of C∞
c ([0, 1]× T ∗Tn)). Clearly H(q, p) = h∞(p) defined in the previous

subsection (Proposition 4.14), satisfies the first statement of Theorem 3.1.

End of the proof of Theorem 3.1 (for time independent Hamiltonians)

Here Assertion (2) follows from the fact that φ1
∞ determines H (see Corollary A.2),

and that
φ1
∞ = lim

k→∞
ρ−1
k φkρk,

which only depends on φ = φ1.
We finally prove Assertion (3). Given two compactly supported Hamiltoni-

ans H1, H2, with φ1, φ2 the time-one maps of their flows, setting hk,i(p) =

c(µx ⊗ 1(y), ρ−1
k φk

i ρk),

|hk,1(y)− hk,2(y)| ⩽ |c(µx ⊗ 1(y), ρ−1
k φk

1ρk)− c(µx ⊗ 1(y), ρ−1
k φk

2ρk)|

⩽ γ
(
(ρ−1

k φk
1ρk)

−1 ◦ ρ−1
k φk

2ρk
)
⩽ γ(ρ−1

k φ−k
1 φk

2ρk) ⩽
1

k
γ(φ−k

1 φk
2) ⩽ γ(φ−1

1 φ2),

where the last inequality follows from Equation (4.1) in Lemma 4.13. Therefore, the
map A : Ham(T ∗Tn) → C0(Rn,R) is 1-Lipschitz for the norms γ and C0 respectively.
It thus extends to a Lipschitz map from Ĥam(T ∗Tn) to C0(Rn,R).

J.É.P. — M., 2023, tome 10



Symplectic Homogenization 105

Since if H only depends on p, we have H = H, we get that A is a projector. Finally,
if C is the supremum of

∣∣∂H
∂p (q, p)

∣∣ on T ∗Tn, the functions hk defined in Lemma 4.11
are C-Lipschitz, hence their uniform limit is also C-Lipschitz. This settles the last
claim of the theorem and concludes our proof of Theorem 3.1 for the time-independent
case. □

8. Proof of Theorem 3.2

We assume again H to be time-independent. In order to prove (1) of Theorem 3.2,
we need to prove that if H1 ⩽ H2 then h∞,1 ⩽ h∞,2. This would follow immediately
from the fact that we may choose S1, S2 such that(18) S1(q, p) ⩽ S2(q, p) hence,
Fk,1 ⩽ Fk,2 and therefore

hk,1(y) = c(µ⊗ 1(y), Fk,1) ⩽ c(µ⊗ 1(y), Fk,2) = hk,2(y).

As a result, h∞,1(y) ⩽ h∞,2(y).
However there is the following more general and simpler proof, assuming only(19)

that H1 ⪯ H2 so that φ1
1 ⪯ φ1

2 and

ρ−1
k φ1

1ρk ⪯ ρ−1
k φ1

2ρk,

then by going to the limit, φ1 ⪯ φ2. Now φ1 and φ2 are the flows of H1 and H2

which depend only on p. Therefore, according to Corollary A.2, they commute, and
our assertion follows from the

Lemma 8.1. — If φ1, the time-one flow of the compactly supported integrable Hamil-
tonian H(p), satisfies Id ⪯ φ1 then H is non-negative.

Proof. — Recall that Id ⪯ φ means c−(φ) = 0. In Proposition A.1, we prove that
c−(φ

1) = infp∈Rn H(p). Therefore, if c−(φ1) vanishes, H must be non-negative. □

To prove (2), we have to compare A(H ◦ψ) to A(H). Note that the flow associated
to H ◦ ψ is ψ−1 ◦ φt ◦ ψ. Thus A(H ◦ ψ) is associated to the γ-limit of

ρ−1
k ψ−1φkψρk = (ρ−1

k ψ−1ρk)(ρ
−1
k φkρk)(ρ

−1
k ψρk).

But limk→∞ γ(ρ−1
k ψ−1ρk) = 0, that is, ρ−1

k ◦ ψ−1 ◦ ρk γ-converges to Id. Hence

lim
k→∞

ρ−1
k ψ−1φkψρk = lim

k→∞
ρ−1
k φkρ−1

k .

For Property (3), we start with the case c > 0. First if c is a positive integer,
limk→∞ ρ−1

k φckρk = limk→∞(ρ−1
k φkρk)

c and it thus γ-converges to φc, that is, the
flow of cH. If c is positive and of the form 1/q

lim
k→∞

ρ−1
k φk/qρk = lim

ℓ→∞
ρ−1
qℓ φ

ℓρqℓ = ρ−1
q

(
lim
ℓ→∞

ρ−1
ℓ φℓρℓ

)
ρq = ρ−1

q φρq,

(18)This is automatically the case if Sj is a finite dimensional reduction of the action functional,
as described in [Cha84] or [LS85].

(19)Remember that φ1 ⪯ φ2 means c−(φ2φ
−1
1 ) = 0, see Remark 3.3.
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and this is the flow of 1
qH. Finally, we have to compare limk→∞ ρ−1

k φkρk and
limk→∞ ρ−1

k φ−kρk. Clearly, since the limits exist, they must be inverses of each other,
that is, they are given by φ∞ and (φ∞)−1. Now it follows from [Hum08b] or (since
we are in the situation of Hamiltonians depending on p) from Corollary A.2 that two
integrable autonomous continuous compactly supported Hamiltonians H,K in Ĥamc,
such that their flows satisfy φψ = Id in Ĥamc(T

∗Tn), must satisfy H = −K.
We now prove Property (4). We limit ourselves to the case where U is closed and

bounded. Let us consider a decreasing sequence of non-negative smooth functions
(Hν)ν⩾1 such that

⋂
ν supp(Hν) = U , and limν Hν = χU , where χU is the character-

istic function of U , the limit being here a pointwise limit. Then Hν is also a decreasing
sequence of non-negative continuous functions, and therefore has a limit H∞, and we
denote by A(U) the support of H∞. Since for any other sequence (Kν)ν⩾1 decreasing
to χU , we may find, for each ν, a µ such that Kµ ⩽ Hν , we have K∞ ⩽ H∞. By sym-
metry, we get K∞ = H∞ hence the support of K∞ coincides with the support of H∞.
This support defines A(U). For U bounded but not closed we may set A(U) = A(U).
In the general case, we set A(U) = A(U) = limV bounded in U A(V ). Assume now L is a
Lagrangian submanifold Hamiltonian isotopic to Ly0 . By the Hamiltonian invariance
we just proved, A(L) = A(Ly0

). Now it is easy to show that

A(Ly0
) = {y0}.

Since shape(U) contains p if and only if U contains a Lagrangian L, Hamiltonian
isotopic to Lp, we get that for p ∈ shape(U), we must have p ∈ A(U). This concludes
the proof of (4).

As for property (5), it is an easy consequence of the above. Indeed, assume first
H(L) ⩾ h where L is Hamiltonian isotopic to Lp0 . Let κp0 be a function on (R)n

equal to 1 near p0, very negative in a neighborhood of the p-projection of the support
of H, and compactly supported. Then if ψ(Lp0

) = L, we have

H ⩾ h · (κp0 ◦ ψ),

hence
H ⩾ h · (κp0

◦ ψ) = h · κp0
= h · κp0

.

As a result,
H(p0) ⩾ hκp0

(p0) = h.

Changing H to −H, and using (3) we get the second statement.
Property (6) follows from the fact that c±(ρ−1

k φkρk) =
1
k c±(φ

k), the fact that c±
are continuous for the γ-topology and Proposition A.1.

For (7), since A is only defined for compactly supported functions, this means that
for any sequence (Hn)n⩾1 of compactly supported functions such that limnHn = 1,
where the limit is uniform on any compact set, we have limn A(Hn) = 1

Let us define K to be a smooth non-negative compact supported function equal
to 1 on [−1, 1] and set KR(p) = K(|p|/R).
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Let (Hn)n⩾1 be a sequence of compactly supported functions converging uni-
formly on compact sets to 1, with the extra requirement that there exist sequences
(Rn)n⩾1, (R

′
n)n⩾1, (εn)n⩾1 such that limnRn = limnR

′
n = +∞, limn εn = 0 and

KRn
− εnKR′

n
⩽ Hn ⩽ KRn

+ εnKR′
n
.

Since KR only depends on p we have that KR,KR′ commute and A(KR) = KR. This
implies that

lim
n
(KRn

− εnKR′
n
) ⩽ lim

n
A(Hn) ⩽ lim

n
(KRn

− εnKR′
n
).

Since limnKRn
= 1 this implies that limn A(Hn) = 1.

Finally, to show that ζ : H 7→
∫
A(H)dµ(p) is a quasi-state, it is enough to deal

with the case where µ is a Dirac mass at p. We must then prove
(1) (Monotonicity) H1 ⩽ H2 implies H1 ⩽ H2. This follows from Theorem 3.21.
(2) (Quasi-linearity) If H,K Poisson commute, then (H +K)(p) = H(p) +K(p).

this follows from the fact that if H,K commute, with respective flows φt, ψt, then
H +K has flow ψtφt and then A(H +K) corresponds to

lim
k→∞

ρ−1
k φktψktρ−1

k = lim
k→∞

(ρ−1
k φktρk) lim

k→∞
(ρ−1

k ψktρk) = φt ◦ ψt
,

and this corresponds to A(H)(p) +A(K)(p) according to Corollary A.2.
This concludes the proof of Theorem 3.2 in the time independent case.

9. Proof of Theorem 3.5, the partial homogenization case

We consider the case of the sequence defined by Hk(x, y, q, p) = H(kx, y, q, p) and
prove that it γ-converges to H(y, q, p) obtained by performing the above homogeniza-
tion, on the variables (x, y) and freezing the (q, p) variables.

The flow Ψt
k of H(kx, y, q, p) is given by
ẋ =

∂

∂y
H(k · x, y, q, p), ẏ = −k ∂

∂x
H(k · x, y, q, p),

q̇ =
∂

∂p
H(k · x, y, q, p), ṗ = − ∂

∂q
H(k · x, y, q, p).

Set

xk(t) = k · x(t/k), yk(t) = y(t/k), qk(t) = q(t/k), pk(t) = p(t/k).

We shall consider the flow φt
k associated to the Hamiltonian equations:

ẋk =
∂

∂y
H(xk, yk, qk, pk), ẏk = − ∂

∂x
H(xk, yk, qk, pk),

q̇k =
1

k

∂

∂p
H(xk, yk, qk, pk), ṗk = −1

k

∂

∂q
H(xk, yk, qk, pk).

Then the flow Ψt
k is given by ρ−1

k φkt
k ρk, where

ρk(x, y, q, p) = (k · x, y, q, p).
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Let Sk(x, y, q, p, ξ) be a generating function for the flow above. The candidate for
the homogenization is again given by limk→∞Hk, where

Hk(y, q, p) = c(µx ⊗ 1(y)⊗ 1(q, p), Sk)

is obtained by freezing the (q, p) variables and performing homogenization on the
(x, y) variables as in the previous section. The precompactness of the sequence is
proved as in Proposition 4.10, and the same holds for the uniqueness of the limit as
in Proposition 4.12. Let us reformulate the problem by considering the symplectic
form σk on T ∗Tm+n given by σk = dy∧dx+kdp∧dq. For a Hamiltonian H(x, y, q, p)

its flow for σk is defined by the equations
ẋ =

∂H

∂y
(x, y, q, p), ẏ = −∂H

∂x
(x, y, q, p),

q̇ =
1

k

∂H

∂P
(x, y, q, p), ṗ =

−1

k

∂H

∂q
(x, y, q, p).

Note that φt
k is the flow associated to H for the symplectic form σk. We thus have

Lemma 9.1. — The flow Ψt
k of Hk(x, y, q, p) = H(kx, y, q, p) is given by

Ψt
k = ρ−1

k φt
kρk,

where ρk(x, y, q, p) = (kx, y, q, p) and φt
k is the flow of H(x, y, q, p) for the symplectic

form
σk = dy ∧ dx+ kdp ∧ dq.

Now to the above Hamiltonian map C1-close to the identity, we may associate the
function S(x, Y, q, P ) on T ∗(Tn+m) given by

X − x =
∂S

∂Y
(x, Y, q, P ), y − Y =

∂S

∂x
(x, Y, q, P ),

Q− q =
1

k

∂S

∂P
(x, Y, q, P ), p− P =

1

k

∂S

∂q
(x, Y, q, P ).

Indeed this amounts to the identification of T ∗(Tm+n)× T ∗(Tm+n) endowed with
the symplectic form σk ⊖ σk (i.e., π1, π2 denoting the projections on the first and
second T ∗Tn factor, σk ⊖ σk is defined as (π∗

1σk − π∗
2σk), with T ∗(Tn+m × Rn+m)

endowed with the standard form by

(x, y, q, p,X, Y,Q, P ) 7−→ (x, Y, q, P, y − Y,X − x, k(p− P ), k(Q− q))

Note that S depends on k, even though it is not apparent in the notation. Two such
transformations are composed by using the following formula: If

S1(x1, Y1, q1, P1), S2(x2, Y2, q2, P2)

are the generating functions for φ1, φ2, we will have the generating function of φ1 ◦φ2

given by the next formula similar to that of Lemma 4.3

S(x, Y, q, P ;x2, Y1, q2, P1) = S1(x, Y1, q, P1) + S2(x2, Y, q2, P )

− ⟨x− x2, Y1 − Y ⟩ − k⟨P1 − P, q − q2⟩.
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Indeed, the constraining equations are

∂S

∂x2
= 0 ⇐⇒ ∂S2

∂x
(x2, Y, q2, P )− Y + Y1 = 0,

∂S

∂Y1
= 0 ⇐⇒ ∂S1

∂Y
(x, Y1, q, P1) +−x+ x2 = 0,

∂S

∂q2
= 0 ⇐⇒ ∂S2

∂q
(x2, Y, q2, P ) + k(P − P1) = 0,

∂S

∂P1
= 0 ⇐⇒ ∂S1

∂P
(x, Y1, q, P1) + k(q − q2) = 0,

and the map φ is given by(
x, Y +

∂S

∂x
(x, Y, q, P ;x2, Y1, q2, P1), q, P +

1

k

∂S

∂q
(x, Y, q;P, x2, Y1, q2, P1)

)
7−→

(
x+

∂S

∂Y
(x, Y, q, P ;x2, Y1, q2, P1), Y, q +

1

k

∂S

∂P
(x, Y, q, P ;x2, Y1, q2, P1), P

)
,

that is,(
x, Y +

∂S1

∂x
(x, Y1, q, P1), q, P +

1

k

∂S1

∂q
(x, Y1, q, P1)

)
7−→

(
x+

∂S2

∂Y
(x2, Y, q2, P ), Y, q +

1

k

∂S2

∂P
(x2, Y, q2, P

)
.

Now the map φ1 sends(
x, Y1 +

∂S1

∂x
(x, Y1, q, P1), q, P1 +

1

k

∂S1

∂q
(x, Y1, q, P1)

)
7−→

(
x+

∂S1

∂Y
(x, Y1, q, P1), Y1, q +

1

k

∂S1

∂P
(x, Y1, q, P1), P1

)
and the map φ2 sends(
x2, Y +

∂S2

∂x
(x2, Y, q2, P ), q, P +

1

k

∂S1

∂q
(x2, Y, q2, P )

)
7−→

(
x2 +

∂S2

∂Y
(x2, Y, q2, P ), Y, q2 +

1

k

∂S2

∂P
(x2, Y, q2, P ), P

)
.

Since 

Y = Y1 +
∂S2

∂x
(x2, Y, q2, P ),

x = x2 +
∂S2

∂Y
(x2, Y, q2, P ),

P = P1 +
1

k

∂S2

∂q
(x2, Y, q2, P ),

q = q2 +
1

k

∂S2

∂P
(x2, Y, q2, P ),

we may infer
φ = φ1 ◦ φ2.
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9.1. Resolution in the (q2, P1) variables. — For j = 1, 2, let the functions
∂Sj

∂P
(x2, Y, q2, P ),

∂Sj

∂q
(x2, Y, q2, P )

be C1 bounded, and assume k is large. We may then solve
∂S2

∂q
(x2, Y, q2, P ) + k(P − P1) = 0,

∂S1

∂P
(x, Y1, q, P1) + k(q − q2) = 0,

in
(q2, P1) =

(
q2(x, Y, q, P ;x2, Y1), P1(x, Y, q, P ;x2, Y1)

)
.

This requires the following matrix to be invertible:I −
1

k

∂2S2

∂q∂P
(x2, Y, q2, P )

1

k

∂2S2

∂q2
(x2, Y, q2, P )

1

k

∂2S1

∂P 2
(x2, Y, q2, P ) I − 1

k

∂2S1

∂P∂q
(x, Y1, q, P1)

 .

If we moreover assume that the norm of the inverse matrix is bounded, we get
that the map is globally invertible: this is a theorem of Hadamard (see [Had06] and
[DMGZ94] for a modern exposition in English).

We thus get, under this assumption, a new generating function

Ŝ(x, Y, q, P ;x2, Y1) = S(x, Y, q, P ;x2, Y1, q2(x, Y, q, P ;x2, Y1), P1(x, Y, q, P ;x2, Y1)).

Note that

∥q2(x, Y, q, P ;x2, Y1)− q∥C1 = O(1/k), ∥P1(x, Y, q, P ;x2, Y1)− P∥C1 = O(1/k),

hence
∥Ŝ(x, Y, q, P ;x2, Y1)− S(x, Y, q, P ;x2, Y1, q, P )∥C1 = O(1/k),

where

S(x, Y, q, P ;x2, Y1, q, P ) = S1(x, Y1, q, P ) + S2(x2, Y, q, P )− ⟨x− x2, Y1 − Y ⟩.

Note that the left-hand side of all these equations depend on k, since S itself depends
on k.

9.2. Generating functions for compositions. — Suppose now that S1 is a function
of (x1, Y1, q1, P1, ξ1), S2 of (x2, Y2, q2, P2, ξ2) which are both GFQI. Then

S(x, Y, q, P ;x2, Y1, q2, P1, ξ1, ξ2) = S1(x, Y1, q, P1, ξ1) + S2(x2, Y, q2, P, ξ2)

− ⟨x− x2, Y1 − Y ⟩ − k⟨P1 − P, q − q2⟩.

The conditions defining φ = φ1 ◦ φ2 are then given by
∂S2

∂q
(x2, Y, q2, P, ξ2) + k(P − P1) = 0,

∂S1

∂P
(x, Y1, q, P1, ξ1) + k(q − q2) = 0,
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and for k large enough we may write, as in the previous section

(q2, P1) = (q2(x, Y, q, P ;x2, Y1, ξ1, ξ2), P1(x, Y, q, P ;x2, Y1, ξ1, ξ2)).

We then set

Ŝ(x, Y, q, P ;x2, Y1, ξ1, ξ2) = S1(x, Y1, q, P1(x, Y, q, P ;x2, Y1, ξ1, ξ2), ξ1)

+ S2(x2, Y, q2(x, Y, q, P ;x2, Y1, ξ1, ξ2), P, ξ2)− ⟨x− x2, Y1 − Y ⟩ − k⟨P1 − P, q − q2⟩.

Again, we have, as above

∥Ŝ(x, Y, q, P ;x2, Y1, ξ1, ξ2)− S(x, Y, q, P ;x2, Y1, q, P, ξ1, ξ2)∥C1 = O(1/k).

9.3. From φt
k to φt

kℓ. — Let φt
k be the flow associated to H(x, y, q, p) for the sym-

plectic form σk. According to Lemma 9.1, the flow Ψt
k associated to H(kx, y, q, p)

for σ1 is given by
Ψt

k = ρ−1
k φkt

k ρk

Let Fk(x, Y, q, P, ξ) be a generating function associated to the time-one flow of
H(x, y, q, p), for the symplectic form σk, i.e., φ1

k. We then have a generating function
for φkℓ given by

Fk,ℓ(x, Y, q, P ;x, Y , q, P , ξ)

=

ℓ∑
j=1

Fk(xj , Yj , qj , Pj , ξj)−
ℓ∑

j=1

⟨xj − xj+1, Yj − Yj+1⟩ − k⟨qj − qj+1, Pj − Pj+1⟩.

Here

x1 = x, q1 = q, Pℓ = P, Yℓ = Y,

x = (x2, . . . , xℓ), q = (q2, . . . , qℓ), P = (P1, . . . , Pℓ−1),

Y = (Y1, . . . , Yℓ−1), ξ = (ξ1, . . . , ξℓ).

The condition for solving the constraints ∂F/∂q = ∂F/∂P = 0 in (q, P ) is that for k
large enough the inverse of the following matrix is boundedI −

1

k

∂2Fk

∂q∂P
(x, Y, q, P )

1

k

∂2Fk

∂q2
(x, Y, q, P )

1

k

∂2Fk

∂P
2 (x, Y, q, P ) I − 1

k

∂2Fk

∂P∂q
(x, Y , q, P )

 .

This amounts to the inequality

(⋆) 1

k

∥∥∥∥∥∥∥∥

∂2Fk

∂q∂P
(x, Y, q, P )

∂2Fk

∂q2
(x, Y, q, P )

∂2Fk

∂P 2
(x, Y, q, P )

∂2Fk

∂P∂q
(x, Y, q, P )


∥∥∥∥∥∥∥∥ ⩽ ε
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since a matrix of the type

I +A C 0 . . . . . . 0

B I +A C 0 . . . 0

0 B I +A C . . . 0
...

. . . . . . . . .
0 . . . 0 B I +A C

0 . . . 0 0 B I +A


is invertible with bounded inverse if ∥A∥, ∥B∥, ∥C∥ are small enough.(20) Indeed, the
∥∥∞ norm of the matrix 

A C 0 . . . . . . 0

B A C 0 . . . 0

0 B A C . . . 0
...

. . . . . . . . .
0 . . . 0 B A C

0 . . . 0 0 B A


is bounded by a constant times max(∥A∥, ∥B∥, ∥C∥), with a constant independent
from the number of blocks. Under the above assumption (⋆), we have that

∥Fk,ℓ(x, Y, q, P ;x, Y , q, P , ξ)− F̂k,ℓ(x, Y, q, P ;x, Y , ξ)∥C1 ⩽ Cℓ
1

k
,

where

F̂k,ℓ(x, Y, q, P ;x, Y , ξ) =

ℓ∑
j=1

Fk(xj , Yj , q, P, ξj)−
ℓ∑

j=1

⟨xj − xj+1, Yj − Yj+1⟩

Now let us for typographical convenience revert to (x, y, q, p) notation instead of
(x, Y, q, P ). Let the generating function associated to Ψ1

k be given by Fk(x, y, q, p; ξ).
We thus have according to Proposition 4.15 for each fixed value of (q, p), a function

hk(y, q, p) and a cycle Γ(y, q, p) with the proper homology class such that

Fk(y, q, p; Γ(y, q, p)) ⩽ hk(q, y, p) + εk,

where limk→∞ hk(y, q, p) = h∞(y, q, p). Moreover Γ(y, q, p) may be allowed to depend
continuously on (y, q, p) provided we allow the weaker inequality

Fk(y, q, p; Γj(y, q, p)) ⩽ hk(q, y, p) + aχδ
j(q, p),

where now χδ
j is supported in W δ

j , a δ-neighborhood of a grid in the (q, p) variables.
The procedure here is the same as in the proof of Proposition 4.15. Note that we used

(20)It holds independently from the number of blocks: this follows from Gershgorin’s theorem
(see [Ger31, Var04]), stating that if R bounds the sum on any line of the absolute value of the off
diagonal terms, then the eigenvalues of the matrix are at distance less than R from the diagonal
terms. The bound on the inverse follows immediately since in our case ℓ is fixed and k can be taken
arbitrarily large.
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Proposition 4.15, in order to get rid of the y dependence of the χδ
j . Then

F̂k,ℓ(x, y, q, p;x, y, ξ) =
1

ℓ

ℓ∑
j=1

Fk(xj , yj , q, p, ξj)− ⟨yj − yj+1, xj − xj+1⟩

will satisfy on
Γ̂k,ℓ = {(xj , yj , q, p, ξj) | (xj , ξj) ∈ Γj(yj , q, p)}

the inequality

F̂k,ℓ(x, y, q, p;x, y, ξ) ⩽
1

ℓ

ℓ∑
j=1

hk(y, q, p) +
a

ℓ

ℓ∑
j=1

χj(q, p)− ⟨xj − xj+1, yj − yj+1⟩.

As before we choose the W δ
j so that the intersection of 2m+1 distinct W δ

j = supp(χj)

is empty. Thus F̂k,ℓ is bounded by the generating function of hk(y, q, p) up to 2ma/ℓ.
We therefore get for all α, that

c(µ,Ψ1
kℓα) ⩽ c(µ,Ψ

1

kα) +
2ma

ℓ
,

hence limk c(µ,Ψ
1
k,ℓα) ⩽ c(µ,Ψ

1

∞α). We thus proved the analogue of Proposition 4.15
in the partial homogenization case.

Finally, we may conclude the proof of Theorem 3.5 as we did in the standard case
for Theorem 3.1, noting that the proof of Proposition 6.4 extends to the situation
where we have parameters (q, p) without any notable modification.

10. Proof of Proposition 3.7

We shall limit ourselves to the case where homogenization is done on all variables.
According to Proposition B.1, if u1, u2 are defined as c(1(q), L1) and c(1(q), L2) respec-
tively, we have

|c(1(q), L1)− c(1(q), L2)| ⩽ γ(L1, L2).

Now if L1 = φ1(Λ) and L2 = φ2(Λ), we have

γ(L1, L2) ⩽ γ(φ1φ
−1
2 ).

In our case, Lk = (Id×φt
k)∆, L = (Id×φt)∆, and therefore we get

|uk(t, q)− u(t, q)| ⩽ γ(φt
kφ

−t).

Now using the estimate (4.1) in the proof of Proposition 4.12, we see that

γ(φmt
k φ−mt) ⩽ mγ(φt

kφ
−t),

and taking the supremum over t in [0, 1], we get, since the flow is autonomous,

sup
t∈[0,m]

γ(φt
kφ

−t) ⩽ m sup
t∈[0,1]

γ(φt
kφ

−t),

thus implying
sup

t∈[0,m]

|uk − u| ⩽ γ(Lk, L) ⩽ mεk,

where εk = supt∈[0,1] γ(φ
t
kφ

−t). This concludes the proof of Proposition 3.7.
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11. Non compact-supported Hamiltonians and the time dependent case

11.1. The coercive case. — Assume first that the autonomous Hamiltonian H(q, p),
defined on T ∗Tn, is not compactly supported, but that H is coercive, that is,

lim
|p|→∞

H(q, p) = +∞.

Then let χA : R → R be a truncation function, that is, a smooth function such that
(1) 0 ⩽ χA ⩽ 1,
(2) χA is supported in [−2A, 2A],
(3) χA = 1 on [−A,A].
We then consider χA(|p|)H(q, p) = K(q, p), and denote by φt the flow of H, and

by ψt the flow of K. Since φt preserves H, we have that if a(λ), b(λ) are defined by
a(λ) = inf{|p| | ∀q, H(q, p) ⩾ λ} and b(λ) = sup{|p| | ∀q, H(q, p) ⩽ λ}, so that

W a(λ) = {(q, p) | |p| ⩽ a(λ)} ⊂ {(q, p) | H(q, p) ⩽ λ} ⊂ {(q, p) | |p| ⩽ b(λ)} =W b(λ),

then φt sends W a(λ) into W b(λ) thus, for A ⩾ b(λ), we have ψt = φt on W a(λ).
Since ρk preserves W a(λ) and W b(λ), the flow φt

k = ρ−1
k φktρk sends also W a(λ) into

W b(λ) and moreover coincides with ψt
k on W a(λ).

We want to conclude that the homogenizations φt = limk φ
t
k and ψ

t
= limk ψ

t
k

coincide on W a(λ). This is given by the following result based on the ideas of [Hum08b,
§4.4]. First we shall say that ψ t

= φ t on U if and only if (ψ t
)−1φ t has support in

the complement of U (in the sense of [Hum08b, §4.4] or [Hum08a, Def. 2.24, p. 51]).

Definition 11.1 ([Hum08b, §4.4] or [Hum08a, Def. 2.24, p. 51])
Let H ∈ Ĥamc(T

∗Tn). We define supp(H) to be the intersection of closed sets F ,
such that there exists a sequence Hn of Hamiltonians supported in F , such that
γ− limnHn = H. One similarly defines supp(φ) for φ ∈ Ĥamc(T

∗M) as the intersec-
tion of the closed sets, F , such that there exists a sequence φn converging to φ such
that supp(φn) ⊂ F .

Lemma 11.2. — Let φt
k, ψ

t
k be two sequences of smooth Hamiltonian flows, with sup-

port contained in a fixed compact set for all k. Let U ⊂ V such that for any t,
φt
k(U) ⊂ V , ψt

k(U) ⊂ V and φt
k = ψt

k on V . Then if γ − limk→∞ φt
k = φ t

∞ and
γ − limk→∞ ψt

k = ψ t
∞ and H∞,K∞ generate φt

∞, ψt
∞, then we may conclude that

H∞ −K∞ is constant on U .

Proof. — Let Hk(t, z),Kk(t, z) be the compactly supported Hamiltonians gener-
ating φt

k, ψ
t
k. For x ∈ V , we have ψt

k(x) = φt
k(x), hence ψt

k and φt
k coincide.

Then
(
(ψt

k)
−1 ◦ φt

k

)
|V = IdV , so the Hamiltonian generating this flow, Lk(t, z) =

(Hk −Kk)(t, ψ
t
k(z)) vanishes on V . Now by assumption Lk γ-converges to a Hamil-

tonian generating (ψt
∞)−1◦φt

∞, thus supp((ψt
∞)−1◦φt

∞) ∩ U = ∅. This flow being
generated by H∞ − K∞ which is continuous, we have according to [Hum08a,
Prop. 2.25, p. 52], that H∞ −K∞ is constant on U . □
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Now if a(λ) ⩽ A ⩽ B, setting HA = H ·χA (resp. HB = HχB), we have HA = HB

(up to constant that can be adjusted) on W a(λ) hence we may set

Proposition & Definition 11.3. — Let H be an autonomous coercive Hamiltonian
on T ∗Tn. Then the limit H = limA→+∞HA is well-defined.

Thus any autonomous coercive Hamiltonian can be homogenized:

Proposition 11.4. — The map A from Ĥamc(T
∗Tn) to C0

c (Rn,R) extends to
a map defined on the set of autonomous coercive Hamiltonians, i.e., such that
lim|p|→+∞H(q, p) = +∞ with values in C0(Rn,R). Moreover if H is convex in p,
then so is H.

Proof. — This follows from Lemma 11.2 applied to the sequence (HN )N⩾1. According
to our truncation argument, the convexity statement needs only to be checked for H
of class C∞ and Tonelli. Then according to Proposition 12.4 below, H coincides with
Mather’s α function and according to [CIPP98, Th. A & Cor. 1], the α function is
given by

H(p) = inf
u∈C1(N,R)

sup
q∈N

H(q, p+ du(q)).

Now we have

H(tp1 + (1− t)p2) = inf
u∈C1(N,R)

sup
q∈N

H(q, tp1 + (1− t)p2 + du(q))

⩽ inf
u1,u2∈C1(N,R)

sup
q∈N

H(q, tp1 + (1− t)p2 + tdu1(q) + (1− t)du2(q))

⩽ t inf
u1∈C1(N,R)

sup
q∈N

H(q, p1 + du1(q)) + (1− t) inf
u2∈C1(N,R)

sup
q∈N

H(q, p2 + du2(q))

⩽ tH(p1) + (1− t)H(p2).

The first inequality is obtained by just setting u = (1− t)u1 + tu2, the second one by
convexity of H. □

11.2. Non-autonomous Hamiltonians. — Consider now a compactly supported 1-pe-
riodic Hamiltonian H(t, q, p) on T ∗Tn and consider the Hamiltonian K(t, τ, q, p) =

τ+H(t, q, p). This new Hamiltonian, defined on T ∗(Tn+1) is not compactly supported,
but, considering the function χA as defined above, the Hamiltonian

KA(t, τ, q, p) = χA(τ +H(t, q, p))(τ +H(t, q, p))

is compactly supported and autonomous. Its flow preserves the subsets

Wλ = {(t, τ, q, p) | −λ ⩽ τ +H(t, q, p) ⩽ λ}.

Then KA can be homogenized, and the same argument as above shows that that
KA = KB for λ ⩽ A ⩽ B on |τ | ⩽ λ − ∥H∥. Moreover, we now prove that K =

limA→+∞KA is of the form τ + H(p) on |τ | ⩽ A: in other words, K(τ, p) − τ is
independent from τ (and denoted by H(p)).
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Proposition 11.5. — Let H(t, q, p) be a Hamiltonian on T ∗Tn, 1-periodic in time and
compactly supported in (q, p). Then limA→+∞KA = K(τ, p) is well-defined and there
exists H(p) such that K(τ, p) = τ +H(p). The function K satisfies the properties of
Theorems 3.1 and 3.2.

Proof. — Being of the form L(t, τ, q, p) = aτ+L0(t, q, p) is equivalent to the commuta-
tion of φs

L and ψs, where ψ is the flow of ∂/∂τ , since {L, t} = ∂L/∂τ . Now by assump-
tion on |τ | ⩽ A − ∥H∥, we have {KA, t} = 1, so setting ρk(t, τ, q, p) = (kt, τ, kq, p),
we may write in this region (note that the region is preserved by ρk)

φs
K
ψs = lim

k→+∞
ρ−1
k φks

K ρkψ
s = lim

k→+∞
ρ−1
k φks

K ψ
ksρk

= lim
k→+∞

ρ−1
k ψksφks

K ρk = lim
k→∞

ψsρ−1
k φks

K ρk = ψsφs
K
.

Thus φs
K

and ψs commute, therefore K(t, τ, q, p) = aτ + H(p) for some constant a.
The following lemma implies a = 1.

Lemma 11.6. — Let K(t, τ, q, p) = τ +H(t, q, p), with flow φs, and let

ψs(t, τ, q, p) = (t, τ + s, q, p).

Then φsψσφ−sψ−σ is generated by

Lσ(s, t, τ, q, p) = K(t, τ, q, p)−K(ψ−σφ−s(t, τ, q, p)) = σ.

Proof. — This is just the translation, using [CV08], of the fact that {K, t} = 1. □

As a result, if we have a sequence Kn = τ+Hn(t, q, p) γ-converging to K∞, we shall
have γ(φs

nψ
σφ−s

n ψ−σ) = σ, hence

γ(φs
∞ψ

σφ−s
∞ ψ−σ) = σ,

and this implies K∞(t, τ, q, p) = τ +H∞(t, q, p). Note that even after truncation, we
have Lσ=σ over a large compact set, and |Lσ|⩽σ, so that γ(φs

∞ψ
σφ−s

∞ ψ−σ)=σ. □

Remark 11.7. — We could have taken a direct approach to the non-autonomous
problem. For this one can replace in Section 4.1 the generating function S(q, P ) for
φ1/r by a generating function S(q, P, ξ) for φ. All formulas for the generating function
of φ1

k translate immediately, as well as the proofs of Section 4.

Finally, we may consider the case of a non-autonomous, coercive Hamiltonian. Note
that if H is a Hamiltonian equal to a constant c outside a compact set, we may still
define H as c+ (H − c).

Proof of Theorems 3.1 and 3.2 for non-autonomous Hamiltonians. —For general Hamil-
tonians, the proof of Theorem 3.1 and 3.2 now follows easily from the autonomous
case and Proposition 11.5. We only need to check that homogenization for KA, that
is, γ-convergence of (KA)k for all A implies the γ convergence of Hk.
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Lemma 11.8. — Let Hn(t, q, p) be a sequence of compact supported Hamiltonians (with
fixed support) in T ∗Tn. Assume for all A we have

(Kn)A = χA(τ +Hn(t, q, p))(τ +Hn(t, q, p))

is γ-converging to (K∞)A such that limA→+∞KA = K(τ, p) = τ + H(p). Then Hn

γ-converges to H.

Proof. — The flow of K = τ +H(t, q, p) is given by
Φs(t, τ, q, p) = (t+ s, τ +H(t, q, p)−H(t+ s, φt+s

t (q, p), φt+s
t (q, p)),

where φt+s
t is the flow of H. If χA is a truncation function replacing K by χA(K)

replaces Φs(t, τ, q, p) by Φs
A(t, τ, q, p). Notice that Φs(t, τ, q, p) = Φs

A(t, τ, q, p) provided
|τ + H(t, q, p)| ⩽ A. Now we write the coordinates as (t, τ, q, p, t′, τ ′, Q, P ) and the
graph Γ(Φ1) of Φ1 is given by

{(t, τ, q, p, t+ 1, τ +∆τ(t, q, p), φt+1
t (q, p))},

where ∆τ(q, p) = H(t, q, p) − H(t + 1, φt+1
t (q, p)). Taking the reduction by t = 0,

t′ = 1, we get
{(q, p, φ1

0(q, p))} = Γ(φ1
0).

As a result if A > ∥H∥C0 , we have Φs(t, τ, q, p) = Φs
A(t, τ, q, p) for t = 0, t′ = 1,

so the reduction of Γ(Φ1
A) by {t = 0, t′ = 1} coincides with the reduction of Γ(Φ1),

that is, Γ(φ1
0).

Now the reduction inequality [Vit92, Prop. 5.1, p. 705] implies continuity of the
reduction for γ-topology, hence if Kn = τ + Hn(t, q, p) is a γ-converging sequence
with limit K∞ = τ + H∞((t, q, p), then the flow (φn)

t+s
t γ converges to (φ∞)t+s

t ,
in other words Hn is a γ-converging sequence with limit H∞. Applying this with
Hn(t, q, p) = H(nt, nq, p) and H∞(t, q, p) = H(p) and using Proposition 11.5 to verify
that K∞ is of the form τ+H(p), we get our theorem in the non-autonomous case. □

Note that in Theorem 3.2 only (1), (2), (3), (6) involve the non-autonomous case.
□

Now we may even extend homogenization to the coercive situation. Let fr such
that fr(x) = x for x ⩽ r and fr(x) = r for x ⩾ r. We then set

Definition 11.9. — Let H(t, q, p) be a coercive non-autonomous Hamiltonian. Then
we set

H(p) = lim sup
K⩽H

K∈C0
c ([0,1]×T∗Tn,R)

K(p) = lim
r→∞

fr(H).

Proposition 11.10. — The function H is well-defined and lower semi-continuous.
If H is convex, so is H.

Proof. — Indeed, as a converging increasing sequence of continuous functions, H is
lower semi-continuous. Similarly, if H is convex, given the convex domain ΩR =

{p ∈ Rn)∗ | |p| ⩽ R} we have that the fr(H) are convex in ΩR for r ⩾ R hence
according to Proposition 11.4, H is a limit of functions convex in ΩR. Since R is
arbitrary, we get that H is convex. □
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Remarks 11.11

(1) Because H(t, q, p) ⩽ h(p) for some function h, we have H ⩽ h, so H is locally
bounded. We do not know whether H should be continuous.

However if ∂H/∂p(q, p) is bounded, then H is Lipschitz, hence continuous (but
most interesting coercive Hamiltonians are superlinear so this does not hold). We do
not know an example of coercive Hamiltonian H such that H is not continuous. Note
that H would necessarily be non-autonomous, non-convex and superlinear.

(2) Note that we may also use the distance γ̂ defined by

γ̂(φ, id) = sup{γ(φ(L), L) | L ∈ L}

and we may also define the weak limit as φ = limk φk if and only if for any L in L

we have
lim
k
γ(φk(L), φ(L)) = 0.

Note that this is different from convergence for γ̂, which would require that the above
convergence is uniform in L.

We may now consider applications of the non-compact situation to homogenization
of Hamilton-Jacobi equations. Indeed, let us consider a Hamiltonian H(t, q, p) on
T ∗Tn, φt its flow, and f a C1 function defined on Tn. Since the graph of df is
bounded, for any positive time T , we may replace H by KA for A large enough, in
such a way that φt(Γdf ) is unchanged for 0 ⩽ t ⩽ T . Since H is now compactly
supported, we get a function uf (t, x), and the variational solutions uk,f (t, x) of

(HJk)


∂

∂t
uk(t, q) +H

(
kt, kq,

∂

∂x
uk(t, q)

)
= 0,

uk(0, q) = f(q),

converge to the variational solution uf of

(HJ)


∂

∂t
u(t, q) +H

( ∂

∂x
u(t, q)

)
= 0,

u(0, q) = f(q).

We may now extend the convergence to the case where f is only C0:

Corollary 11.12. — Assume f ∈ C0(Tn), and we have a sequence fν ∈ C∞(Tn)

converging uniformly to f . Then uk,f converges uniformly on bounded time intervals
to uf = limν ufν .

Proof. — Indeed, we have the estimate:

Lemma 11.13. — Let uf , ug be the variational solutions of the Hamilton-Jacobi equa-
tion (HJ) with initial conditions f and g respectively. Then

∥uf − ug∥C0 ⩽ ∥f − g∥C0 .
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Proof. — Let Ψ be a Hamiltonian diffeomorphism of T ∗N such that Ψ(Λf ) = Λg,
where Λf = {(x, df(x)) | x ∈ N}, and such that γ(Ψ) ⩽ |f−g|C0 . We may take for Ψt

a truncation to a compact domain of the isotopy Ψt(x, p) = (x, p+td(g−f)(x)). Then
the function uf is obtained as c(1(x), φt(Λf )), and we have

|c(1(x), φt(Λf ))− c(1(x), φt(Λg))| = |c(1(x), φt(Λf ))− c(1(x), φtΨ(Λf ))|
⩽ |c(1(x), φt(Λf )− φtΨ(Λf ))| ⩽ |c(1(x),Λf −Ψ(Λf ))|
⩽ γ(Λf ,Ψ(Λf )) ⩽ γ(Ψ) ⩽ ∥f − g∥C0 . □

Now this implies, denoting by uk,fν the sequence of variational solutions of the
equation obtained by replacing f by fν in (HJk)

∥uk,fν − uk,fµ∥C0 ⩽ ∥fν − fµ∥C0 and ∥ufν − ufµ∥ ⩽ ∥fν − fµ∥C0 ,

hence the sequences (uk,fµ)µ⩾1 and (ufµ)µ⩾1 are Cauchy, hence have limits denoted
uk,f and uf .

Given a positive ε, choose ν large enough, so that |f − fµ| ⩽ ε for all µ ⩾ ν, and ℓ
large enough so that for k ⩾ ℓ we have |uk,fν − ufν | ⩽ ε we get

|uk,fµ − ufµ | ⩽ |uk,fµ − ufµ |+ |uk,fν − ufν |+ |ufν − ufµ | ⩽ 3ε.

As a result, for µ going to infinity, we get |uk,f − uf | ⩽ 3ε hence

lim
k→∞

uk,f = uf . □

11.3. A non-coercive example. — Assume for example that

H(x1, x2, p1, p2) = h(p1, p2)

outside a compact set. Notice that the Poisson brackets, {H, p1} = {H, p2} = 0 outside
a compact set, therefore {H, |p1|2 + |p2|2} = 0 outside a compact set. The flow φt

of H will then remain inside a bounded domain Wλ for λ large enough. We may then
use the same truncation method as above, and infer that we may homogenize H:

Proposition 11.14. — Let H(x1, x2, p1, p2) = h(p) outside a compact set. Then we
have a homogenization operator A with the same properties as in the compactly sup-
ported case.

Corollary 11.15. — Assume uk is a variational solution of Hamilton-Jacobi equation
(HJk) where Hsatisfies the conditions of Proposition 11.14. Then the sequence uk
converges uniformly to a solution u of (HJ).

Remark 11.16. — By an approximation method, this will work for any Hamiltonian
such that

lim
|p|→∞

|H(q, p)− h(p)| = 0.
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12. Homogenization in the p variable and connection with Mather’s α
function

12.1. Homogenization in the p variable. — This problem of homogenization in the
p variable corresponds to the singular perturbation or penalization problem, studied
in recent years by several authors (see for example [AB02, AB03]).

Let us consider a Hamiltonian H(q, p) which is either compact supported or coer-
cive. The sequence defined by Hk(q, p) = H(q, k · p). Its flow is given by

ψt
k = ζ−1

k φktζk,

where ζk(q, p) = (q, k · p).
Note that here ζk is a bona fide map on T ∗Tn, so that we do not have to invoke

covering arguments. Since ζk satisfies ζ∗kω = kω, we get, that

γ(ζ−1
k φktζk) =

1

k
γ(φkt).

There is a priori no limit for the sequence ψt
k = ζ−1

k φktζk: indeed if φt is the
flow of H(p), ζ−1

k φktζk will be the flow of H(kp). However let us write τk(q, p) =

ρk ◦ ζ−1
k (q, p) = (k · q, p/k), then ζk = ρk ◦ τ−1

k and

ψt
k = ζ−1

k φktζk = τkρ
−1
k φktρkτ

−1
k = τkφ

t
kτ

−1
k .

Now
γ(φt

kφ
−t) ⩽ εkt,

thus(21)

γ
(
(τkφ

t
kτ

−1
k )(τkφ

−tτ−1
k )

)
= γ(τk(φ

t
kφ

−t)τ−1
k ) = γ(φt

kφ
−t) ⩽ εkt.

Now since τ−1
k φ tτk is generated by H(k · p), we do not get a limit for H(q, k · p) but

we get:

Proposition 12.1. — Let H be an autonomous Hamiltonian which is either compact
supported or coercive.

lim
k→∞

γ(H(q, k · p), H(k · p)) = lim
k→∞

γ(ψt
k(φ)

−kt) = 0.

In spite of the fact that H(k · p) has no limit as k goes to infinity, the above
proposition has a number of applications. First, let us consider the standard parabolic
Hamilton-Jacobi equations

∂

∂t
u(t, q) +H

(
q,
∂

∂q
u(t, q)

)
= 0,

u(0, q) = f(q).

(21)We use here that γ(τkφτ
−1
k ) = γ(φ). Note that τk is not Hamiltonian, as it is not even

isotopic to the identity. However if we lift φ to φ̃ : T ∗Rn → T ∗Rn, and τk also obviously lifts to
a Hamiltonian map of T ∗Rn given by τ̃t : (q, p) 7→ (tq, p/t), and c±(τkφτ

−1
k ) belong to the set of

actions of the fixed points of (τkφτ−1
k ) contained in the set of actions of τ̃kφ̃τ̃−1

k . But since the set
of actions of fixed points of τ̃tφ̃τ̃−1

t is constant, the result follows by taking t = k.
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Set vk(t, q) = 1
ku(k · t, q). This is now a solution of

∂

∂t
vk(t, q) +H

(
q, k

∂

∂q
vk(t, q)

)
= 0,

vk(0, q) =
1

k
f(kq),

and since limk→∞ γ(H(q, k · p), H(k · p)) = 0 and limk→∞
1
kf(kq) = 0 we get that vk

is approximated by wk, variational solution of
∂

∂t
wk(t, q) +H

(
k
∂

∂q
wk(t, q)

)
= 0,

wk(0, q) = 0,

that is, limk→∞ |wk − vk| = 0. Now, it is clear that wk(t, q) = −tH(0), so that we
get the following result, which had been proved in [LPV87] in the p-convex one-
dimensional case.

Proposition 12.2. — Let u be a variational solution of

(HJ)


∂

∂t
u(t, q) +H

(
q,
∂

∂q
u(t, q)

)
= 0,

u(0, q) = f(q),

then
lim
t→∞

1

t
u(t, q) = −H(0).

In the general convex case this result is due to the fact that the solutions of (HJ)
are defined by the Lax-Oleinik semi-group T t and that for u0 the viscosity solution of
H(x, du0(x)) = −H(0) we have T tu0+H(0)t = u0 and for all u |T tu−T tu0| ⩽ |u−u0|
so that |T tu+H(0)t| is bounded (see [Fat97, Fat98]).

12.2. Connection with Mather α function. — We start with

Definition 12.3. — The C2 Lagrangian L(t, q, ξ) is said to be a Tonelli Lagrangian
if it is strictly convex and coercive, that is, ∂2

∂ξ2L(t, q, ξ) > ε Id for some ε > 0 and the
Euler-Lagrange flow defined on TN by

d

dt

∂

∂ξ
L(t, q, ξ)− ∂

∂q
L(t, q, ξ) = 0

is complete.

Of course if H is the Legendre dual of L, that is,

H(t, q, ξ) = inf
ξ
{⟨p, ξ⟩ − L(t, q, ξ)}

this definition is equivalent to requiring that the flow φt of the corresponding Hamil-
tonian is complete.
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For a Tonelli Lagrangian L(t, x, ξ), 1-periodic in t and strictly convex in p, the α
function has been defined by Mather in [Mat91] as

α(p) = − lim
T→∞

inf
1

T

{∫ T

0

L(t, q(t), q̇(t))dt− ⟨p, x1 − x0⟩
∣∣∣∣ q(0) = x0, q(T ) = x1

q ∈ C1([0, T ], N)

}
.

Note that in the above, the infimum is for x0, x1 free to vary.
As a special case, we may show

Proposition 12.4. — Let H be the Legendre dual of the Lagrangian L, i.e., H is
strictly convex in p and

L(t, q, ξ) = sup
p∈T∗

q N
{⟨p, ξ⟩ −H(t, q, p)}.

Then

H(p) = − lim
T→∞

inf
1

T

{∫ T

0

L(t, q(t), q̇(t))dt− ⟨p, x1 − x0⟩
∣∣∣∣ q(0) = x0, q(T ) = x1

q ∈ C1([0, T ], N)

}
.

As a result H coincides with Mather’s α function.

Proof. — Replacing L(t, q, ξ) by L(t, q, ξ) + ⟨p, ξ⟩, it is enough to consider the case
p = 0. Then let

Pt = {q : [0, t] →M}
and π : Pt →M the map q 7→ q(t). Let

Et(q) =

∫ t

0

L(s, q(s), q̇(s))ds

be defined on Pt, and consider(22) Et as a GFQI. We shall write (x1, q) instead of q
to remind the reader that π(q) = q(t) = x1. Now

DEt(x1, q) =

∫ t

0

[
∂L

∂x
(s, q(s), q̇(s))− d

dt

∂L

∂ξ
(s, q(s), q̇(s))

]
δq(s)ds

+
∂L

∂ξ
(t, q(t), q̇(t))δq(t)− ∂L

∂ξ
(0, q(0), q̇(0))δq(0).

Setting
p(t) =

∂L

∂ξ
(t, q(t), q̇(t))

and since q̇(t) = ∂H/∂p(t, q(t), p(t)) by the variational formula connecting L and H,
the vanishing of DEt(x1, q) implies

ṗ(t) = −∂H
∂q

(t, q(t), p(t)),

so we get (x1, ∂Et/∂x1) = (x1, p1) = φt(x0, 0). Therefore, Et is a GFQI of φt
−H(0N ),

and since
uL(t, x) = inf{Et(x, q) | q ∈ P, q(1) = x} = c(1(x), Et)

(22)As Frol Zapolsky pointed out, one must first do a finite dimensional reduction of Et, for
example using a broken geodesic method see [Cha84]. This is done in Appendix D.
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is a variational solution of

(HJ)


∂

∂t
u(t, q) = H

(
t, q,

∂

∂q
u(t, q)

)
,

u(0, q) = 0,

and we proved in Proposition 12.2 (note that here the equation has a different sign
in front of H)

lim
t→∞

1

t
uL(t, x) = −H(0),

this concludes our proof. □

As a consequence we get for N = Tn:

Corollary 12.5 (P. Bernard, [Ber07]). — The Mather α function is symplectically
invariant.

13. More examples and applications

13.1. Homogenization of H(t, q, p) in the variable t. — Applying partial homoge-
nization’s Theorem 3.5 to the t variable for a T -periodic Hamiltonian H(t, q, p) defined
on T ∗Tn, we obtain an autonomous Hamiltonian H(q, p). However, this is nothing
else than

H(q, p) =
1

T

∫ T

0

H(t, q, p)dt.

Indeed, if H(kt, q, p) has flow φt
k, we have, by the fundamental theorem of classical

averaging (see [BM58, p. 429], [SV85, Th. 3.2.10, p. 39]):

lim
k→∞

φt
k = φt

in the C0 topology, where φt is the flow of

1

T

∫ T

0

XH(t, q, p)dt = XH(q, p).

Since according to [Vit92, Prop. 4.15, p. 703], C0-convergence implies γ-convergence,(23)

our claim follows.

(23)This is proved in R2n in the quoted reference, but is easily extended to the torus case. Indeed
the proof is based on the lemma, page 703, which states the existence of a compactly supported
Hamiltonian diffeomorphism such that each point of the unit disc bundle is displaced by at least ε.
This can be constructed by taking the Hamiltonian flow associated to the Hamiltonian H(q, p) =

χ(|p|)⟨p, ξ(q)⟩, where χ is a cutoff function, ξ(q) a non-vanishing vector field on Tn.
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13.2. The one dimensional case. — In [LPV87], the computation of H in the case
H(q, p) = |p|2 − V (q) and for V bounded from below is explicitly dealt with. Indeed,
assuming V ⩾ 0 is one-periodic and vanishes at least at one point, we have

(⋆)
{
H(p) = 0 if |p| ⩽

∫ 1

0
(V (q))1/2dq,

H(p) = λ where λ solves |p| =
∫ 1

0
(V (q) + λ)

1/2
dq otherwise.

Indeed, according to Theorem 3.2(5), if we can find a curve L in T ∗S1 such that
|p|2 − V (q) ⩽ h on L and

∫
L
pdq = v then H(v) ⩽ h. Since H(q, p) ⩽ h contains

Lv = {(q, p(q)) | p = (V (q)+h)1/2} and this is the graph of a Lagrangian submanifold
with integral of the Liouville class

v =

∫ 1

0

(V (q) + h)1/2dq,

we get that H(v) ⩽ h. But the Lagrangian, {(q, p) | p = (V (q)+h)1/2+ε} is contained
in H(q, p) ⩾ h, hence H(v) ⩾ h. By the monotonicity property (Theorem 3.2(1))
H(v) ⩾ 0, and this proves (⋆).

In higher dimension, since {(q, p+du(q)) | q ∈ Tn} is Lagrangian and Hamiltonian
isotopic to Lp, the fact that if u(q) is a smooth function such that H(q, p+du(q)) ⩽ h

then H(p) ⩽ h is a useful piece of information in estimating H.

13.2.1. A special “geometric” example. — We now give an example of a Hamiltonian
that is the characteristic function of a domain in T ∗T 1. The Homogenized Hamiltonian
is well-defined according to Theorem 3.2(4) and Remark 3.3(3).

p = 2

p = 1

p = −1

p = −2

H = 0 H = 1

Figure 5. The Hamiltonian H(q, p).

We let H be a Hamiltonian on T ∗T 1 represented on Figure 5, vanishing on the red
set, assumed to be open, and equal to one in the blue set. We want to compute H(p)

for |p| ⩽ 2. Denote by A the area of the red island, and by B the area of the blue
sea, so A + B = 2. Note that for A large compared to B (in fact as soon as A > B)
it may be difficult to construct a curve with Liouville class 0 contained in H = 1 since
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p = 2

p = 1

p = −1

p = −2

H = 0 H = 1

Figure 6. The Hamiltonian H(k · q, p) (for k = 3).

we have to either go above the red island, thus adding an area of A/2 and we cannot
subtract more than B/2, or we go below and then add −A/2 to which we cannot add
more than B/2. However replacing H by Hk the red island is replaced by k smaller
islands, and the difficulty vanishes as we have the choice to go above or below each
island. More generally for k large enough, we may find an embedded curve isotopic
to the zero section, contained in the blue region of Figure 6 (where H(k · q, p) = 1),
with any given Liouville class in [−1, 1]. Thus, the curve yields an L ∈ Lp contained
in Hk = 1 for any p in [−1, 1]. As a result, since obviously Hk = H, we have H(p) ⩾ 1

for any p in [−1, 1]. Since obviously, H(p) = 0 for |p| > 1, we get
(1) H(p) = 1 on [−1,−1],
(2) H(p) = 0 for |p| > 1.

Remarks 13.1
(1) Note that here H is not continuous, so it is not surprising that H isn’t either.
(2) The above example can be easily adapted to get homogenized Hamiltonians

taking more than two values.
(3) With some more work, one can compute the homogenization of any autonomous

Hamiltonian on T ∗S1.

13.3. Homogenized metric and Thurston-Gromov norm. — First consider the case
where H generates the geodesic flow of g: even though H(q, p) = ⟨g(q)p, p⟩1/2 = |p|2g
is not compactly supported, it is coercive, so we may define its homogenization ac-
cording to Proposition 11.4. Then Tn Hk generates the geodesic flow of the rescaled
metric by the covering map

Tn −→ Tn

q 7−→ kq

of degree kn.
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It is well-known that if D is the distance defined by g on Rn the universal cover
of Tn (i.e., D(x, y) is the length of the shortest geodesic for g connecting x to y in Rn)
and Dk the one defined by gk(q) = g(kq) (corresponding to Hk), again on Rn, we have

Dk(x, y) =
1

k
D(kx, ky) and lim

k→+∞
Dk(x, y) = D(x, y),

where D is the distance associated to some flat Finsler metric g (see [AB84, Th. III.1]).
Since gk is invariant by the Zn-action, gk and hence Dk descend to a metric dk on Tn,
and similarly D descends to a Finsler metric d.

It is also well known that gk does not converge to g in any reasonable sense, except
for the convergence of minimizers of the associated energy functional

E(γ) =

∫ 1

0

|γ̇(t)|2gdt.

This phenomenon is related to the notion of Γ-convergence introduced by De Giorgi
and his school in the 70’s (cf. [DG75, DGF75], [DM93], [Bra02]). We shall denote by
L(γ), Lk(γ), L(γ) the length of a curve for the respective metric d, dk, d. In particular,
we easily see that ℓk(α), the length for dk of the shortest closed geodesic in the
homotopy class α (in π1(T

n) ≃ H1(T
n) ≃ Zn), ℓk(α), converges to ℓ(α), the length

for d of the shortest closed geodesic in the homotopy class α, ℓ(α). In other words,
set

Pα = {u ∈ C∞([0, 1], Tn) | [u] ∈ α}
and notice that this is the image by the projection of

P̃α = {u ∈ C∞([0, 1],Rn) | u(t+ 1) = u(t) + α},

then
ℓk(α) = inf

x∈Pα

Lk(x) = inf{Dk(x, x+ α) | x ∈ Rn},

and since Dk(x, x+ α) converges uniformly to D(x, x+ α), and x needs only to vary
in a fundamental domain [0, 1]n in Rn, we get that

lim
k→+∞

ℓk(α) = ℓ(α).

But the class α contains at least a second closed geodesic, obtained by a minimax
procedure (see [Bir27, p. 133]). Indeed let β ∈ H1(T

n) be independent of α and
u : [0, 1]2 → Rn be a smooth map. Set

P̃α,β = {u ∈ C∞([0, 1]2,Rn) | u(s, t+ 1) = u(s, t) + α, u(s+ 1, t) = u(s, t) + β}.

Then there is a closed geodesic of length

ℓk(α, β) = inf
u∈Pα,β

sup
s∈[0,1]

Lk(us),

where us(t) = u(s, t), and similarly for ℓ(α, β). It is thus reasonable to ask whether

lim
k→+∞

ℓk(α, β) = ℓ(α, β)?
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The methods of our theorem imply a positive answer, since

ℓk(α, β)
2 = c(β,E),

that is, ℓk(α, β) is the homological minimax level associated to the 1-dimensional
homology class of the free loop space that is the image of S1 by θ 7→ β(θ) · α where
“·” denotes the addition law on the torus. We more generally can look at ℓk(α, β),
where β ∈ Hk(T

n). Our results imply

Proposition 13.2. — We have

lim
k→∞

ℓk(α, β) = ℓ(α, β) = ℓ(α).

Proof. — The first statement is just Proposition 11.4 (or Proposition 12.4). The fact
that ℓ(α, β) = ℓ(α) follows from the fact that the Finsler metric d is flat (i.e., invariant
by translation on the torus), hence if c(t) is a geodesic such that c(t+1) = c(t)+α and
β ∈ H1(T

n) = Zn then cs(t) = c(t) + sβ has length L(cs), independent of s, so that
taking x(s, t) = c(t)+sβ we see ℓ(α, β) = ℓ(α) holds for β ∈ H1(T

n). The general case
follows by using the Pontryagin product (see the proof of Proposition 6.2) to prove by
induction that ℓ(α, β1 · · ·βk) = ℓ(α). Since any class in Hk(T

n) is a linear combination
of Pontryagin products, and because of the general fact that c(a, f) = c(b, f) implies
c(a+ b, f) = c(a, f) = c(b, f) we may conclude our proof. □

Note that the analogous statement cannot hold for the whole length spectrum
of gk (i.e., the set of lengths of closed geodesics), as it is easy to construct examples
for which the length spectrum of gk becomes dense as k goes to infinity i.e., for any
λ ∈ R+ and δ > 0 there is k0 in N such that for all k ⩾ k0, Spec(gk)∩ [λ−δ, λ+δ] ̸= ∅
(just add lots of small “blisters” to a flat metric), while the spectrum of g is discrete.

Remember also that the Thurston-Gromov norm associated to g is defined as fol-
lows: for each homology class c in H1(T

n,R) ≃ Rn, let us define ∥c∥TG as follows.
For c rational, that is, m · c ∈ H1(T

n,Z) for some integer m, ∥c∥TG = 1
mℓ(m · c). The

norm is then extended by density of the rationals.
The proof of the following result is then left to the reader:

Proposition 13.3. — The Thurston-Gromov norm coincides with the symplectic
homogenization of the metric.

14. Further questions

Sergei Kuksin pointed out that the homogenization or averaging described here is a
“dequantized averaging”, in the sense that the traditional homogenization is concerned
with the limit of the “quantized Hamiltonian”,H(x/ε,Dx) as ε goes to zero. By this we
mean a Partial differential operator with principal symbol H(x/ε, p) operating on the
set of smooth functions on Tn or Rn. Here, on the other hand, we deal directly with the
“classical Hamiltonian” H(x/ε, p). It is natural to ask whether there is a connection
between quantized and dequantized averaging, or to use a simpler language, between
the homogenization of an operator, and the symplectic homogenization of its symbol.
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We may already consider the simple case of the previous section: according to the
classical theory of Γ-convergence, the limiting operator of the Laplacians associated
to the metric gk converges to some elliptic operator, denoted ∆∞. But ∆∞ is not in
general equal to the Laplacian of the metric g∞. First of all g∞ is not Riemannian,
but only Finslerian. Moreover, it seems that g∞ detects changes in the metric on small
sets: typically a three-dimensional torus with a metric made small along three geodesic
circles in three orthogonal directions will have a much smaller g∞ than one without
such “short directions”. But the Laplacian will not detect this, since the Brownian
motion will not see such lines. So the only reasonable question is whether the metric
g∞ determines the Laplacian ∆∞.

One may ask a more general question, that is,

Question 14.1. — Assume the sequence (Hν)ν⩾1 converges to H for the γ-topology.
Does the spectrum—or some quantity defined using the spectrum—of the operators
Hν(x,Dx) converge to the spectrum—or some quantity defined using the spectrum—
of H(x,Dx)?

Appendix A. Capacity of completely integrable systems

Our goal is to prove the following

Proposition A.1. — Let φ1 be the time-one flow associated to the continuous, com-
pactly supported Hamiltonian, h(p), defined on T∗Tn. Then

c+(φ
1) = sup

p
h(p), c−(φ

1) = inf
p
h(p), γ(φ1) = c+(φ

1)− c−(φ
1) = osc

p
h.

As a result, a continuous compactly supported and integrable Hamiltonian has gener-
alized flow equal to Id if and only if it is identically zero.

Proof. — We shall only consider smooth Hamiltonians, the general case follows by
density of compactly supported smooth Hamiltonians for the γ-topology in the set of
continuous compactly supported ones (since density already holds for the C0 metric).
Set φt(q, p) = (Qt(q, p), Pt(q, p)), then the graph of φt defines a Lagrangian submani-
fold Γt in T ∗(Tn×Rn) as the image of (q, P ) 7→ ((q +Qt)/2, (p+ Pt)/2, p−Pt, Qt−q

)
.

Note that even though Qt is in Tn, Qt− q has a unique lift to Rn which is continuous
in t and equals 0 for t = 0. The same argument allows us to define (q +Qt)/2 =

q + (Qt − q)/2.
Moreover, if we set x = (q +Qt)/2, y = (p+ Pt)/2, ξ = p − Pt, η = Qt − q, the

symplectic form is given by dξ ∧ dx+ dη ∧ dy. In our situation, we have

xt = q +
t

2
h′(p), yt = p, ξt = 0, ηt = h′(p).

Thus if we set ft(x, y) = t h(y), we have

ξt =
∂

∂x
ft(x, y), ηt =

∂

∂y
ft(x, y),
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that is, ft is a generating function of Γt with no “fiber variables". As we mentioned
in Remark 2.4(3)

c+(φ
t) = sup ft, c−(φ

t) = inf ft, γ(φt) = sup
(x,y

ft − inf
(x,y

ft.

Since f1(x, y) = h(y) this proves our proposition. □

The following applies the ideas of [Hum08b, §4.4, p. 390] and [Hum08a, §3.3]. For
a continuous Hamiltonian, H, we define its “generalized flow” to be the image of H
by the extension of H 7→ φ1

H as a map from Ĥc(T
∗M) to Ĥamc(T

∗M).

Corollary A.2. — The following assertions hold
(1) If h1(p) and h2(p) are compactly supported, continuous, and have the same

“generalized” time-one flow (in Ĥamc(T
∗Tn)) then h1 = h2.

(2) If h1(p), h2(p) are continuous and compact-supported, and have generalized
flows (in Ĥamc(T

∗Tn)) φt
1, φ

t
2, then h1(p) + h2(p) has generalized flow φt

1 ◦ φt
2. As a

consequence φt
1 ◦φt

2 = φt
2 ◦φt

1. In particular, if φt is the flow associated to h(p), φ−t

is the flow associated to −h(p).

Proof of (1). — Indeed, according to the above Proposition, we have

γ(φt
1(φ

t
2)

−1) = t osc
p
(h1 − h2)

since according to the above proposition this is true for smooth h1, h2, and we conclude
by density of compactly supported smooth functions in the set of compactly supported
continuous functions. Therefore, φ1

1 = φ1
2 implies h1 = h2. □

Proof of (2). — Let hk,1(p), hk,2(p) be smooth sequences C0-converging to h1(p), h2(p)
respectively. This implies that these sequences γ-convergence. Now the corresponding
time-one flows, φ1

k,1, φ
1
k,2 commute so that hk,1(p)+hk,2(p) = hk(p) has flow φ1

k,1◦φ1
k,1,

and since the γ-limit of φ1
k,1 ◦ φ1

k,1 is φ1 ◦ φ2, we get that h(p) = h1(p) + h2(p). The
commutativity of the addition, implies the commutativity of the flows. Finally, the
flow of the zero Hamiltonian being the identity, the last claim follows. □

Appendix B. Some “classical” inequalities

Our goal here is to prove the following results:

Proposition B.1. — Let S1(x, ξ), S2(x, η) be two GFQI and S1,x(ξ) = S(x, ξ),
S2,x(η) = S2(x, η). Then

|c(1x, S1,x)− c(1x, S2,x)| ⩽ γ(S1, S2).

Proposition B.2. — For a Hamiltonian isotopy φt on T ∗Tn, and L Hamiltonian
isotopic to the zero-section, we have

γ(φ1(L), L) ⩽ γ(φ1).

Note that the isotopy may be assumed to be compactly supported, since we may
truncate the Hamiltonian outside the compact set

⋃
t∈[0,1] φ

t(L).
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Proposition B.3. — Let S be a GFQI, α ∈ Hk(M) and a ∈ Hk(M). Then

c(α, S) = inf{c(a, S) | a ∈ Hk(M), ⟨α, a⟩ ≠ 0},

c(a, S) = sup{c(α, S) | α ∈ Hk(M)⟨α, a⟩ ≠ 0}.

In particular, c(1, S) = c([pt]M , S) and c(µM , S) = c([M ], S).
As a result, we have for any nonzero α in H∗(M)

|c(α,φ1)− c(α,φ2)| ⩽ γ(φ1, φ2).

Proof of Proposition B.1. — It is important to notice that all formulas or inequalities
we shall use in the proof are established in [Vit92] for any GFQI, and not only those
associated to an embedded Lagrangian submanifold.

Indeed, we have according to [Vit92, Prop. 3.3, p. 693] the formula

c(u · v, S1 ⊕ S2) ⩾ c(u, S1) + c(v, S2),

where S1 ⊕ S2(x, ξ1, ξ2) = S1(x, ξ1) + S2(x, ξ2). We then apply this inequality to the
generator u = v = 1x of H0({x}) (which is its own Poincaré dual) and we get

c(1x, S1,x ⊖ S2,x) ⩾ c(1x, S1,x) + c(1x,−S2,x).

But by [Vit92, Prop. 2.7, p. 692], we have

c(1x,−S2,x) = −c(1x, S2,x),

thus
c(1x, S1,x ⊖ S2,x) ⩾ c(1x, S1,x)− c(1x, S2,x).

Similarly we have

c(1x, S1,x ⊖ S2,x) ⩽ c(1x, S1,x) + c(1x,−S2,x) = c(1x, S1,x)− c(1x, S2,x).

Now since (S1⊖S2)x(ξ1, ξ2) = S1,x(ξ1)−S2,x(ξ2) and γ(L1, L2) = γ(S1⊖S2), we have
by the reduction inequality ([Vit92, Prop. 5.1, p. 705])

c(1x, S1,x ⊖ S2,x) ⩽ γ(S1 ⊖ S2) = γ(L1, L2),

and our claim follows. □

Proof of Proposition B.2. — Indeed, φ(0Tn) is the symplectic reduction of

Γ̃(φ) = {(q, p,Q, P ) | (Q,P ) = φ(q, p)}

by the coisotropic submanifold, Np = {p = 0}. The symplectic map

(q, p,Q, P ) −→ (Q, p, p− P,Q− q) = (u, v, U, V )

sends Np to Nv = {v = 0}. The reduction inequality in [Vit92, Prop. 5.1, p. 705] and
the fact that φ(L) = Γ̃(φ)) ∩Nv/N

ω
v , then implies

γ(φ(L)) ⩽ γ(Γ̃(φ)) = γ(φ).

Now if L = ρ(0Tn), we have

γ(φ(L), L) = γ(φ(ρ(0Tn)), ρ(0Tn)) = γ(ρ−1φρ(0Tn)) ⩽ γ(ρ−1φρ) = γ(φ),
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where the second and last equality follow by symplectic invariance of γ, while the
inequality has been proved above. □

Proof of Proposition B.3. — Let us denote by T the Thom isomorphism, and by T ∗

its homological counterpart. Let a ∈ Hk(M) and T ∗a its image in Hk+d(E
+∞, E−∞),

and for α ∈ Hk(M) and Tα its image in Hk+d(E+∞, E−∞). Now, considering the
(k + d)-cohomology group as the dual of the (k + d)-homology group (we work with
coefficients in a field), we have the following diagram

Hk+d(E
λ, E−∞)

i∗λ(Tu)
))

iλ // Hk+d(E
+∞, E−∞)

Tu
��

R

.

and we have i∗λ(Tα) ̸= 0 if and only if there is T ∗a ∈ Im(iλ) such that ⟨Tα, T ∗a⟩ ≠ 0.
Since ⟨Tα, T ∗a⟩ = ⟨α, a⟩ we have the inequality λ ⩾ c(a, L) if and only if there

exists α such that ⟨α, a⟩ ̸= 0, and λ ⩾ c(α,L): this follows immediately from the
universal coefficient theorem (Hk(M) is the dual of Hk(M)). In other words we proved
that

(∗) c(a, L) = sup{c(α,L) | ⟨α, a⟩ ≠ 0}.

This proves the first statement. Similarly we have the inequality λ ⩾ c(α, S) if and
only if there exists a such that ⟨α, a⟩ ≠ 0, and λ ⩾ c(a, S), so

c(α, S) = inf{c(a, S) | ⟨α, a⟩ ≠ 0}.

Now by [Vit92, Prop. 2.7, p. 692], if b ∈ Hn−k(M), α ∈ Hk(M) are Poincaré dual
classes,(24) we have the identity c(α, S) = −c(a, S). Moreover from the same paper
(Prop. 3.3, p. 693) we see that c(α · β, S1 ⊖ S2) ⩾ c(α, S1) + c(β, S2).

So for b ∈ Hn−k(M) and α ∈ Hk(M) be Poincaré dual classes we may write,
using (∗)

c(α, S1)− c(α, S2) = c(α, S1) + c(b, S2) = c(α, S1) + sup{c(β, S2) | ⟨β, b⟩ ≠ 0}

= sup{c(α, S1) + c(β, S2) | α ∪ β ̸= 0}
⩽ sup{c(α · β, S1 ⊖ S2) | α · β ̸= 0}.

Since α ∈ Hk(M), β ∈ Hn−k(M), α · β ̸= 0 implies that α · β is a multiple of the
orientation class µ, hence, the last term in the above equals to c(µ, S1⊖S2). We finally
proved

c(α, S1)− c(α, S2) ⩽ c(α · β, S1 ⊖ S2) = c(µ, S1 ⊖ S2).

Using the fact that c(µ, S2 ⊖ S1) = −c(1, S1 ⊖ S2), we get exchanging S1 and S2

c(α, S2)− c(α, S1) ⩽ c(µ, S2 ⊖ S1) = −c(1, S1 ⊖ S2),

that is,
c(α, S1)− c(α, S2) ⩾ c(1, S1 ⊖ S2),

(24)This means for all β ∈ Hn−k(M) we have ⟨β, b⟩ = ⟨α ∪ β, [M ]⟩.
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so that finally

c(1, S1 ⊖ S2) ⩽ c(α, S1)− c(α, S2) ⩽ c(µ, S1 ⊖ S2).

Since in our case S1, S2 are GFQI for Γ(φ1),Γ(φ2), we have c(1, S1 ⊖ S2) ⩽ 0 ⩽
c(µ, S1 ⊖ S2), so the above inequality implies

|c(α,φ1)− c(α,φ2)| = |c(α, S1)− c(α, S2)|
⩽ c(µ, S1 ⊖ S2)− c(1, S1 ⊖ S2) = γ(S1, S2) = γ(φ1, φ2). □

Appendix C. A different type of homogenization

As has been pointed out to me by M. Bardi and F. Cardin, the Hamilton-Jacobi
homogenization is often applied to the sequence H(x, ε−1x, p): we seek the limit as ε
goes to zero of

(HHJε)


∂

∂t
u(t, x) +H

(
x, ε−1x,

∂

∂x
u(t, x)

)
= 0

u(0, x) = f(x).

This seems to be more general than the case we deal with. However we prove here
that this problem can be reduced to the case we studied. Let indeed K(x, y, px, py)

be the Hamiltonian on T ∗(Tn × Tn) defined by K(x, y, px, py) = H(x, y, px + py).

Remark C.1. — Note that even if H is compactly supported, K is not, since the map
(px, py) 7→ px + py is not proper. However K is C2 bounded, and this is enough to
carry on symplectic homogenization as in Sections 6–8.

We claim that the equation

(1) ∂

∂t
u(t, x) +H

(
x, x,

∂

∂x
u(t, x)

)
= 0

is satisfied by u(t, x) = v(t, x, x) where v is the variational solution of

(2) ∂

∂t
v(t, x, y) +K

(
x, y,

∂

∂x
v(t, x, y),

∂

∂y
v(t, x, y)

)
= 0.

Indeed this can be rewritten for x = y as
∂

∂t
v(t, x, x) +H

(
x, x,

∂

∂x
v(t, x, x) +

∂

∂y
v(t, x, x)

)
= 0,

and since
∂

∂x
u(t, x) =

∂

∂x
v(t, x, x) +

∂

∂y
v(t, x, x),

this proves our claim.
Now we may replace K by

Kε(x, y, px, py) = H(x, y/ε, px + py) = Hε(x, y, px + py)

and we shall get solutions of the equation
∂

∂t
uε(t, x) +H

(
x, ε−1x,

∂

∂x
uε(t, x)

)
= 0.

However we have to prove that
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Proposition C.2. — If v is a variational solution of (2), then u(t, x) = v(t, x, x) is
variational solution of (1).

Proof. — Indeed it is enough to prove that if L is a Lagrangian submanifold contain-
ing the isotropic submanifold

If =
{(
t,−K

(
x, y,

∂f

∂x
,
∂f

∂y

)
,
∂f

∂x
,
∂f

∂y

)}
and such that L is contained in

{(t, τ, x, y, px, py) | τ +K(t, x, y, px, py) = 0},

then its symplectic reduction by x=y is a Lagrangian submanifold, L∆, contained in

{(t, τ, x, px) | τ +H(t, x, x, px) = 0}

and L∆ contains

Ig =
{(
t,−H

(
x, x,

∂g

∂x
(x)

)
,
∂g

∂x
(x)

)}
,

where g(x) = f(x, x). This is rather straightforward to check, and is a consequence of
the commutation relation {x− y, px + py} = 0.

Finally we notice that if S(t, x, y, ξ) is a GFQI for L, then v(t, x, y) = c(1t,x,y, S),
while the reduction L∆ of L by x = y has for GFQI the function S∆ = S(x, x, ξ), so
that u(t, x) = c(1t,x, S∆) = c(1t,x,x, S) = v(t, x, x). This concludes our proof. □

Corollary C.3. — Let H(x, y, p) be a compactly supported function on Tn×Tn×Rn.
Set K(x, y, px, py) = H(x, y, px+py), and let K(x, px, py) be the homogenization of K
with respect to the y variable (i.e., K(x, px, py) is the γ-limit of Kε(x, y, px, py) =

K(x, y/ε, px, py)). Then H(x, p) = K(x, p, 0) is such that a sequence (vε)ε>0 of vari-
ational solutions of

∂

∂t
v(t, x) +H

(
x, ε−1x,

∂

∂x
v(t, x)

)
= 0

C0-converges to a variational solution of
∂

∂t
v(t, x) +H

(
x,

∂

∂x
v(t, x)

)
= 0.

Proof. — The only missing fact is to show that K(x, px, py) can be written as
H(x, px + py) (if this is the case, we recover H by H(x, p) = K(x, p, 0)). We claim
that this amounts to proving that the xj being coordinates on the first torus, and yj
the same coordinate on the second torus, the function xj − yj commutes(25) with K,
knowing it commutes with Kε. The result follows from the fact that this commutation
relation goes to the γ-limit. If φt

j is the flow of xj − yk, and ψt
ε the flow of Kε, the

relation ψt
ε ◦φt

j ◦ψ−t
ε = φt

j implies for ψt
= γ− limε→0 ψ

t that ψt ◦φt
j ◦ψ−t = φt

j . □

(25)Of course xj−yj is only defined in S1, but this is equivalent to claiming that for any function f

on S1, f(xj − yj) commutes with K, provided it commutes with Kε.
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Lemma C.4. — Let H be a compactly supported smooth Hamiltonian and (Kj)j⩾1

a sequence of Hamiltonians commuting with H and γ-converging to a continuous
Hamiltonian K∞. Then H and K∞ γ-commute in the following sense

K∞(φt
H) = K∞,

where φt
H is the flow of H. In particular, if the Kj commute with the functions xj−yj

then so does K∞, and K∞(x, px, py) only depends on (x, px + py).

Proof. — Indeed, the flow of Kj being ψt
j we have that φt

Hψ
s
jφ

−t
H γ-converges to

φt
Hψ

s
∞φ

−t
H , hence our first result. Now the flow of xj − yj is given by

(x, y, px, py) −→ (x, y, px + tej , py + tej).

Now a continuous Hamiltonian commuting with the functions xj−yj only depends
on px + py. Indeed it is easy to show that for all t, Kj(x, y, px + tej , py − tej) =

Kj(x, y, px, py) hence γ-converges to both K(x, px + tej , py − tej) and K(x, px, py).
Thus by uniqueness of the limit, for all t and j, K(x, px, py) = K(x, px+ tej , py− tej).
This is equivalent to the property that K is a function of (x, px + py). □

Appendix D. Generating function for Euler-Lagrange flows

Let N be a compact manifold. The goal of this appendix is to prove that if the
Hamiltonian H(t, q, p) is strictly convex in p and its flow is complete, then φt(0N )

has a GFQI equal to a positive definite quadratic form at infinity. The same property
holds for the graph of φt. We remind the reader that using the Legendre transform, the
flow of H can be identified with the Euler-Lagrange flow associated to the Legendre
dual of H, L(t, q, ξ), where

L(t, q, ξ) = sup{⟨p, ξ⟩ −H(t, q, p) | p ∈ T ∗
qN}.

The definition of Tonelli Lagrangians can be found in Definition 12.3.

Proposition D.1. — Let L(t, q, ξ) be a Tonelli Lagrangian defined on R× TN , 1-pe-
riodic in t. Let φt be the flow of the corresponding Hamiltonian H(t, q, p) defined on
R × T ∗N . Then Λ = φ1(0N ) has a generating function equal to a positive definite
quadratic form outside a compact set. As a consequence, if we denote by S(q, ξ) this
function, we have c(1q,Λ) = infξ∈Rq S(q, ξ) and c(1,Λ) = inf(q,ξ)∈Tn×Rq S(q, ξ).

Proof. — Using Brunella’s idea of embedding T ∗N into T ∗Tn (cf. [Bru91]) we only
need to prove this for a Lagrangian defined on the torus (this is the only case we use
here anyway).

Thus consider a general Lagrangian L(t, q, ξ) and the corresponding Hamiltonian
H(t, q, p). If we look for intersection points φ1(0N ) ∩ 0N , we can modify H outside a
compact set, so that Ĥ(t, q, p) = C|p|2 outside a compact set, Ĥ is still strictly convex
and for t in [0, 1], φt(0N ) is unchanged. There is thus a corresponding “truncated”
Lagrangian L̂. We still denote by L the truncated Lagrangian in the sequel. Note that
this is automatically a Tonelli Lagrangian.
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Consider the set W = {(q1, q2) ∈ Rn ×Rn}/ ≃ where (q1, q2) ≃ (q1 + ν, q2 + ν) for
ν ∈ Zn and we have the projection W → Tn on the first component, with fiber Rn.
We sometimes denote by (q, x) an element in W with projection q, and x=q2 − q1∈Rn

which is well-defined in Rn. Consider, for (q1, q2) ∈W ,

A(q1, q2) = inf

{∫ 1

0

L(s, q(s), q̇(s))dt | q : [0, 1] → Rn, q(0) = q1, q(T ) = q2

}
.

The existence of a critical point of the energy E(q) =
∫ 1

0
L(s, q(s), q̇(s))dt on the set

P(q1, q2) = {q : [0, 1] → Rn | q(0) = q1, q(1) = q2} of paths connecting q1, q2 is equiva-
lent, by the standard methods of the calculus of variations, to the existence of a point
in φ1({q1}×Rn)∩ {q2}×Rn. For L(t, q, p)=L0(t, q, p)=(C/2)|p|2, the corresponding
maps is given by φ1

0(q, p) = (q+Cp, p), hence φ1
0({q1}×Rn) = {(q1+Cp, p) | p ∈ Rn}

and this intersects transversally at a unique point all other {q2} × Rn. This will still
hold for a C1-small compactly supported perturbation of φ1

0, hence for a general L as
above, provided t is small enough, the minimizer realizing A(q1, q2) is unique.

Lemma D.2. — Let L be a Lagrangian such that L(t, q, ξ) = C|ξ|2 for ξ large enough.
Then for t small enough, we have that for any q1, q2, the function

Et(γ) =

∫ t

0

L(s, q(s), q̇(s))dt

has a unique critical point γ : [0, t] → Rn, depending continuously on (q1, q2). More-
over this unique critical point is a minimum and for |q2−q1| large enough, the critical
value At(q1, q2) = (C/2t)|q2 − q1|2 is quadratic positive definite in q2 − q1.

The existence of a minimum of Et on P(q1, q2) implies that if uniqueness and
transversality hold, the only critical point of E is a minimum, and At is a smooth
function of (q1, q2).

Proof. — For simplicity we may assume C = 1. Let φt be the flow associated to H,
the Legendre dual of L, and π : T ∗Rn → Rn be the projection. We claim that for t
small enough, ζt = π ◦φt : {q}×Rn → Rn is a diffeomorphism. Indeed, we claim that

(1) for |p| large enough (independently of t), φt(q, p) = q + tp,
(2) for t small enough Dζt(q, p) is invertible.
The first claim is clear: if H(t, q, p) = |p|2 for |p| ⩾ r, then for |p| ⩾ r, we have

φt(q, p) = q + tp. The second claim only needs to be checked for |p| ⩽ r. Let us
compute

d

dt
(Dφt(q, p))|t=t0 = D

( d
dt
φt(q, p)

)
|t=t0

= D(XH(φt0(q, p)))

= DXH(φt0(q, p))Dφt0(q, p),

so if M(t) = Dφt(q, p) we have
d

dt
M(t) = DXH(φt0(q, p))M(t)
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and
D(π ◦ φt)(q, p)|{0}×Rn = Dπ(φt(q, p))Dφt(q, p)|{0}×Rn = Dπ ◦M(t)|{0}×Rn .

Now
M(t) =M(0) + tDXH(q, p) + o(t)

and XH(q, p) =
(
∂H/∂p, −∂H/∂q

)
, so that

DXH(q, p) =

(
∂2H/∂p∂q −∂2H/∂q2
∂2H/∂p2 −∂2H/∂p∂q

)
and

Dπ ◦DXH(q, p)|{q}×Rn =
∂2H

∂p2
.

As a result, denoting S(t) = Dπ ◦M(t)|{0}×Rn we get

S(t) = S(0) + t
∂2H

∂p2
(q, p) + o(t)

and since S(0) = 0 and the reminder o(t) is uniform on any set bounded in p (since
it will be bounded, by Taylor’s formula by higher derivatives of H which are periodic
in q), we get that for t small enough, S(t) will be invertible for |p| ⩽ r. This concludes
the proof of (2).

We thus know that the map π◦φt is equal to q+t·Id outside a compact set, and has
invertible differential. It is a classical calculus exercise to conclude that such a map is
a diffeomorphism. This means that given q1 for every q2 there is a unique critical point
of γ 7→ Et(γ), which is necessarily a minimum, since we know by the Tonelli condition
implies that there is a minimum. Moreover the map q2 7→ P (q2) where P (q1, q2) is
the unique point such that πφt(q1, P (q1, q2)) = q2. Finally for q2 − q1 large enough,
the path q(t) = q1 + (s/t)(q2 − q1) is a critical point of E on P(q1, q2). □

Now let N be chosen large enough so that φ(k+1)/Nφ−k/N satisfy the conclusions
of the above lemma (i.e., t = 1/N is small enough in the sense of the previous
lemma). Let Ak(q, q

′) be the minimum of the energy corresponding to L(t, q, ξ) for
t ∈ [k/N, (k + 1)/N ]. Then, consider the function focused

S(q1; q2, q3, . . . , qN ) = A0(q1, q2) +A1(q2, q3) + · · ·+AN−1(qN−1, qN ).

One easily checks that S is a generating function for φ1(0Tn). Moreover it is asymp-
totically quadratic in the sense that it satisfies the assumptions of [Vit06b, Prop. 1.6
p. 441], and this proves that S can be deformed into a GFQI equal to a positive def-
inite quadratic form generating the same Lagrangian (see loc. cit., Prop. 1.6 and the
proof of Th. 1.7). □

Appendix E. Relationship with [MVZ12]

The paper [MVZ12] contains a slightly different approach to symplectic homoge-
nization: it is focused on the behavior of the Lagrangians Lp0

by iterations of φH .
They also make use of Floer homology, but this does not really matter, as we could
use Generating Function homology (see [Tra94], and [Vit95] for the equivalence of the
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two). We here briefly relate their definition with ours. Their version of homogenization
(see the proof of [MVZ12, Th. 1.3]) is defined by

µp(φ) = lim
k→∞

1

k
c+(τ−pφ

k(τp(0N )).

We claim

Proposition E.1. — Let φ be the time-one flow of a compactly supported smooth
Hamiltonian H. Let H be defined in Theorem 3.1. Then we have µp(φ) = H(p).

Lemma E.2. — Let H(p) be an integrable Hamiltonian. Then we have setting Lp0
=

{(x, p0) | x ∈ Tn} that FH∗(φH(Lp0
), Lp0

; a, b) = H∗(Tn) if H(p0) ∈ ]a, b] and
vanishes otherwise.

Proof. — Indeed, the flow is given by (x, p) 7→ (x + t∇H(p), p) and we have that
FH∗(φH(Lp0

), Lp0
; a, b) = FH∗(Lp0

, Lp0
, H; a, b) where the second homology is ob-

tained by taking trajectories of XH and the action of a trajectory is
∫ 1

0
pdx−Hdt =

p0∇H(p0)−H(p0). Note that for p0 = 0 we get −H(0). For a general p0, replacing H
by Kp0

(p) = H(p + p0) we get that FH∗(L0, L0,Kp0
; a, b) is non zero if and only if

−K(0) = −H(p0) ∈]a, b]. Note that if τp0 is the vertical translation by p0, we have
φKp0

= T−p0φHTp0 . □

Proof of Proposition E.1. — Now let H be a smooth compact supported Hamiltonian.
Setting φk = ρ−1

k φk
Hρk, according to our Main Theorem, φk γ-converges to φ and

since τp0
and ρk commute, the sequence

(
1
k c+(τ−p0

φkτp0
(0N ), 0N )

)
k⩾1

converges to
c+(φ(Lp0)) = H(p0). This uses the fact that the map

Ham(T ∗N)× L(T ∗N) −→ L(T ∗N)

given by
(φ,L) 7−→ φ(L)

extends by continuity to

Ĥam(T ∗N)× L̂(T ∗N) −→ L̂(T ∗N)

(see [Hum08b, Prop. 4.3]). □

References
[Aar91] J. F. Aarnes – “Quasi-states and quasi-measures”, Adv. Math. 86 (1991), no. 1, p. 41–67.
[AB84] E. Acerbi & G. Buttazzo – “On the limits of periodic Riemannian metrics”, J. Analyse

Math. 43 (1983/84), p. 183–201.
[AB02] O. Alvarez & M. Bardi – “Viscosity solutions methods for singular perturbations in deter-

ministic and stochastic control”, SIAM J. Control Optim. 40 (2001/02), no. 4, p. 1159–
1188.

[AB03] , “Singular perturbations of nonlinear degenerate parabolic PDEs: a general con-
vergence result”, Arch. Rational Mech. Anal. 170 (2003), no. 1, p. 17–61.

[Ban80] V. Bangert – “Closed geodesics on complete surfaces”, Math. Ann. 251 (1980), no. 1,
p. 83–96.

[BCD97] M. Bardi & I. Capuzzo-Dolcetta – Optimal control and viscosity solutions of Hamilton-
Jacobi-Bellman equations, Systems & Control: Foundations & Applications, Birkhäuser
Boston, Inc., Boston, MA, 1997.

J.É.P. — M., 2023, tome 10



138 C. Viterbo

[Bar94] G. Barles – Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques &
Applications, vol. 17, Springer-Verlag, Paris, 1994.

[Ben88] V. Benci – Talk at the Workshop of Symplectic Geometry, M.S.R.I., Berkeley, CA, USA,
August 1988.

[Ber03] P. Bernard – “The action spectrum near positive definite invariant tori”, Bull. Soc. math.
France 131 (2003), no. 4, p. 603–616.

[Ber07] , “Symplectic aspects of Mather theory”, Duke Math. J. 136 (2007), no. 3, p. 401–
420.

[Bir27] G. D. Birkhoff – Dynamical systems, Amer. Math. Soc. Colloquium Publ., vol. IX, Amer-
ican Mathematical Society, Providence, R.I., 1927, (reprinted 1966).

[Bis19] M. R. Bisgaard – “Mather theory and symplectic rigidity”, J. Modern Dyn. 15 (2019),
p. 165–207.

[BM58] N. N. Bogoliubov & Y. A. Mitropolski – Asymptotic methods in the theory of nonlinear
oscillations, Fizmatlit, Moscow, 1958, English transl.: Gordon and Breach, New York,
1964.

[Bou02] A. Boudaoud – “De la corde au film de savon: de l’auto-adaptation dans les systèmes
vibrants”, Images de la Physique (2002), p. 78–83, may be retrieved from https://www.
imo.universite-paris-saclay.fr/~claude.viterbo/Imphy.pdf.

[BCBA99] A. Boudaoud, Y. Couder & M. Ben Amar – “A self-adaptative oscillator”, European
Phys. J. B 9 (1999), p. 159–165.

[Bra02] A. Braides – Γ-convergence for beginners, Oxford Lecture Series in Math. and its Appli-
cations, vol. 22, Oxford University Press, Oxford, 2002.

[Bru91] M. Brunella – “On a theorem of Sikorav”, Enseign. Math. (2) 37 (1991), no. 1-2, p. 83–
87.

[BS13] L. Buhovsky & S. Seyfaddini – “Uniqueness of generating Hamiltonians for topological
Hamiltonian flows”, J. Symplectic Geom. 11 (2013), no. 1, p. 37–52.

[CV08] F. Cardin & C. Viterbo – “Commuting Hamiltonians and Hamilton-Jacobi multi-time
equations”, Duke Math. J. 144 (2008), no. 2, p. 235–284.

[Cha84] M. Chaperon – “Une idée du type ‘géodésiques brisées’ pour les systèmes hamiltoniens”,
C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 13, p. 293–296.

[Cha91] , “Lois de conservation et géométrie symplectique”, C. R. Acad. Sci. Paris Sér.
I Math. 312 (1991), no. 4, p. 345–348.

[Che96] Y. V. Chekanov – “Critical points of quasifunctions, and generating families of Legendrian
manifolds”, Funktsional. Anal. i Prilozhen. 30 (1996), no. 2, p. 56–69, 96.

[Con96] M. C. Concordel – “Periodic homogenization of Hamilton-Jacobi equations: additive
eigenvalues and variational formula”, Indiana Univ. Math. J. 45 (1996), no. 4, p. 1095–
1117.

[CIPP98] G. Contreras, R. Iturriaga, G. P. Paternain & M. Paternain – “Lagrangian graphs, minimiz-
ing measures and Mañé’s critical values”, Geom. Funct. Anal. 8 (1998), no. 5, p. 788–809.

[CL83] M. G. Crandall & P.-L. Lions – “Viscosity solutions of Hamilton-Jacobi equations”, Trans.
Amer. Math. Soc. 277 (1983), no. 1, p. 1–42.

[DM93] G. Dal Maso – An introduction to Γ-convergence, Progress in Nonlinear Differential Equa-
tions and their Appl., vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1993.

[DG75] E. De Giorgi – “Sulla convergenza di alcune successioni d’integrali del tipo dell’area”,
Rend. Mat. (6) 8 (1975), p. 277–294.

[DGF75] E. De Giorgi & T. Franzoni – “Su un tipo di convergenza variazionale”, Atti Accad. Naz.
Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8) 58 (1975), no. 6, p. 842–850.

[DMGZ94] G. De Marco, G. Gorni & G. Zampieri – “Global inversion of functions: an introduction”,
NoDEA Nonlinear Differential Equations Appl. 1 (1994), no. 3, p. 229–248.

[Eli91] Y. Eliashberg – “New invariants of open symplectic and contact manifolds”, J. Amer.
Math. Soc. 4 (1991), no. 3, p. 513–520.

[EP06] M. Entov & L. Polterovich – “Quasi-states and symplectic intersections”, Comment.
Math. Helv. 81 (2006), no. 1, p. 75–99.

[Eva89] L. C. Evans – “The perturbed test function method for viscosity solutions of nonlinear
PDE”, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), no. 3-4, p. 359–375.

J.É.P. — M., 2023, tome 10

https://www.imo.universite-paris-saclay.fr/~claude.viterbo/Imphy.pdf
https://www.imo.universite-paris-saclay.fr/~claude.viterbo/Imphy.pdf


Symplectic Homogenization 139

[Fat97] A. Fathi – “Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens”,
C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 9, p. 1043–1046.

[Fat98] , “Sur la convergence du semi-groupe de Lax-Oleinik”, C. R. Acad. Sci. Paris
Sér. I Math. 327 (1998), no. 3, p. 267–270.

[Fat08] , “Weak KAM theorem in Lagrangian dynamics”, 2008, Version 10, available from
https://www.math.u-bordeaux.fr/~pthieull/Recherche/KamFaible/Publications/
Fathi2008_01.pdf.

[Ger31] S. Geršgorin – “Über die Abgrenzung der Eigenwerte einer Matrix”, Bulletin de
l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et na. 6 (1931),
p. 749–754.

[Gro99] M. Gromov – Metric structures for Riemannian and non-Riemannian spaces, Progress in
Math., vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999, Based on the 1981 French
original (3rd ed. 2007).

[GV22] S. Guillermou & N. Vichery – “Viterbo’s spectral bound conjecture for homogeneous
spaces”, 2022, arXiv:2203.13700.

[Had06] J. Hadamard – “Sur les transformations ponctuelles”, Bull. Soc. math. France 34 (1906),
p. 71–84.

[Hum08a] V. Humilière – “Continuité en topologie symplectique”, PhD Thesis, École polytechnique,
2008, https://www.theses.fr/2008EPXX0005.

[Hum08b] , “On some completions of the space of Hamiltonian maps”, Bull. Soc. math.
France 136 (2008), no. 3, p. 373–404.

[HLS15] V. Humilière, R. Leclercq & S. Seyfaddini – “New energy-capacity-type inequalities and
uniqueness of continuous Hamiltonians”, Comment. Math. Helv. 90 (2015), no. 1, p. 1–
21.

[Lau92] F. Laudenbach – “On the Thom-Smale complex”, in An extension of a theorem by Cheeger
and Müller, Astérisque, vol. 205, Société Mathématique de France, Paris, 1992, p. 219–
233.

[LS85] F. Laudenbach & J.-C. Sikorav – “Persistance d’intersection avec la section nulle au cours
d’une isotopie hamiltonienne dans un fibré cotangent”, Invent. Math. 82 (1985), no. 2,
p. 349–357.

[LPV87] P.-L. Lions, G. C. Papanicolaou & S. R. S. Varadhan – “Homogenization of Hamilton-Jacobi
equations”, 1987, Unpublished preprint, available from http://localwww.math.unipd.
it/~bardi/didattica/Nonlinear_PDE_%20homogenization_Dott_%202011/LPV87.pdf.

[Mat91] J. N. Mather – “Action minimizing invariant measures for positive definite Lagrangian
systems”, Math. Z. 207 (1991), no. 2, p. 169–207.

[Mon42] P. Mondrian – “New-york city”, 1942, Centre Pompidou, MNAM-CCI, Paris, https:
//www.centrepompidou.fr/cpv/resource/c5pRBL/rdyjdr9.

[MVZ12] A. Monzner, N. Vichery & F. Zapolsky – “Partial quasimorphisms and quasistates on cotan-
gent bundles, and symplectic homogenization”, J. Modern Dyn. 6 (2012), no. 2, p. 205–
249.

[MZ11] A. Monzner & F. Zapolsky – “A comparison of symplectic homogenization and Calabi
quasi-states”, J. Topol. Anal. 3 (2011), no. 3, p. 243–263.

[Oh05] Y.-G. Oh – “Construction of spectral invariants of Hamiltonian paths on closed symplectic
manifolds”, in The breadth of symplectic and Poisson geometry, Progress in Math., vol.
232, Birkhäuser Boston, Boston, MA, 2005, p. 525–570.

[OV95] A. Ottolenghi & C. Viterbo – “Solutions généralisées pour l’équation de Hamilton-
Jacobi dans le cas d’évolution”, 1995, Preprint, available from http://www.math.ens.
fr/~viterbo/Ottolenghi-Viterbo.pdf.

[Roo17] V. Roos – “Solutions variationnelles et solutions de viscosité”, PhD Thesis, Université
de Paris-Dauphine, 2017, http://www.theses.fr/2017PSLED023 and https://basepub.
dauphine.fr/handle/123456789/16992.

[SV85] J. A. Sanders & F. Verhulst – Averaging methods in nonlinear dynamical systems, Applied
Math. Sciences, vol. 59, Springer-Verlag, New York, 1985.

[Sch00] M. Schwarz – “On the action spectrum for closed symplectically aspherical manifolds”,
Pacific J. Math. 193 (2000), no. 2, p. 419–461.

J.É.P. — M., 2023, tome 10

https://www.math.u-bordeaux.fr/~pthieull/Recherche/KamFaible/Publications/Fathi2008_01.pdf
https://www.math.u-bordeaux.fr/~pthieull/Recherche/KamFaible/Publications/Fathi2008_01.pdf
http://arxiv.org/abs/2203.13700
https://www.theses.fr/2008EPXX0005
http://localwww.math.unipd.it/~bardi/didattica/Nonlinear_PDE_%20homogenization_Dott_%202011/LPV87.pdf
http://localwww.math.unipd.it/~bardi/didattica/Nonlinear_PDE_%20homogenization_Dott_%202011/LPV87.pdf
https://www.centrepompidou.fr/cpv/resource/c5pRBL/rdyjdr9
https://www.centrepompidou.fr/cpv/resource/c5pRBL/rdyjdr9
http://www.math.ens.fr/~viterbo/Ottolenghi-Viterbo.pdf
http://www.math.ens.fr/~viterbo/Ottolenghi-Viterbo.pdf
http://www.theses.fr/2017PSLED023
https://basepub.dauphine.fr/handle/123456789/16992
https://basepub.dauphine.fr/handle/123456789/16992


140 C. Viterbo

[Sey12] S. Seyfaddini – “Descent and C0-rigidity of spectral invariants on monotone symplectic
manifolds”, J. Topol. Anal. 4 (2012), no. 4, p. 481–498.

[She22] E. Shelukhin – “Symplectic cohomology and a conjecture of Viterbo”, Geom. Funct.
Anal. (2022), published online, doi:10.1007/s00039-022-00619-2.

[Sik89] J.-C. Sikorav – “Rigidité symplectique dans le cotangent de Tn”, Duke Math. J. 59
(1989), no. 3, p. 759–763.

[Sik90] , Talk given at Paris 7 seminar, 1990.
[SV10] A. Sorrentino & C. Viterbo – “Action minimizing properties and distances on the group

of Hamiltonian diffeomorphisms”, Geom. Topol. 14 (2010), no. 4, p. 2383–2403.
[Thé99] D. Théret – “A complete proof of Viterbo’s uniqueness theorem on generating functions”,

Topology Appl. 96 (1999), no. 3, p. 249–266.
[Tra94] L. Traynor – “Symplectic homology via generating functions”, Geom. Funct. Anal. 4

(1994), no. 6, p. 718–748.
[Var04] R. S. Varga – Geršgorin and his circles, Springer Series in Computational Math., vol. 36,

Springer-Verlag, Berlin, 2004.
[Vit92] C. Viterbo – “Symplectic topology as the geometry of generating functions”, Math. Ann.

292 (1992), no. 4, p. 685–710.
[Vit95] , “Solutions d’équations d’Hamilton-Jacobi et géométrie symplectique”, in Sémi-

naire X-EDP, École polytechnique, Palaiseau, 1995, http://www.numdam.org/item/
SEDP_1995-1996____A22_0/.

[Vit06a] , “On the uniqueness of generating Hamiltonian for continuous limits of Hamilto-
nians flows”, Internat. Math. Res. Notices (2006), article no. 34028 (9 pages), Erratum:
Ibid., article no. 38784 (4 pages).

[Vit06b] , “Symplectic topology and Hamilton-Jacobi equations”, in Morse theoretic meth-
ods in nonlinear analysis and in symplectic topology, NATO Sci. Ser. II Math. Phys.
Chem., vol. 217, Springer, Dordrecht, 2006, p. 439–459.

[Vit18] , “Non-convex Mather theory”, 2018, submitted to Duke Math. J., arXiv:
1807.09461.

[Vit21] , “Stochastic homogenization of variational solutions of Hamilton-Jacobi equa-
tions”, 2021, arXiv:2105.04445.

[Vit22] , “Inverse reduction inequalities for spectral numbers and applications”, 2022,
arXiv:2203.13172.

[Wei13] Q. Wei – “Solutions de viscosité des équations de hamilton-jacobi et minmax itérés”, PhD
Thesis, Université de Paris 7, 2013, https://tel.archives-ouvertes.fr/tel-00963780.

[Zhu96] T. Zhukovskaya – “Metamorphoses of the Chaperon-Sikorav weak solutions of Hamilton-
Jacobi equations”, J. Math. Sci. 82 (1996), no. 5, p. 3737–3746.

Manuscript received 16th July 2022
accepted 2nd December 2022

Claude Viterbo, DMA, UMR 8553 du CNRS, École Normale Supérieure, PSL University
45 Rue d’Ulm, 75230 Paris Cedex 05, France
Current address: Laboratoire Mathématique d’Orsay, UMR 8628
Bâtiment 307, Faculté des sciences d’Orsay, Université de Paris-Saclay, 91405 Orsay Cedex
E-mail : Claude.Viterbo@universite-paris-saclay.fr

J.É.P. — M., 2023, tome 10

http://dx.doi.org/10.1007/s00039-022-00619-2
http://www.numdam.org/item/SEDP_1995-1996____A22_0/
http://www.numdam.org/item/SEDP_1995-1996____A22_0/
http://arxiv.org/abs/1807.09461
http://arxiv.org/abs/1807.09461
http://arxiv.org/abs/2105.04445
http://arxiv.org/abs/2203.13172
https://tel.archives-ouvertes.fr/tel-00963780
mailto:Claude.Viterbo@universite-paris-saclay.fr

	1. Introduction
	2. A crash course on generating function metric
	3. Statement of the main results
	4. Proof of the main theorem
	5. Proof of Proposition 4.15
	6. Proof of Proposition 4.16
	7. Proof of Theorem 3.1
	8. Proof of Theorem 3.2
	9. Proof of Theorem 3.5, the partial homogenization case
	10. Proof of Proposition 3.7
	11. Non compact-supported Hamiltonians and the time dependent case
	12. Homogenization in the p variable and connection with Mather's alpha function 
	13. More examples and applications
	14. Further questions
	Appendix A. Capacity of completely integrable systems
	Appendix B. Some ``classical'' inequalities
	Appendix C. A different type of homogenization
	Appendix D. Generating function for Euler-Lagrange flows
	Appendix E. Relationship with MVZ
	References

